Sequence of the malK gene in E.coli K12

Eric Gilson, Hiroshi Nikaido^{*} and Maurice Hofnung

Unité de Programmation Moléculaire et Toxicologie Génétique (CNRS LA 271 - INSERM U.163) Institut Pasteur, 28 rue du Dr.Roux, 75015 Paris, France and Department of Microbiology and Immunology, University of California, Berkeley, CA 94720, USA

Received 5 August 1982; Revised and Accepted 25 October 1982

ABSTRACT

We present the sequence of gene <u>malk</u> which encodes a component of the system for maltose transport in <u>E.coli</u> K12. We also determined the position of deletion (S50) which fuses <u>malk</u> to the following gene <u>lamB</u>; the <u>malk-lamB</u> protein hybrid contains all of the <u>malk</u> protein. The mRNA corresponding to the last two thirds of gene <u>malk</u> could form stable stem and loop structures. The <u>malk</u> protein, as deduced from the gene sequence, would include 370 residues and correspond to a molecular weight of 40700. The sequence as well as sequence comparisons with the <u>ndh</u> protein of <u>E.coli</u> are discussed in terms of the location and function of the <u>malk</u> protein.

INTRODUCTION

All of the known binding protein dependent transport systems in bacteria appear to require several proteins (1). The molecular mechanisms underlying such systems are not yet well understood. The active transport system for maltose in E.coli K12 includes at least five proteins encoded in the genes of the malB region i.e. the malK-lamB and malE-malF-malG operons (2). All these proteins, except the malG product, have been identified. It is generally believed that the lamB protein forms a partially specific transmembrane channel which facilitates maltose and maltodextrins diffusion through the outer membrane (3,4). The early steps of transport also involve an interaction between the lambda receptor and the maltose binding protein (3). Subsequently, the malE gene product (5) would be involved in the concentration of the substrate into the periplasmic space (6) and would allow their capture by a group of proteins located at the level of the inner membrane. This group is likely to comprise the products of the malF, malK and malG genes (7,8,9). One hypothesis proposes that these inner membrane components of the system constitute an energy dependent pore which would allow the translocation of the substrate through the cytoplasmic membrane (10,11). However, nothing is known on the exact enzymatic function of these inner membrane components including the malK protein.

We present here the complete nucleotide sequence of the <u>malK</u> gene. We discuss briefly the results in terms of the structure of the <u>malK-lamB</u> operon and of the possible location and function of the <u>malK</u> protein.

[©] IRL Press Limited, Oxford, England. 0305-1048/82/1022-7449\$ 2.00/0

MATERIALS AND METHODS

<u>E.coli</u> strain pop 2044 (12) was used for plasmid propagation. The plasmids used for the isolation of DNA fragments were pHCP₂ and pHCP₃ (13) carrying respectively the <u>EcoR</u> I (0)-<u>Bgl</u> II (+3168) and <u>EcoR</u> I (0)-<u>Sal</u> I (+993) fragments of the <u>malB</u> region cloned in pBR322. Deletion S50 is carried by the phage <u>lambda</u> aph80<u>malB</u>13S50 (14). Plasmid DNAs were purified from clear lysates by using one cesium chloride gradient centrifugation (15) followed by one 5% to 20% sucrose gradient in Tris HCl 10-²M pH = 7,4, E.D.T.A. 10-³M, NaCl 10-¹M. The phage DNA was purified as described (16).

All enzymes used were bought from Biolabs and Boehringer. Reactions were carried out under conditions described by suppliers.

DNA fragments were separated by polyacrylamide gel electrophoresis and isolated by electroelution followed by a step on a DEAE cellulose column. The restriction map was established by partial hydrolysis of labelled fragments (17).

DNA fragments were 5' labelled with (gamma³²P) by the kinase exchange reaction (18) and sequenced as described by Maxam and Gilbert (19).

The <u>EcoR</u> I (0)-<u>Hinf</u> I (+1078) fragment which we have sequenced was obtained from a functional <u>malB</u> region (13). In addition several lines of evidence confirm that it corresponds to a functional <u>malK</u> gene. Firstly, the nucleotide sequence data presented here correspond well to the size and the position expected for the <u>malK</u> gene. Secondly, deletion S50 verifies the translational phase at the end of the <u>malK</u>. Thirdly, the molar ratio Tyr to Arg deduced from the <u>malK</u> gene sequence is in good agreement with that of the <u>malK</u> protein (9).

RESULTS AND DISCUSSION

In order to determine the complete nucleotide sequence of the <u>malK</u> gene, we have sequenced a DNA fragment between the <u>EcoR</u> I (0) site and the <u>Hinf</u> I (+1078) site of the <u>malB</u> region (Figure 1). The sequences at the left of <u>EcoR</u> I (0)(20) and at the right of <u>Sal</u> I (+993) (21) were already known. Plasmid pHCP₃ (Materials and Methods) was used for the determination of the fine restriction map while both plasmids pHCP₂ and pHCP₃ were used for the determination of the sequence. Figure 1 shows the map and the strategy we adopted for sequencing this region. The restriction map was confirmed by DNA sequencing except for one <u>Taq</u> I (+657) site (TCGA) which had not been found by the mapping. This site corresponds to the recognition sequence of the <u>dam</u>⁺ function (GmATC) (22) and thus was presumably protected against the <u>Taq</u> I enzyme.

