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Abstract

Lymph node metastasis is a strong predictor of poor outcome in cancer patients. Animal studies of
lymph node metastasis are constrained by difficulties in the establishment of appropriate animal
models, limitations in the noninvasive monitoring of lymph node metastasis progression, and
challenges in the pathologic confirmation of lymph node metastases. In this comprehensive
review, we summarize available preclinical animal cancer models for noninvasive imaging and
identification of lymph node metastases of non-hematogenous cancers. Furthermore, we discuss
the strengths and weaknesses of common noninvasive imaging modalities used to identify tumor-
bearing lymph nodes and provide guidelines for their pathological confirmation.
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Introduction

Lymphatic metastasis is a predictor of poor outcome in many solid malignancies [1-4]. The
presence of lymph node metastases decreases the 5-year survival of melanoma patients
independent of other prognostic factors of the primary tumor [5]. Likewise, the number of
metastatic lymph nodes resected correlates with survival in breast cancer patients [6].
Despite the importance of lymph node metastasis (LNM), as highlighted by its inclusion in
cancer staging systems, preclinical evaluation of lymph nodes (LN) in small animal models
remains limited. When performing LNM studies, investigators face multiple challenges
including: (1) the paucity of valid animal models in different animal species, (2) difficulties
in identifying and serially monitoring metastatic disease by noninvasive imaging techniques,
and (3) challenges of harvesting and pathologically confirming tumor replaced LN in small
animal models. Herein, we review animal models, detail noninvasive imaging modalities,
and provide recommendations for imaging, harvesting, and pathologically confirming LNM.

Preclinical LNM animal models

Melanoma

In this section, we review the most common, reproducible, murine models for LNM studies
in non-hematogenous cancers (Table 1) and highlight the roles of: (1) immunocompetent
versus immunodeficient hosts, (2) xenogeneic or syngeneic tumor models, and (3)
orthotopic versus heterotopic tumor implantation. Employing syngeneic tumor cell lines or
germline-encoded tumors in immunocompetent models of cancer provide a tumor
microenvironment with compatible stromal, vascular, and immunological components [7].
Immunodeficient models utilize either human cancer cell lines or tumor explants as
xenografts. These models lack a complete immunologic milieu for LNM but allow the use of
well-characterized human cancer cell lines that may metastasize to regional nodal basins [8].
An understanding of the LN microenvironment and biology in commonly used
immunodeficient mouse strains is essential for researchers investigating LNM as it is
influenced by the immunologic milieu, therapy resistance, and the development of
spontaneous cancers after a certain age (Supplemental Table 1). In addition to recognizing
the benefits and limitations of the immune environment in animal models, it is essential to
select a model that permits high-yield LNM for the specific cancer of interest. With an
emphasis on reproducibility by multiple investigators, we summarize solid cancer animal
models and cell lines useful for LNM studies (Tables 1 and 2) and highlight common murine
LNM solid cancer models in the following sections.

A common model for studying lymphatic metastasis in melanoma involves orthotopic
injection of syngeneic B16 melanoma cells into the footpad [9-12], auricular tissue [13, 14],
thigh [15], or abdomen [16] of C57BL/6J mice (Table 1). LNM drain to local nodal basins
resulting in popliteal and inguinal metastases from footpad tumors; cervical metastases from
auricular tumors; and axillary, popliteal, or inguinal metastases from ventral and flank
tumors in >90% of mice within 2—4 weeks. In this murine model, the primary tumor can be
resected with minimal morbidity or mortality. Large, pigmented, superficial tumor-bearing
nodes, which subsequently develop, facilitate noninvasive imaging and ex vivo analysis of
involved nodes without requiring mouse sacrifice. Table 1 details all melanoma models
available for LNM imaging studies. Immunodeficient murine models allow for the study of
human and murine melanomas in an immunological naive background [17-19]. In addition
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to providing a large animal model of LNM, spontaneous swine melanoma models are used
to examine practical limitations of current imaging techniques [20-22].

