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Following Lorenz’s seminal work on chaos theory in the 1960s, probabilistic approaches
to prediction have come to dominate the science of weather and climate forecasting. This
paper gives a perspective on Lorenz’s work and how it has influenced the ways in which we
seek to represent uncertainty in forecasts on all lead times from hours to decades. It looks
at how model uncertainty has been represented in probabilistic prediction systems and
considers the challenges posed by a changing climate. Finally, the paper considers how
the uncertainty in projections of climate change can be addressed to deliver more reliable
and confident assessments that support decision-making on adaptation and mitigation.
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... one flap of a sea-gull’s wing may forever change the future course of the weather.
Lorenz [1, p. 19]

1. Introduction

In 1963, Lorenz published his seminal paper on ‘Deterministic non-periodic flow’,
which was to change the course of weather and climate prediction profoundly
over the following decades and to embed the theory of chaos at the heart of
meteorology. Indeed, it could be said that his view of the atmosphere (and
subsequently also the oceans) as a chaotic system has coloured our thinking of
the predictability of weather and subsequently climate from thereon.

Lorenz was able to show that even for a simple set of nonlinear equations (1.1),
the evolution of the solution could be changed by minute perturbations to the
initial conditions, in other words, beyond a certain forecast lead time, there is no
longer a single, deterministic solution and hence all forecasts must be treated as
probabilistic. The fractionally dimensioned space occupied by the trajectories of
the solutions of these nonlinear equations became known as the Lorenz attractor
(figure 1), which suggests that nonlinear systems, such as the atmosphere, may
exhibit regime-like structures that are, although fully deterministic, subject to
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Figure 1. Examples of finite-time error growth on the Lorenz attractor for three probabilistic
predictions starting from different points on the attractor. (a) High predictability and therefore
a high level of confidence in the transition to a different ‘weather’ regime. (b) A high level of
predictability in the near term but then increasing uncertainty later in the forecast with a modest
probability of a transition to a different ‘weather’ regime. (¢) A forecast starting near the transition
point between regimes is highly uncertain.

abrupt and seemingly random change.

dX
E = —O'X+ O'Y,
Y xzipx—v (1.1)
dt
and g:XY—ﬂZ.
dt

But more importantly, the Lorenz [2] model also indicates that the predictability
of a chaotic system is flow dependent, so that while some weather patterns
or regimes may be highly unpredictable, others may contain substantial
predictability; in other words, the predictability is itself both variable and
predictable (figure 1). This property has fundamental implications for weather
and climate prediction as it allows an assessment of the reliability and hence
confidence in the probability distribution of the forecasts.

In a later, but highly prescient paper, Lorenz [1] also considered the interplay of
various scales of motion in determining the predictability of a system. The results
showed that errors at the cumulus scale can invade the errors at the synoptic scale
in two days and infect the very largest scales in two weeks. Thirty years later,
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Figure 2. Schematic of a probabilistic weather forecast using initial condition uncertainties. The
blue lines show the trajectories of the individual forecasts that diverge from each other owing
to uncertainties in the initial conditions and in the representation of sub-gridscale processes in
the model. The dashed, lighter blue envelope represents the range of possible states that the
real atmosphere could encompass and the solid, dark blue envelope represents the range of states
sampled by the model predictions.

the relevance of this study has been realized in the development of stochastic
approaches to represent cumulus convection and its upscale energy transports,
and in the emerging efforts to resolve these multi-scale processes in atmospheric
simulations at the cloud system-resolving scale (approx. 1km).

This paper considers how chaos theory has shaped our approach to numerical
weather prediction, why, despite the limits to atmospheric predictability
suggested by Lorenz, seasonal and even decadal prediction is possible, and
how uncertainty should be addressed in the context of climate change. Finally,
some recommendations for future progress towards more confident and reliable
predictions in the face of uncertainty are considered.

2. Handling uncertainty in weather forecasting

Lorenz showed clearly that the uncertainty in the initial condition, however small,
will lead to uncertainty in the forecast after a certain, but variable, period of time
depending on the initial state of the atmosphere. As a consequence, the numerical
weather prediction community began to consider the use of probabilistic methods
for forecasting, especially beyond the deterministic limit of one week or so
suggested by Lorenz.

Early implementation of probabilistic methods for numerical weather
prediction was based on applying small, random perturbations to the atmospheric
state variables (temperature, humidity, winds and pressure) in the analysed
initial condition. Because the atmosphere is nonlinear, these minute perturbations
are then amplified by chaotic processes and each forecast diverges from the
others (figure 2).
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Figure 3. Example of 66 h probabilistic forecast for 15-16 October 1987. Top left shows the analysed
deep depression with damaging winds on its southern flank. Top right shows the deterministic
forecast, and the remaining 50 panels show other possible outcomes based on perturbations to
the initial conditions. A substantial fraction of the ensemble indicates the development of a deep
depression.
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The advantages of ensemble forecasting became readily apparent in the case of
the October 1987 storm when Michael Fish, a British Broadcasting Corporation
(BBC) weather forecaster, was famously quoted as saying ‘....... a woman rang the
BBC and said she had heard that there was a hurricane on the way. Well if you
are watching, don’t worry there isn’t’. He had access to only a single deterministic
forecast, which gave no clues as to what might happen. If he had had access to a
fully probabilistic system, then he might well have decided to issue a warning of
severe weather (figure 3).