Since the EcoR I (0) and the Sal I (+993) sites are expected to be located within the malK gene (20,14), we have looked for one reading frame beginning on the left side of the EcoR I (0) site and ending on the right side of the Sal I (+993) site. Indeed, there is an open phase from nucleotide -194 to +1021 (Figure 2). Three ATGs and one GTG

Figure 1. Restriction map and sequence strategy for gene malK.

The locations of restriction sites (Materials and Methods) are displayed at the top of the figure. The middle part of the figure shows the sequencing strategy with the region of the plasmid pHCP₂ used in this work. The nucleotides are numbered from the <u>EcoR</u> I (O) site in <u>malK</u>. Arrows indicate the direction and extent of sequence obtained from the labelled end of each fragment (•). In the bottom part, the <u>malK-lamB</u> operon of the <u>malB</u> region is represented. The heavy box 5' to <u>malK</u> represent the regulatory region of the <u>malB</u> operon.

belonging to this phase are possible translation starts for <u>malK</u> (20). However, it has been determined that the 5' end of the <u>malK-lamB</u> mRNA is located after the GTG (-182) and ATG (-158) but before the ATGs (-137) and (-92) (23). Of the latter, the ATG (-92) which is preceded by a sequence complementary to 3' end of the 16S rRNA sequence (24) is the most likely translational start for malK (Figure 2).

To confirm the phase at the end of <u>malK</u> we have determined the localization of deletion S50 which results in the formation of a <u>malK-lamB</u> protein fusion (25). In this fusion <u>malK</u> and <u>lamB</u> are expected to be in the same translational phase. The sequencing results (Figure 3) fulfilled this expectation, thus confirming that the open reading frame corresponds to the <u>malK</u> gene. It is worth mentioning that deletion S50 fuses the <u>malK</u> gene to the <u>lamB</u> gene within the stop codon TAA of the <u>malK</u> gene (Figure 3). Thus, the hybrid protein <u>malK-lamB</u> should contain all the amino-acids of the <u>malK</u> protein.

Special features of the sequence

Genetic evidence suggested the existence of a low level promoter located before the distal structural gene <u>lamB</u> (12,13) in the <u>malK-lamB</u> operon. A search for a DNA segment containing homology to the -35 and -10 regions known as consensus promoter