Animal models for breast cancer lymphatic metastasis are based upon orthotopic
implantation of tumor explants or cancer cells into mammary fat pads (Table 1). Such
models allow for noninvasive LNM imaging of superficial LN after surgical resection of
primary tumor. The most common murine models utilize immunodeficient mice injected
with cells derived from human breast cancer patients, including those with a high propensity
for LN metastasis (Table 2). Tumor cells are injected into the mammary fat pad and LNM
are noted within 3-8 weeks in the axillary, brachial, cervical, inguinal, and popliteal basins
depending on the proximity of the mammary fat pad inoculated with tumor [23-25].
Another method for establishing an orthotopic model with high tumor engraftment rates and
consistent anatomic location involves the surgical implantation of a human breast cancer
into the mammary fat pad of a female nude mouse [26, 27]. The resulting tumor is resected,
trimmed free of necrotic tissue, homogenized, and surgically implanted into the mammary
fat pad of another nude mouse. This technique results in axillary LN (55% of animals at day
106 post-implantation), lung (15%), and liver (10%) metastases [27].

Head and neck

Pleural/lung

To identify regional LNM associated with oropharyngeal squamous cell carcinoma, an
orthotopic mouse model developed by Myers et al. [28] is used in LNM imaging studies.
Xenogeneic tumor cells are injected into the anterior tongue of an immunodeficient host and
regional metastases to cervical and mandibular nodes were noted within 2 weeks (Table 1).
Superficial nodal basins identified by noninvasive imaging techniques are reproducible and
easily accessible for surgical biopsy via a small cervical incision and permit histopathologic
confirmation of metastatic LN [29].

In pleural cancer models, involved mediastinal nodal basins are difficult to image due to
limitations in depth of penetration for many imaging modalities. Heterotopic preauricular
models of mesothelioma metastasize to cervical LN and facilitate imaging of superficial
nodal metastases while providing an easy method to study metastatic spread following
primary tumor resection [30]. Our laboratory has developed an orthotopic xenograft model
of human malignant pleural mesothelioma that accurately reflects human disease. Following
the direct injection of cancer cells into the pleural space, bilateral pleural disease develops as
the left and right pleural cavities communicate in mice. Nodal metastases to cervical,
mediastinal, and retroperitoneal basins occur within 3 weeks of tumor inoculation. This
model allows for noninvasive monitoring of tumor progression and quantitative
bioluminescent imaging (BLI). BLI can identify tumor-bearing LN basins but does not
permit the identification of specific LNM [31]. Tomographic methods, such as CT and MR,
are able to localize LNMs but are logistically challenging due to time constraints and the
number of mice able to be screened.

In an orthotopic model of lung cancer described by Takizawa et al. [32], tumor cells
suspended in Matrigel are directly injected into the lung parenchyma following a
thoracotomy. Macroscopically detectable tumor typically develops at the injection site
within 9 days with mediastinal LNM subsequently observed by 12 days [33]. Using this
model, we have successfully developed protocols utilizing BLI to facilitate the identification
and progression of mediastinal LNM. To histologically confirm mediastinal nodal
involvement, LN must be harvested by carefully dissecting and mounting suspected nodal
basins, even in the absence of macroscopic evidence of disease (as discussed in a later

J Mol Med (Berl). Author manuscript; available in PMC 2012 August 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Servais et al.

Page 4

section). To differentiate pleural tumor nodules from LNM, which grossly appear similar on
harvesting, a detailed pathologic analysis by an experienced animal pathologist is the only
useful confirmatory method.

Gastrointestinal/pancreatic

Prostate

As with pleural and lung cancer models, gastrointestinal and pancreatic cancer can be
challenging for LNM studies due to deep nodal basins. Commonly used models of these
tumors are summarized in Table 1. A model of orthotopic gastric cancer described by
Koyama et al. [34, 35] reproducibly develops LNM in nude rats following sub-serosal
injection of the anterior stomach with a human scirrhous gastric carcinoma cell line with a
predilection for lymphatic metastases (OCUM-2M LN). To further promote LNM, rats were
depleted of natural killer cells with 3 Gy of irradiation 3 days prior to tumor inoculation [34,
35]. In animals with established tumor, fluorescent laparoscopy was used to identify
lymphatic metastases, which were subsequently confirmed histologically. Orthotopic
pancreatic cancer models [36, 37] utilize surgical implantation of human PaCa-2 cells into
body of the pancreas of immunodeficient mice. On fluorescent imaging, mice exhibited
significant primary tumor growth and metastatic spread within 2 weeks after surgical tumor
implantation. In these studies, autopsy confirmed metastases in the spleen (100%), intestinal
nodes (100%), portal nodes (90%), liver (80%), retroperitoneum (60%), diaphragm (50%),
kidney (30%), and lungs (10%).