-194	алаас	SCCAC	GGG	TCCA	GGAT	ттлл	GCCA	тстс	CTO	TOAC	GCAT	AGTO	AGCC	CATC	ATCA	ATGT	TGCT
-125	GTCG	TGAC	AGGT	тстт	ACAA	AGGG	AGAA	GGGC	ATG Met	CCG Ala	AGC Ser	GTA Val	CAG Gln	CTC Leu	CAA Gln	AAT Asn	GTA Val
- 65 10	ACC Thi	G AAF Lys	GCC Ala	TGG	GGC Gly	GAG Glu	GTC Val	GTG Val	GTA Val	TCG Ser	۸۸۸ Lys	GAT Asp	ATC Ile	AA1 Asn	CTC Leu	GAT Asp	ATC Ile
- 14 27	CA His	r GAJ 5 Glu	4 GGT 1 G1y	GAA Glu	TTC Phe	GTG Val	GTG Val	TTT Phe	GTC Val	GGA Gly	CCC Pro	Ser	GGC Gly	тGC Cys	GGT Gly	Lys	TCG Ser
+ 38 44	AC' Thi	T TT/	CTC Leu	CGC Arg	Met	Ile	GCC Ala	GGG Gly	CTT Leu	GAG Glu	λCC Thr	ATC Ile	ACC Thr	AGC Ser	GGC Gly	GAC Asp	CTG Leu
+ 89 61	TT(Phe	C ATC	Gly	GAG Glu	AAA Lys	CGG Arg	ATG Met	λΑT Asn	GAC Asp	ACT Thr	CCG Pro	CCA Pro	GCA Ala	GAA Glu	CGC Arg	GGC Gly	GTT Val
+140	66'	r ATC	G GTG	TTT	CAG	TCT	TAC	GCG	CTC	TAT	CCC	CAC	CTG	тсл	GTA	GCA	GAA
78	61	/ Met		Phe	Gln	Ser	Tyr	Ala	Leu	Tyr	Pro	His	Leu	Ser	Val	Ala	Glu
+191 95	AAG Asi	C ATC	S TCA	TTT Phe	GGC Gly	CTG Leu	лаа Lys	CCT Pro	GCT Ala	GGC Gly	GCA Ala	АЛЛ Lys	AAA Lys	GAG Glu	GTG Val	ATT Ile	AAC Asn
+ 24 2	CA	CGC	GTT	AAC	CAG	GTG	GCG	GAA	GTG	CTA	CAA	CTG	GCG	CAT	TTG	CTG	GAT
112	Glr	Arg	Val	Asn	Gln	Val	Ala	Glu	Val	Leu	Gln	Leu	Ala	His	Leu	Leu	Asp
+293	CGC	Lys	CCG	AAA	GCG	CTC	TCC	GGT	GGT	CAG	CGT	CAG	CGT	GTG	GCG	ATT	GC
1 <i>2</i> 9	Arg		Pro	Lys	Ala	Leu	Ser	Gly	Gly	Gln	Arg	Gln	Arg	Val	Ala	Ile	Gly
+344	CG1	ACG	CTG	GTG	GCC	GAG	CCA	AGC	GTA	TTT	TTG	CTC	GAT	GAA	CCG	CTC	TCC
146	Arg	Thr	Leu	Val	Ala	Glu	Pro	Ser	Val	Phe	Leu	Leu	Asp	Glu	Pro	Leu	Ser
+ 39 5	AAC	CTC	GÁŤ	GCT	GCA	CTG	CĞŤ	GTG	CAA	ATG	CGT	ATC	GAA	ATC	TCC	CGT	CTG
163	Asn	Leu	Asp	Ala	Ala	Leu	Arg	Val	Gln	Met	Arg	Ile	Glu	Ilc	Ser	Arg	Leu
+446	CAT	AAA	CGC	CTG	GGC	CGC	ACA	ATG	ATT	TAC	GTC	ACC	CAC	GAT	CAG	GIC	GAA
180		Lys	Arg	Leu	Gly	Arg	Thr	Met	Ile	Tyr	Val	Thr	His	Asp	Gln	Val	Glu
+ 49 7	GCG	ATG	ACG	CTG	GCC	GAC	AAA	ATC	GTG	GTG	CTG	GAC	GCC	GGT	CGC	GTG	GCG
197	Ala	Met	Thr	Leu	Ala	Asp	Lys	Ile	Val	Val	Leu	Asp	Ala	Gly	Arg	Val	Ala
+548	CAG	GTT	GGG	AAA	CCG	CTA	GCT	GTA	CCA	CTA	TCC	GGC	AGA	CCG	TTT	TGT	CGC
214	Gln	Val	Gly	Lys	Pro	Leu	Ala	Val	Pro	Leu	Ser	Gly	Arg	Pro	Phe	Cys	
+599	CGG	ATT	TAT	CGG	TTC	GCC	AAA	GAT	GAA	CTC	CTG	CCG	GTA	AAA	GTG	ACC	GCC
231	Arg	Ile	Tyr	Arg	Phe	Ala	Lys	Asp	Glu	Leu	Leu	Pro	Val	Lys	Val		Ala
+650	ACC	GCA	ATC	GAT	CAA	GTG	CAG	GTG	GAG	CTG	CCG	ATG	CCA	AAT	CGT	CAG	CAA
248	Thr	Ala	Ile	Asp	Gln	Val	Gln	Val	Glu	Leu	Pro	Met	Pro	Asn	Arg	Gln	Gln
+701	GTC	TGG	CTG	CCA	GTT	GAA	AGC	CGT	GAT	GTC	CAG	GTT	GGA	GCC	AAT	ATG	TCG
265	Val	Trp	Leu	Pro	Val	Glu	Ser	Arg	Asp	Val	Gln	Val	Gly	Ala	Asn	Met	Ser
+752	CTG	GGT	ATT	CGC	CCG	GAA	CAT	CTA	CTG	CCG	AGT	GAT	ATC	GCT	GAC	GTC	ATC
28,2	Leu	Gly	Ile	Arg	Pro	Glu	His	Leu	Leu	Pro	Ser	Asp	Ile	Ala	Asp	Val	Ile
+803	CTT	GAG	GGT	G AA	GTT	CAG	GTC	GTC	GAG	CAA	CTC	GGC	AAC	GAA	ACT	CAA	ATC
299	Leu	Glu	Gly	Glu	Val	Gln	Val	Val	Glu	Gln	Leu	Gly	Asn	Glu	Thr	Gln	Ile
+854	CAT	ATC	CAG	ATC	CCT	TCC	ATT	CGT	CAA	AAC	CTG	GTG	TAC	CGC	CAG	AAC	GAC
316	His	Ile	Gln	Ile	Pro	Ser	Ile	Arg	Gln	Asn	Leu	Val	Tyr	Arg	Gln	Asn	Asp
+905	GTG	GTG	TTG	GTA	GAA	GAA	GGT	GCC	ACA	TTC	GCT	ATC	GGC	CTG	CCG	CCA	GAG
333	Val	Val	Leu	Val	Glu	Glu	Gly	Ala	Thr	Phe	Ala	Ile	Gly	Leu	Pro	Pro	Glu
+956	CGT	TGC	CAT	CTG	TfC	CGT	GAG	GAT	GGC	ACT	GCA	TGT	CGT	CGA	CTG	CAT	AAG
350	Arg	Cys	His	Leu	Phe	Arg	Glu	Asp	Gly	Thr	Ala	Cys	Arg	Arg	Leu	His	Lys
+1007	GAG Glu	CCG Pro	GGC Gly	GTT Val	TAA	GCAC	CCCA	CAAA	ACAC	асал	AGCC	TGTC	ACAG	GTGA	TGTG	****	AAG
+1069	HINTI 1089 AAAAGCAATGACTCAGGAGATAGA ATG ATG																
							Ret	Ret									

Figure 2. The nucleotide sequence of gene malK and its flanking regions

The sequence extends from the first nucleotide of the <u>malk</u> open reading frame (- 194) to the second codon of the <u>lamB</u> gene. The sequence at the left of the <u>EcoR</u> I (0) site was determined previously (20) including the sequence through the <u>EcoR</u> I (0) site (H. Bedouelle, unpublished data). The three ATG's and the one GTG, which are possible initiation codons for <u>malk</u>, are boxed. The heavy lines at positions -170 and -99 indicates sequences complementary to the 3'OH end of the 16S rRNA. Transcription initiation occurs at position -140 (23). The amino-acid translation is shown from the ATG (-92) to position (+1021).

The thin lines above the nucleotide indicate palindromic sequences in the <u>malK</u> gene. The calculated "delta Gs" of these structures are : I -25 Kcal/mole; II -14,6 Kcal/mole; III -22,5 Kcal/mole; IV -18,1 Kcal/mole; V -14,4 Kcal/mole; VI -9,3 Kcal/mole; VII -4,3 Kcal/mole; VIII -8,9 Kcal/mole. The dashed lines represent the loop of each structure.

+1000 CAT. AAG.GAG.CCG.GGC.GTT.TAAGCACCC malK Arg Lys Glu Pro Gly Val malK-lamBS50 CAT.AAG.GAG.CCG.GCCGTT.TCT.AAC.GTG. Arg Lys Glu Pro Gly Val Ser Asn Val +1333 A GAAC.TTC.TAT.TTC.GAC.ACT.AAC.GTG. iomB. Lys Ser Phe Tyr Phe Asp Thr Asn Val

Figure 3. Position of deletion S50

The upper and lower lines display the wild type DNA sequence at the end of the malK gene and a part of the lamB gene starting at nucleotide (+1333). The middle line is the sequence corresponding to deletion S50. The deletion removes the nucleotides from +1019 to +1351.

sequences in E.coli (26) was carried out. However, no such sequence was found in the DNA from the EcoR I (0) site to the beginning of the lamB gene.

We have also looked for chi sites, known to increase recombinational activity in lambda and E.coli (27). A region homologous to the GCTGGTGG octamer, necessary for the Chi⁺ phenotype was found in the DNA sequence of malK gene from position (+350) to (+358).

The codon usage in the malK gene is shown on Table 1. The pattern is not random : most of the codons corresponding to major tRNA species are preferently used (Leu, Pro, Lys, Arg, Ile, Gly), while for a few codons this preference is not observed (Ala, Val, Ser, Gly). Such a codon choice may be characteristic of intermittently or moderately expressed genes in E.coli (28).

The malK messenger RNA

An interesting feature of the product of transcription of the malK gene is the presence of a potentially stable stem and loop structure in the middle of the gene followed by a stretch of five uridine residues (Figure 4). This structure is analogous to a

Table 1.	codon usage	in the main	gene
UUU-PHE 5	UCU-SER 2	UAU-TYR 2	UGU-CYS 2
UUC-PHE 5	UCC-SER 5	UAC-TYR 3	UGC-CYS 2
UUA-LEU 1	UCA-SER 2	UAA 1	UGA 0
UUG-LEU 3	UCG-SER 3	UAG 0	UGG-TRP 2
CUU-LEU 2	CCU-PRO 2	CAU-HIS 7	CGU-ARG 12
CUC-LEU 8	CCC-PRO 1	CAC-HIS 2	CGC-ARG 10
CUC-LEU 4	CCA-PRO 6	CAA-GLN 9	CGA-ARG 1
CUG-LEU 22	CCG-PRO 12	CAG-GLN 13	CGG-ARG 3
AUU-ILE 7	ACU-THR 4	AAU-ASN 5	AGU-SER 1
AUC-ILE 14	ACC-THR 4	AAC-ASN 7	AGC-SER 4
AUA-ILE 0	ACA-THR 2	AAA-LYS 14	AGA-ARG 1
AUG-MET 10	ACG-THR 4	AAG-LYS 1	AGG-ARG 0
GUU-VAL 7	GCU-ALA 5	GAU-ASP 11	GGU-GLY 10
GUC-VAL 9	GCC-ALA 9	GAC-ASP 6	GGC-GLY 13
GUA-VAL 8	GCA-ALA 6	GAA-GLU 15	GGA-GLY 2
GUG-VAL 19	GCG-ALA 8	GAG-GLU 11	GGG-GLY 2