LNM imaging studies for prostate cancer utilize heterotopic and orthotopic tumor
implantation into host animals (Table 1). However, only orthotopic models recapitulate
human disease with nodal metastases to pelvic and retroperitoneal LN [38, 39]. In this
model, a highly metastatic human prostate cancer cell line (PC3-LN4) is injected into a lobe
of the prostate and can result in 100% of mice with pelvic metastases as determined by BLI
and fluorescent imaging.

Lymph node metastasis imaging in animal models

The successful development and use of LNM animal models are based on the ability to
noninvasively, serially image and monitor LNM involvement. Even with a clear
understanding of lymphatic anatomy, it is often difficult to grossly identify lymph nodes in
small animal cancer models. Here, we review preclinical LN imaging modalities that direct
the investigator to lymph nodes potentially harboring metastases by identifying nodal basins
with an increased probability for metastases. We also describe techniques aimed at
visualizing specific LNM.

Although radiocolloid and dye-based tracer agents are used in small animal models, their
use for detecting LNM [40] can be limited by: (1) invasive surgical exploration or ex vivo
analysis of specimens, (2) suboptimal spatial-temporal resolution in small animal models,
and (3) high background signal from nearby tumors [41]. Newer modalities and tracer
agents are being developed to overcome these limitations. Table 3 provides a summary of
available LN imaging modalities used to identify both lymphatic architecture (Table 3a) and
LNM (Table 4b).

Optimization of tracer agent size is fundamental for lymphatic mapping. Biokinetic and
lymphoscintigraphy studies have shown that particle size impacts lymphatic entry and nodal
retention of tracer molecules [42, 43]. An inverse relationship between particle size and LN
interstitial clearance exists. Particles greater than 500 nm typically fail to reach tumor-
draining lymph nodes (TDLN) due to slow interstitial clearance, while particles less than 5
nm can freely enter capillaries and pass directly through the LN. Intratumoral administration
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of appropriately sized tracers (~5-150 nm) migrate into lymphatics, demonstrate retention
within tumor draining LN [42, 44], and provide the basis for newer lymphatic tracer
molecules, such as liposomes, dendrimers, and quantum dots.

Lymphatic nodal basins that can harbor LNM are best localized with imaging techniques
that utilize exogenous tracer agents to define tumor-draining lymphatic beds (Table 3a).
While specific LNM are best visualized with imaging techniques taking advantage of
morphologic and functional changes in metastatic LN (Table 4b). In the following sections
we describe tracer agents and imaging modalities for this purpose and detail characteristic
properties including route of administration, imaging times, depth of penetration, and nodal
specificity.

Liposomes—facilitate visual, radiographic, and ultrasonographic lymphatic imaging

Liposomes are lipid-based, vesicular, molecules that can be conjugated to or encapsulate
various imaging agents, dyes, or radiocolloids. Ranging in diameter from 30 nm to several
micrometers, the size and lipophilicity of liposomes promote efficient lymphatic entry and
retention [45, 46]. Hirnle and colleagues [47-49] showed reliable SLN identification using
blue dye-encapsulated liposomes administered subdermally in rabbit and pig models.
Similarly, Phillips et al. [50] developed a blue dye/Tc-99m radio-colloid dual-labeled
liposome, which allowed SLN identification more than a week following subdermal
injection into rabbits. Dye-labeled liposomes migrate to lymphatic beds and are identified by
direct visualization, surgical, or laparoscopic exploration. Radiocolloid-labeled liposomes
require scintillation counters to localize tumor-draining lymphatic beds. To verify potential
metastases, surgical intervention and tissue biopsy are needed. As an extension of dye-
contrast ultrasonography, 5-10-um microbubble-laden liposomes facilitate the identification
of SLN by ultrasound. The tracer agent is injected subcutaneously, migrates through
lymphatics, and identifies 85-95% of SLN—common sites of LNM [51, 52]. The
disadvantages of US LN imaging include the limited use of identifying thoracic and
retroperitoneal LN, operator experience, and ex vivo analysis of LN to confirm LNM.
Although not currently utilizing liposomes/microbubbles, photoacoustic tomography (PAT)
extends the ultrasonic depth of penetration by taking advantage of photoacoustic properties
inherent to dye-contrast agents [53]. In mice and rats, PAT accurately detects LNs that
accumulate low concentrations of methylene blue (~0.28 nM) at depths greater than 2 cm in
both two- and three-dimensions [41, 54].