Table 1 and an usage in the malk sone

Figure 4. A terminator like potential stable RNA secondary structure in malk The "delta G" of this stem and loop structure (I in Figure 2) is -25 Kcal/mole. Numbers indicate the positions as presented in the DNA sequence (Figure 2).

classical Rho-independant termination site for transcription (29). It is followed but not preceded by a series of stable potential secondary structures (Figure 2). Such secondary structures have been implicated in the stabilization of mRNA and/or the control of translation for membrane proteins (30). Another although less likely possibility is that they play a rôle in the differential expression of the <u>malK</u> and <u>lamB</u> genes. Indeed the lambda receptor is produced in larger amount, up to 10^5 copies per cell (31), than the <u>malK</u> gene product, between 10^3 (8) and 10^4 (9) copies per cell. For example, these secondary structures of the RNA could reduce the efficiency of translation and/or transcription in certain conditions. Under these conditions, the secondary promoter (12,13) could be unmasked and thus allows an efficient transcription of the <u>lamB</u> gene.

The malK protein

The coding sequence beginning at the position -92 and ending at the position +1021 corresponds to a polypeptide of 370 amino-acids. The sequence of this protein is shown on Figure 2 with the nucleotide sequence. The molecular weight calculated from the sequence is 40700 daltons. This size corresponds well to the values of 40000 and 43000 daltons determined by polyacrylamide gel electrophoresis under denaturing conditions (8,9). Furthermore the molar ratio of Tyr to Arg in the <u>malK</u> protein deduced from the nucleotide sequence (0.19) and the one estimated <u>in vivo</u> (0.24) (9) are in good agreement.

From the predicted amino-acid sequence of the \underline{malK} protein, a number of observations can be made concerning its function and localization.

A computer search has suggested a potential internal homology of a NH2 terminal

258 Pro Met Pro Asn - Arg - Gln Gln Val Trp Leu Pro -71 Pro - Pro Ala Glu Arg Gly Val Gly Met Val Phe Gln Ser Tyr 269 Val Glu --- Ser Arg Asp Val Gln Val Gly Ala Asn Met Ser Leu 85 Ala Leu Tyr Pro His --- Leu Ser Val Ala Glu Asn Met Ser Phe 283 Glv Ile Arg Pro Glu His Leu Leu Pro Ser Asp Ile Ala Asp -99 Gly Leu Lys Pro Ala Gly Ala Lys Lys Glu Val Ile Asn Gln Arg 297 Val Ile Leu Glu Gly Glu Val Gln Val Val Glu Gln Leu Gly Asn 114 Val Asn Gln Val Ala Glu Val Leu Gln Leu Ala His Leu Leu Asp 312 Glu Thr Gln Ile His Ile Gln Ile Pro Ser Ile Arg Gln Asn Leu 129 Arg Lys Pro Lys Ala Leu Ser --- Gly Gly Gln Arg Gln Arg Val 327 Val Tyr --- Aro Gln Asn Asp Val Val Leu Val Glu Glu Gly Ala 143 Ala Ile Gly Arg — Thr — — Leu Val Ala Glu Pro Ser 341 Thr Phe — — Ala Ile Gly — Leu Pro Pro Glu — 154 Val Phe Leu Leu Asp Glu Pro Leu Ser Asn Leu Asp Ala Ala Leu 350 Arg Cys His Leu - Phe Arg Glu Asp Cly Thr Ala Asp Arg Arg - Ile Ser ---Arq - ---364 Leu His Lys Glu Pro Gly Val 179 Leu His Lys Arc Leu Cly Arg

Figure 5. Possible internal homology in the malK protein

The three short, homologous segments (residues 92-102 vs.276-286, residues 148-155 vs.335-342, and residues 178-184 vs.363-369) are approximatively in register with each other. When the alignment score (37,38) was calculated for the match involving residues 92-185 and residues 276-370, as well as 20 matches of the same sequences randomized by computer, the difference between the score of the real sequences and the average score of random matches was found to be 4.4 times larger than the standard deviation of the random matches. This "alignment index" of 4.4 means that the probability of this match occuring by chance is of the order of 10^{-5} .

region with the CO_2 H terminal region. An alignment was generated as shown on Figure 5.

Membrane fractionation experiments established that the malK protein is bound to the inner membrane (8,9). Genetic evidence suggested that it could be peripherally bound to the membrane by means of the malG protein (8). The fact that the malK gene does not encode a typical NH2 terminal signal sequence (23) is not very informative with respect to the localization of the malk protein since most known inner membrane proteins are not made with an NH₂ terminal signal peptide (33). The malK protein includes 42 acidic amino-acids (Glu, Asp; Table 1) and 43 basic amino-acids (Arg, Lys; Table 1). The average length of peptides devoid of such amino-acids is thus (370/85 = 4.35) amino-acids residues. The distribution of these polar amino-acids is not random. On one hand there are 20 occurences of two consecutive such polar aminoacids. On the other hand there are a few continuous stretches of apolar amino-acids with more than 10 residues. The largest includes 17 residues (residues 76 to 93) : its average hydrophobicity index calculated according to Segrest and Feldmann is 2.1 (34). Shorter stretches, residues 31 to 41, residues 274 and 284 and residues 339 to 348 have average indices of 1.2, 1.9 and 1.5 respectively. All these average hydrophobicity indices fall within the triangle determined for apolar peptide from soluble proteins, while indices of apolar membrane spanning peptides usually fall outside (35). Thus the

4 Pro Leu - - Lys Lys Ile Val Ile Val Gly Gly Gly Ala Gly Gly Leu Glu Met Ala 102 Pro Ala Gly Ala Lys Lys Glu Val Ile Asn Gln Arg Val Asn Gln Val Ala Glu Val Leu 38 - Leu - Val Asp Arg Asn - - - His Ser His Leu Trp - - - Lys Pro 141 Arg Val Ala Ile Gly Arg Thr Leu Val Ala Glu Pro Ser Val Phe Leu Leu Asp Glu Pro - Leu His Glu - - - Val Ala Thr Gly Ser Leu Asp 50 Leu - - - -161 Leu Ser Asn Leu Asp Ala Ala Leu Arg Val Gln Met Arg Ile Glu Ile Ser Arg Leu His 61 Glu Gly Val Asp - Ala Leu Ser Tyr Leu Ala His Ala Arg Asn His Gly Phe Gln Phe 181 Lys Arg Leu Gly Arg Thr Met Ile Tyr Val Thr His Asp Gln Val Glu Ala Met Thr Leu 80 - Gin Leu Gly Ser Vall Ile Asp Ile Asp Arg Glu Ala - - Lys Thr Ile Thr 201 Ala Asp Lys Ile Val Val Leu Asp Ala Gly Arg Val Ala Gin Val Gly Lys Pro Leu Ala 96 Ile Ala - Glu - - - - - - Leu - Arg Asp Glu Lys Gly Glu Leu 221 Val Pro Leu Ser Gly Arg Pro Glu Cys Arg Arg Ile Tyr Arg Phe Ala Lys Asp Glu Leu 107 Leu Val Fro Glu Arg Lys Ile Ala Tyr Asp Thr Leu Val Met Ala Leu Gly Ser Thr Ser 241 Leu - Pro Val - Lys Val Thr - Ala Thr - - - Ala Ile Asp Gln Val Gln 127 Asn Asp Phe Asn Thr Pro Gly Val Lys Glu Asn Cys Ile Phe Leu Asp Asn Pro His Gln 255 Val Glu Leu Pro Met Pro Asn - Arg Gln Gln - Val Trp Leu - Pro Val Glu 147 Ala Arg Arg Phe His Gln Glu Met - Leu Asn Leu Phe Leu Lys Tyr Ser Ala Asn Leu 271 Ser Arg Asp Val Gln Val Gly Ala Asn Met Ser Leu Gly Ile Arg - Pro Glu His Leu 166 Gly Ala Asn Gly Lys Val Asn Ile Ala Ile Val Gly Gly Gly Ala Thr Gly Val Glu -290 Leu Pro Ser Asp Ile Ala Asp Val - Ile Leu Glu Gly Glu Val Gln Val Val Glu Gln 165 Leu Ser Ala Glu - - Leu His Asn Ala Val Lys Gln Leu His - Ser Tyr Gy Tyr 309 Leu Gly Asn Glu Thr Gln Ile His Ile Gln Ile Pro Ser Ile Arg Gln Asn Leu Val Tyr 202 Lys Gly Leu Thr Asn Glu Ala Leu Asn Val Thr Leu Val Glu Ala Gly Glu Arg Ile Leu 329 Arg Gln - - Asn Asp - - - Val Val Leu Val Glu Glu Gly Ala Thr Phe Ala 222 Pro Ala Leu Pro Pro - Arg 344 Ile Gly Leu Pro Pro Glu Arg 237 Thr Lys Leu - Gly Val Arg Val Leu Thr Gln Thr Met Val Thr Ser Ala Asp Glu Gly 10 Thr Lys Ala Trp Gly Glu Val Val Val Ser Lys Asp Ile - - Asn Leu Asp - -256 Gly Leu His Thr Lys Asp Gly Glu Tyr Ile Glu Ala Asp Leu Met Val Trp Ala Ala Gly 26 - Ile Eis - - Glu Gly Glu Phe Val Val - -- Phe Val Gly - Pro Ser Gly 276 Ile Lys Ala Pro Asp Phe Leu Lys Asp Ile Gly Gly Leu Glu Thr Asn Arg Ile Asn Gln 40 Cys Gly Lys Ser Thr Leu Leu Arg Met Ile Ala Gly Leu Glu Thr Ile Thr Ser Gly Asp 296 Leu Val Val Glu Pro Thr - Leu Gln Thr Thr - - - - Arg Asp Pro Asp Ile 60 Leu Phe Ile Gly Glu Lys Arg Met Asn Asp Thr Pro Pro Ala Glu Arg Gly Val Gly Met 311 - - - - Tyr Ala Ile - Gly Asp Cys Ala Ser Cys Pro Arg Pro Glu Gly Gly 80 Val Phe Gln Ser Tyr Ala Leu Tyr Pro Bis -- Leu Ser Val Ala - Glu Asn Met Ser 311 -326 Phe - Val Pro Pro Arg Ala Gin Ala Ala His Gin Met Ala Thr Cys Ala Met Asm Asm 98 Phe Gly Leu Lys Pro - Ala Gly Ala Lys Lys Glu Val - - - Ile Asm Gin 1345 Ile Leu Ala Gini Met Asn Gly Lys Pro - Leu Lys Asn Tyr Gin Tyr Lys Asp His Gly 113 Arg Val Asn Gin Ala Ala Glu Val Pro Gin Leu Ala His Leu - - Leu Asp Arg Lys 364 Ser Leu Val Ser Leu Ser Asn Phe Ser Thr Val Gly Ser Leu Met Gly Asn Leu Thr Arg 131 Pro Lys - Ala Leu Ser Gly - Gly Gln Arg Gln Arg Val - - Ala Ile Gly Arg 384 Gly Ser Met Met Ile Glu 147 - Thr Leu Val Ala Glu