Quantum dots—fluorescent markers engineered for lymphatic migration and nodal

retention

Quantum dots (QDs) are nearly spherical semiconductors with size-dependent fluorescence
making these nanoparticles candidates for lymphatic imaging. QDs are engineered between
15 and 20 nm in diameter to optimize lymphatic migration and nodal retention [43]. QDs
posses improved brightness, narrow emission spectra tunable across broad ranges, and
enhanced photostability in comparison to organic fluorophores [19, 55, 56]. The physical
properties of QDs are comprehensively reviewed by Biju et al. [57] and are beyond the
scope of this review. In conjunction with a near infrared imaging (NIR) system, Parungo et
al. [58, 59] showed that QDs demonstrate high yield localization of SLN in preclinical
models of pleural and esophageal lymphatic drainage in rats. Similarly, Soltesz et al. [43]
identified SLN following QD injection into lung parenchyma in 12/12 pigs within 5 min of
injection at depths to 5 cm. QDs can accurately identify tumor-draining lymph nodes in
animal models with no signs of acute systemic toxicities [19]. Potential problems of utilizing
QD composed of heavy metals (e.g., cadmium, selenium) include cytotoxicity, tracer
stability, and bioaccumulation which are catalogued by Hardman [60].
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Optical frequency domain imaging with intravital microscopy—tracer-free lymphatic

mapping

Although not validated for the identification of lymphatic metastases, emerging imaging
techniques such as optical frequency domain imaging (OFDI) with intravital microscopy
(IVM) offer high sensitivity and rapid acquisition times needed for large-volume
lymphovascular morphometry [61]. Limited to superficial tumors modeled on dorsal skin
folds, OFDI can perform high-resolution imaging of tumor vasculature, tracer-free
functional lymphangiography, and characterization of tissue viability in the context of tumor
burden and therapy. A priori knowledge of lymphatic anatomy is required to locate the
lymph nodes and lymphatics draining from the dorsal skin fold model. OFDI allows for the
identification of lymphovascular anatomy 1-2 mm from the surface, a more than two-fold
increase from previous methods. Furthermore, the dynamic monitoring of lymphatic
vasculature during cancer progression and lymphedema offers a potential method for
evaluating existing and emerging therapies [61].

LNM-specific imaging techniques

The lymphatic tracer agents described above provide a means of lymphatic mapping but are
not tumor cell specific. These techniques provide a roadmap to harvest cancer-draining
lymph nodes for subsequent analysis for metastatic foci. Organic fluorophores conjugated to
monoclonal antibodies targeting lymphatic-associated antigens have been utilized for the
purposes of lymphatic mapping in combination with fluorescently labeled cancer cells to
image metastatic LN. An anti-LYVE-1 monoclonal antibody (targeting the lymphatic
endothelium) conjugated to AlexaFluor co-localized with fluorescently labeled meta-static
pancreatic cancer cells migrating from inguinal to axillary LN through anterior abdominal
wall lymphatics [62]. Similarly, Gleysteen et al. [63] identified cervical LNM in
immunodeficient mice with oral squamous cell carcinoma using a tumor-targeted
fluorescent anti-EGFR monoclonal antibody. This tumor-targeted strategy allows for
specific imaging of tumor-involved LN. Furthermore, this method permits the study of LNM
biology as demonstrated in a recent study showing that lymphangiogensis within TDLN is
an early event in promoting LNM [64]. While targeted LN imaging using monoclonal
antibodies has appeal, it can be hindered by non-specific uptake in visceral organs when
administered intravenously [65] and by fluorophore properties. The long-term use of organic
fluorophores is limited by poor tissue penetration, high levels of overlapping emission from
background tissue autofluorescence and photobleaching [43, 45].