Figure 6. Sequence homologies between the malK protein and the ndh protein

The <u>ndh</u> protein (434 residues) is shown on lines 1, 3, 5... while the <u>malk</u> protein (370 residues) is shown on lines 2, 4, 6... The first alignment (upper part of the figure) corresponds to homology between residues 4-227 of the <u>ndh</u> protein and residues 102-350 of the <u>malk</u> protein. In this alignment 22 % of the positions are identical and 30 % are occupied by functionnally related amino-acids residues (37). The alignment index" (37,38) for the match involving residues 4-34 of the <u>ndh</u> protein and residues 102-133 of the <u>malk</u> protein is 3,93. The stars indicate the residues of the <u>ndh</u> protein (37). The alignment index" (37,38) for the segment 181-195 of the <u>hisP</u> protein. This segment of the <u>hisP</u> protein was found to be homologous to segment 161-174 of the <u>malk</u> protein (37). The second alignement (lower part of the figure) corresponds to homology between the residues 237-389 of the <u>ndh</u> protein and residues 10-151 of the <u>malk</u> protein. In this alignment 20 % of the positions are identical and 30 % are occupied by functionally similar amino-acids residues (37). The main regions of matches were also detected using the Needleman and Wunsch algorithm (40) on the whole protein sequence although the final alignments presented differences in the regions of low homology.

predicted sequence of <u>malK</u> protein would be compatible with that of a peripheral membrane protein. However we can certainly not exclude on this basis that the <u>malK</u> protein could span the membrane. Indeed homology was found between the <u>malK</u> protein and the <u>hisP</u> protein which has been assumed to span the membrane (36). This homology will be presented elsewhere (37).

One hypothesis on the rôle of the <u>malK</u> protein proposes that it could function as an ATPase (10) allowing "energization" of the <u>malF</u> and <u>malG</u> proteins acting as a largely unspecific pore. We have compared the sequence of the <u>malK</u> protein with that of the <u>E.coli</u> F_1 - ATPase subunit alpha (32) but found no significant homology which would have substantiated this hypothesis. However we have found significant homology between the sequence of the <u>malK</u> protein and that of the respiratory NADH deshydrogenase of <u>Escherichia coli</u> (the <u>ndh</u> protein) (39), as shown on Figure 6. This raises the interesting possibility that the <u>malK</u> protein may play a rôle in energization through a mechanism involving an oxydo reduction reaction rather than ATP hydrolysis. This homology may also (or alternatively) correspond to other similarities between the <u>malK</u> protein and the <u>ndh</u> protein, such as membrane localization or interaction with a common component. Finally such sequence of a common ancestor to both proteins.

It may be relevant to mention on this respect that a comparison between the <u>ndh</u> and the <u>hisP</u> protein revealed only homology between the regions of residues 205-220 of the <u>ndh</u> protein and that of residues 181-195 of the <u>hisP</u> protein (Figure 6). However each of these regions is homologous to a different region in the <u>malK</u> protein. Thus, conclusions concerning the implications of sequence homologies should be taken with caution in absence of further experimental data.

ACKNOWLEDGMENTS

We thank Jean Marie CLEMENT for showing one of us (E.G.) DNA technology and for providing some DNA samples. Hugues BEDOUELLE for communication of unpublished data, Doug BRUTLAG for help with the computer and Intelligenetics for use of their experimental programs. This work was supported by grants from the Centre National de la Recherche Scientifique (C.P. 960002), North Atlantic Treaty Organization (grant 1297), the Fondation pour la Recherche Médicale to M.H., and from the N.I.H. (AI 09664) to H.N.

REFERENCE

- 1. Dills, S.S., Apperson, A., Schmidt, M.R., Saier, M.H.Jr. (1980) Microbiol. Rev. <u>44</u>, 385-418.
- 2. Raibaud, O., Roa, M., Braun-Breton, C. and Schwartz, M. (1979) Mol. Gen. Genet. <u>174</u>, 241-248.
- 3. Ferenci, T. and Boos, W. (1980) J. Supramol. Structure, <u>13</u>, 101-116.