Oncolytic viruses—permit tumor-specific labeling with fluorescent proteins and identify

LNM

Biological agents such as attenuated viruses [30, 66] and bacteria [67] selectively infect
tumor cells, drain to TDLN, and help identify lymphatic tumor spread [30, 68, 69].
Oncolytic viruses selectively infect, replicate within, and lyse cancer cells. The virions
released from lysed cancer cells infect neighboring cancer cells. When a single low dose of
oncolytic virus is injected into a primary tumor, the virus traffics similar to tumor cells—
from the primary tumor to the TDLN. When these draining nodes are superficial (axillary,
femoral, or popliteal), LNMs can be identified by fluorescent microscopy. The replication-
competent recombinant virus NV1066 (derived from HSV-1) carries a reporter gene for
green fluorescent protein selectively infects cancer cells thereby facilitating the detection of
nodal metastases with in vivo fluorescent imaging [30]. Our laboratory has shown the utility
of identifying LNMs in the mediastinal region of pleural or lung cancer in an orthotopic
mouse model utilizing fluorescent thoracoscopy. Furthermore, NVV1066 was utilized to
demonstrate the draining SLN in breast cancer metastases. In our experience, virally guided
fluorescent imaging facilitates easy identification of metastatic LN from normal LN prior to
histology and immunohistochemistry (Fig. 1). This modality offers decreased time and effort
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needed to identify and harvest LNMs. Oncolytic virus-based LNM imaging with virally
guided fluorescent reporters not only allows imaging and identification of LNM, but may
also act as a therapeutic modality since the viruses selectively infect and lyse cancer cells. In
addition to fluorescent imaging, this method offers a platform for in vivo LNM imaging and
responses to therapy using viruses transduced to express BLI or positron emission
tomography reporter genes [9, 26, 30, 66, 70-72].

Fluorescent-mediated molecular tomography—detects LNM and details immune

interactions

Newer techniques are emerging which combine data from microscopic studies using
intravital microscopy and mesoscopic imaging with fluorescent-mediated molecular
tomography (FMT). These methods allow for serial, quantitative, and three-dimensional
assessments of fluorophore concentrations in whole body imaging of murine cancer models
[73]. Attenuation of signal from VVT680-labeled (NIR-fluorescent probe) cells by
surrounding tissue is decreased since hemoglobin, water, and lipids have their lowest
absorption coefficients in the NIR region (650-900 nm). Although the tissue exhibits the
lowest absorption coefficient in the NIR spectrum, there is still substantial absorption and
scatter that limits depth of penetration. Using this technique, Swirski et al. tagged
lymphocytes with VT680 and were adoptively transferred to a murine hind paw colon
cancer model [74]. Mice are then serially imaged with FMT and IVM. FMT allows
researchers to monitor T cells trafficking from a tumor focus to tumor-draining inguinal LN,
at depths to 6 mm. Since VT680 does not lose fluorescence in resting cells, it is possible to
quantify the number of adoptively transferred T cells within the (~7x10%) tumor and the
(~4%10%) TDLN—consistent with ex vivo flow cytometric data (~4-10x10%) [74].
Combined with 1VM, this multi-modal method cannot only detect tumor-bearing LN, but
also details the antigenic specificity of immunologic molecules in vivo.

Iron oxide nanoparticles—specifically detect LNM

Nanoparticles comprised of iron oxide can be used in MRI studies to accurately and
sensitively detect LNM. The tracer agents ultra-small paramagnetic iron oxide or SP10
nanoparticles are administered intravenously and are selectively phagocytosed by
macrophages. Based upon the T2*-weighted effects of iron oxide particles, normal
functional lymphatic tissue with macrophages appears dark, while the nonphagocytic
metastatic tissue appears bright. Although possible LNM in large, tumor-involved, LN, may
be identified without tracer agents, studies by Lee et al. and Choi et al. combined
gadolinium contrast agents with iron oxide nanoparticles to detect LNM larger than 0.5 cm
with a sensitivity of 70-100% and specificity of 83—-85% in rabbit models of head and neck
cancer [75, 76].

Bioluminescent imaging

BLI sensitively assesses tumor progression and detects tumor metastases in live animal
models [77, 78]. Tumor cells transduced to express luciferase emit light following the
addition of substrate. The photon emissions from the cancer cells are detected by a cooled
charge-coupled device camera, quantified, and represented as a photo overlay to identify
tumor cell location. Our laboratory has applied BLI to detect LNM in mouse models of
mesothelioma [31, 79] and lung [79] (Fig. 2) and prostate cancers [80]. Metastatic LN are
best detected with mouse positioned ventrally (mediastinal nodes), laterally (cervical nodes),
or dorsally (retroperitoneal/para-aortic nodes). Bioluminescent tumor models require
optimization to maximize LNM identification and minimize technical limitations. Firefly
luciferase is typically preferred in tumor models over wild-type click beetle luciferase due to
a stronger bioluminescent signal [81]. Mutant click beetle luciferases engineered to emit
specific wavelength photons overcome the limitation of enzyme heterogeneity and can
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produce bright bioluminescent signals in vivo [82]. Marine luciferases, such as Gaussia and
Reinella, are less favored due to rapid enzymatic kinetics and high background emissions.
Transmission of bioluminescent signal depends upon the depth, viability, and vascularity of
the tumor in addition to the scattering properties of blood and overlying tissue. Low tumor
burden in metastatic LN decreases bioluminescent signal, possibly requiring longer exposure
times (approximately three- to fourfold longer exposure, ~2 min), while large primary
tumors may obscure signals from local LNM (as in the case of cervical LNM from models
of head and neck cancers). Thus, parameters that may vary between animal models and
require optimization include: substrate dose, route of substrate injection, time to imaging
following substrate injection, image acquisition time, and mouse positioning. Furthermore,
BLI has poor spatial resolution (1-2 mm) due to diffusely scattered photons and results in
challenges to precisely localize tumor foci. Multi-modality imaging techniques, such as
PET/CT data complemented by BLI, are being developed to address this limitation [83, 84].
As well, differential substrate specificities for beetle and marine luciferases (oxidizing D-
luciferin or coelenterazine, respectively) allow for dual reporter systems. This system can be
used for applications aimed at understanding biological mechanisms involved in metastases,
(i.e., simultaneously tracking tumor and immune cells) [85]. Quantitative BLI of tumor
burden is often limited by inherent properties due to the animal model used and extend to
imaging LNM. Techniques aimed at the validation of quantitative BLI in various tumor
models are described by several groups [31, 79, 86, 87]. Thus, BLI provides a sensitive and
non-invasive technique for identifying and mapping LNM in addition to a platform for
studying LNM biology.

Histopathological evaluation of LNM in mice

The imaging techniques described above provide accurate and efficient methods to
noninvasively identify LNM in animal models. However, identification by bioimaging
ultimately requires pathologic confirmation. The pathologic examination of murine LNM
can be difficult, particularly in the setting of immunodeficient species and should involve an
experienced comparative pathologist.

Gross evaluation of LN size and weight is not a reliable indicator of neoplastic involvement
[88]. Systematic evaluation of specific TDLN basins can provide high yields of tumor-
involved nodes. For a comprehensive overview of the anatomic details of the murine
lymphatic system, we direct the reader to a study on mouse lymphatic anatomy by Van den
Broeck et al. [89]. In this study, the authors catalog and illustrate the localization of murine
LN after injection of India ink—providing a roadmap for LN harvesting required to confirm
suspected metastases. Superficial LN (inguinal, axillary, or cervical/mandibular) are
particularly easy to surgically resect and amenable to a variety of LN imaging modalities.
However, identification and dissection of intracavitary nodes (intestinal, retroperitoneal,
mediastinal, or pulmonary), often require fluorescent or tomographic imaging for
identification. An “en bloc” dissection is often required to remove all the tissue in a nodal
basin with subsequent LNM confirmation under high-power magnification using H&E
staining and immunohistochemistry. Imaging techniques used to identify LNM in vivo can
be extended to specifically identify the sites of metastases within an enlarged LN ex vivo
[26] (Fig. 3).

Proper confirmation of tumor-involved LN requires evaluation of the size and cellularity of
LN functional compartments, the presence of apoptosis, necrosis, and inflammation,
hemorrhage, sinus histiocytosis and fat necrosis, and pigment accumulation [88, 90]. LN
specimens exhibit considerable variation in histopathologic appearance due to differences in
collection, embedding, and sectioning, as well as in individual differences depending on
anatomic location and degree of inherent antigenic stimulation. The importance of
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simultaneously evaluating control mice cannot be overstated. In comparison to the ease of
identifying metastatic foci in preserved human and murine LN, investigators are often faced
with the challenge of differentiating a LN totally or near totally replaced by tumor from a
solitary tumor nodule (Fig. 4). In the setting of lymphatogenous metastases, total or near
total replacement of LN by tumor can occur. Verification of LNM should include tumor
immunohistochemistry as the gross appearance and architecture of LN may be distorted.
Attention should be paid to the periphery of putative tumor-involved LN identifying islands
of immune cells and preserved LN architecture with immunostaining. LNs from
immunodeficient mouse strains have markedly different immunostaining patterns and
architectures (Fig. 5).