- 4. Nikaido, N. Luckey, M. and Rosenberg, E.Y. (1980) J. Supramol. Structure, 13, 305-313.
- 5. Kellerman, O., Szmelcman, S. (1974) Eur. J. Biochem. <u>47</u>, 139-140.
- 6. Silhavy, T.J., Szmelcman, S., Boos, W. and Schwartz, M. (1975) Proc. Natl. Acad. Sci. USA, 72, 2120-2124.
- 7. Shuman, H.A., Silhavy, T.J., Beckwith, J. (1980) J. Biol. Chem. 25, 168-174.
- 8. Shuman, H.A., Silhavy, T.J. (1981) J. Biol. Chem. 256, 560-562.
- 9. Bavoil, P., Hofnung, M., Nikaido, H. (1980) J. Biol. Chem. 255, 8366-8369.
- 10. Boos, W. (1982) Annales de Microbiol. (Inst. Pasteur) 133A, 145-162.
- 11. Shuman, H.A. (1982) Annales de Microbiol. (Inst. Pasteur) 133A, 153-162.
- 12. Braun-Breton, C. and Hofnung, M. (1978) Mol. Gen. Genet. 159, 143-149.
- 13. Clément, J.M., Perrin, D. and Hedgpeth, J. (1982) Mol. Gen. Genet. 185, 302-310.
- 14. Raibaud, O., Clément, J.M., Hofnung, M. (1979) Molec. Gen. Genet. 174, 261-267.
- 15. Davis, R.W., Botstein, D., Roth, J.R. (1980) Cold Spring Harbor Laboratory. 116-119.
- 16. Marchal, C., Greenblatt, J. and Hofnung, M. (1978) J. Bacteriol. 136, 1109-1119.
- 17. Smith, H.O. and Birnstiel, M. (1976) Nucl. Acids, Res. 3, 2387-2398.
- 18. Berkner, K. and Folk, W. (1977) J. Biol. Chem. 252, 3176-3184.
- 19. Maxam, A. and Gilbert, W. (1980) Meth. Enzymol. 65, 499-560.
- 20. Bedouelle, H. and Hofnung, M. (1982) Mol. Gen. Genet. 185, 82-87.
- 21. Clément, J.M. and Hofnung, M. (1981) Cell, 27, 507-514.
- 22. Mc Clelland, M. (1981) Nucl. Acids, Res. 9, 5859-5866.
- 23. Bedouelle, H. Schmeissner, U., Hofnung, M., Rosenberg, M. (1982) J. Mol. Biol. in press.
- 24. Shine, J. and Dalgarno, L. (1974) Proc. Natl. Acad. Sci. USA, 71, 1342-1346.
- 25. Emr, S.D. and Silhavy, T.J. (1980) J. Mol. Biol. 141, 63-90.
- 26. Rosenberg, M., Court, D. (1979) Annu. Rev. Genet. 13, 319-353.
- 27. Horwitz, H., Christie, G.E., Platt, T. (1982) J. Mol. Biol. 156, 245-256.
- 28. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Mercier, R. (1981) Nucl. Acids, Res. 9, r43-r74. 29. Platt, T. (1981) Cell, <u>24</u>, 10-23.
- 30. Movva, N.R., Nakamura, K. and Inouye, M.(1980) J. Mol. Biol. 143, 317-328.
- 31. Braun, V. and Krieger-Brauer, H.J. (1977) Biochem. Biophys. Acta, 469, 89-98.
- 32. Gay, N.J. and Walker, J.E. (1981) Nucl. Acids, Res. 9, 2187-2194.
- 33. Higgins, C.F., Haag, P.O., Nikaido, H., Ardeshir, F., Garcia, G. and Ferro-Luzzi Ames, G. (1982) Nature, <u>298</u>, 723-727.
- 34. Segrest, J.P. and Feldmann, R.J. (1974) J. Mol. Biol. 87, 853-858.
- 35. Clément, J.M. (1982) Thèse de Doctorat d'Etat. Paris VI.
- 36. Ferro-Luzzi Ames, G. and Nikaido, H. (1978) Proc. Natl. Acad. Sci. USA, 75, 5447-5451.
- 37. Gilson, E., Higgins, C.F., Hofnung, M., Ferro-Luzzi Ames, G. and Nikaido, H. (1982) J. Biol. Chem. 257, 9915-9918.
- 38. Barker, W.C. and Dayhoff, M.O. (1972) in Atlas of protein sequence and structure 1972 (Dayhoff, M.O. ed), 5, 101-110, National Biomedical Research Foundation, Washington D.C.
- 39. Young, I.G., Rogers, B.L., Campbell, H.D., Jaworowski, A. and Shaw, D.C. (1981) Eur. J. Biochem. 116, 165-170.
- 40. Needleman, S.D. and Wunsch, C.D. (1970) J. Mol. Biol. 48, 443-453.