Conclusions

The goal of LNM imaging studies is to identify and monitor the progression of metastases in
animal models of cancer. Here, we provide an overview for selecting high-yielding LNM
cell lines for representative common solid cancers and delineate their biokinetics and LNM
yield in murine cancer models (Tables 1 and 2). Furthermore, we survey non-invasive
imaging modalities appropriate for LNM cancer models, discuss their strengths and
limitations, and describe the use of lymphatic specific and metastasis-specific tracer agents
as well as emerging LNM imaging technologies. We provide recommendations to improve
the sensitivity and specificity of identifying LNM and illustrate the potential of BLI to
identify LNM based upon our laboratory’s experience with murine models of mesothelioma,
lung cancer, and prostate cancer. BLI provides a cost-effective means to screen large
numbers of animals for LNM, and we highlight the use of tomographic methods in tandem
with BLI to overcome its limitations in spatial-temporal resolution in order to precisely
identify LNM. Finally, we detail the steps to ensure high yields of LNM identification and
describe the precise spatial localization of characteristic immune cell lymph node
architecture for a given species of mice—providing guidance in identifying LNM, even in
lymph nodes completely replaced with tumor. In summary, this review provides a single
platform for translational researchers to identify high-yielding LNM mouse models, non-
invasive imaging modalities most commonly used to localize LNM, and the critical steps
necessary to maximize yield and pathologic confirmation of LNM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Oncolytic virus-mediated detection of lymph node metastases using either fluorescent
imaging, BLI, or PET. a Fluorescence microscopy detects LNM in cervical LN following
injection of GFP-expressing herpes virus (left panel). Histology confirms microscopic focus
of LNM as denoted by an arrow (right panel) (reprinted with permission from Adusumilli et
al. [30], © 2006 American Association for Thoracic Surgery). b BLI signal is seen in the
axillary region of mice following injection of a firefly luciferase containing recombinant
adenovirus in mice containing prostate cancer LNM (reprinted with permission from
Macmillan Publishers Ltd., Burton et al. [70]). ¢ Similarly, a prostate-specific PET reporter
vector facilitated PET identification of LNM following primary tumor resection in
conjunction with the injection of 18FHBG tracer (reprinted with permission from Macmillan
Publishers Ltd., Burton et al. [70])
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Fig. 2.

BLI detects mediastinal lymph node metastases in an orthotopic mouse model of primary
lung cancer. eGFP-firefly luciferase-expressing lung cancer cells were directly injected into
lung parenchyma to create an orthotopic lung cancer primary tumor (arrows). Within 2-3
weeks, mediastinal BLI signal reveals lymph node metastases in the typical lymphatic
drainage pathway (arrowheads).

Mediastinal LNM was confirmed in each mouse upon necropsy using H&E and IHC for
tumor markers

J Mol Med (Berl). Author manuscript; available in PMC 2012 August 1.
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Fig. 3.

Fluorescently guided identification of metastatic foci within enlarged lymph nodes. a
Orthotopic implantation of breast cancer results in enlarged axillary LN. b Ex vivo analysis
of an enlarged axillary LN with fluorescent imaging reveals metastatic foci [26] (Eisenberg
et al., “Real-time intraoperative detection of breast cancer axillary lymph node metastases
using a green fluorescent protein-expressing herpes virus”, Ann Surg, 243(6), 824-30)
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Fig. 4.

Metastatic human and murine lymph nodes exhibiting a spectrum of involvement. a Human
metastatic breast cancer with focal lymph node involvement (arrow) at low (left) and high
power (right) showing preservation of lymph node architecture. b Metastatic melanoma
replacing a regional lymph node and obscuring architectural features at low (left) and high
(right) powers. ¢ Murine lymph node replaced by tumor, H&E (left), immunohistochemistry

(right)

J Mol Med (Berl). Author manuscript; available in PMC 2012 August 1.
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Fig. 5.

Immunohistochemical characterization of murine and human lymph nodes to assist in the
identification of lymph nodes in murine models. a H&E and immunohistochemistry for B
cells (B220) or T cells (CD3) in immunocompetent mouse strains (C57/B6 and BALB/c)
and immunodeficient strains (nude athymic and NOD/SCID gamma). b H&E and
immunohistochemistry for CD20 (B cells) and CD3 (T cells) in human lymph nodes

J Mol Med (Berl). Author manuscript; available in PMC 2012 August 1.
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