Since then, probabilistic weather forecasting has become routine and its
advantages are now widely appreciated. It provides a range of plausible forecast
solutions, which allows the forecaster to assess possible outcomes, estimate the
risks and probabilities of those outcomes and to gauge the level of confidence
in the final forecast. From the users’ perspective, the forecast probabilities allow
them to decide on the level of risk they are prepared to take depending on their
vulnerabilities, and to take appropriate action within a proper understanding of
the uncertainties.

However, the effectiveness of probabilistic methods in weather forecasting
depends on the reliability of the ensemble, where reliability in this context means
that there is a proper representation of the forecast uncertainties. It became clear
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Figure 4. Statistics of ensemble mean forecast error (r.m.s.e.; solid line) and ensemble spread
(dotted line) in Northern Hemisphere from three ensemble prediction systems (NCEP, National
Center for Environmental Prediction; CMC, Meteorological Service of Canada; ECM, European
Centre for Medium-range Weather Forecasting). Note that the forecast error is based on an anomaly
forecast and therefore does not include the model systematic bias.

fairly early on that the systems based just on random perturbations to the initial
conditions were not sufficiently dispersive and that the range of solutions did not
fill the phase space of possible states for the real atmosphere ([3]; figure 4). The
root mean square error of the ensemble mean anomaly forecast grows faster than
the spread, which indicates that the ensemble is under-dispersive and hence the
ensemble forecast is over-confident.

This lack of spread suggested that the perturbations to the initial conditions
were sub-optimal and did not necessarily capture the most rapidly growing modes
[4]. Considerable research into identifying those modes using singular vector
techniques was undertaken [5], and significant progress achieved in increasing the
spread of the ensemble. Nevertheless, the ensemble remained under-dispersive so
something else must be missing.

Numerous atmospheric model studies and intercomparisons [6] have shown that
there is a large divergence in the quality of simulations that can be related to
model formulation, especially the parametrization of physical processes related
to diabatic heating (e.g. cumulus convection, cloud-radiation interactions and
boundary-layer turbulent fluxes). Although these parametrizations are based on
fundamental physics, empirical assumptions have to be made in order to represent
what are essentially sub-gridscale processes at the resolved scale of the model. The
usual approach is to define what are called bulk formulae, which seek to represent
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empirically the statistical properties of the sub-gridscale processes and how they
relate to the large-scale, resolved state of the atmosphere (or ocean). Traditionally,
a deterministic approach has been taken to define these bulk formulae and their
closure parameters, despite the fact that considerable uncertainty exists and
observations suggest a significant range of possible formulations and values.

Therefore, it is clear that uncertainty in the model itself, and systematic biases
in the model’s simulation lead to restricted sampling of the forecast phase space
and under-dispersion in the ensemble. Early studies investigated the role of model
uncertainty and used random perturbations to the increments from the physical
parametrizations, time step by time step [7], while other approaches used random
variations to the closure parameters in the physical parametrizations. These
were based on a range of observational estimates and expert judgement, and
were kept fixed throughout the particular simulation—the perturbed parameter
approach. Both led to some improvements in the ensemble spread, but as will be
discussed later, the perturbed parameter approach has proved more valuable in
the context of addressing uncertainties in climate-change projections, especially
around climate sensitivity.

The understanding of the atmosphere as a multi-scale system and of the
role of scale interactions in determining weather and climate variability has
developed strongly, especially following the major TOGA COARE'! experiment
in 1992-1993 [8]. As a result, it has become increasingly clear that the inherent
assumption in traditional parametrization schemes that there is no coupling
between dynamics and physics on the unresolved scales is now being challenged.
This is particularly true for cumulus convection where upscale energy cascades
are now recognized as a fundamental part of organized convection, especially
in the tropics (e.g. mesoscale squall lines, tropical cyclones and Madden—Julian
oscillations; figure 5). This has led to the development of stochastic approaches to
physical parametrizations, which attempt to represent unresolved processes and
their effects on the dynamics at the resolved scale [9,10]. What this essentially
says is that models, because of their coarse resolution, miss some of the nonlinear
processes that are fundamental to the atmosphere as a chaotic system.

These stochastic approaches are both physically appealing and also proving
very effective in increasing ensemble spread and reducing systematic model biases.
As a specific example, stochastic kinetic energy backscatter schemes are designed
to reduce the excessive dissipation at small scales by scattering a fraction of the
dissipated energy upscale where it acts as a forcing for the resolved-scale flow. The
forcing pattern in the scheme is used to describe the spatial-temporal correlations
of the backscattered energy, and as Berner et al. [10] discussed, the best results
are obtained for flow-dependent formulations of the unresolved processes, such as
mesoscale convective disturbances. It is now the case that the ensemble spread
matches the ensemble mean error, so that the ensemble system is no longer under-
dispersive.

With the availability of substantially enhanced computing power, ultra-high-
resolution process studies of multi-scale systems, such as tropical organized
convection, are now increasingly used to provide the spectral characteristics of

IThe Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment
(TOGA COARE) was a large international field experiment conducted in 1992-1993 to study the
atmospheric and oceanic processes over the region of the western Pacific known as the ‘warm pool’.
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Figure 5. Two infrared satellite images of organized tropical convection over the Indian Ocean
for (¢) 3 May and (b) 10 May in 2002. The active phase of the Madden—-Julian oscillation is
centred over the Indian Ocean on 3 May, with many scales of convective organization embedded
within it. A week later on 10 May, the Madden—Julian oscillation has propagated eastwards over
Indonesia, leaving two tropical cyclones in its wake and an almost clear Indian Ocean. Weather
and climate models still have difficulty in capturing the Madden—Julian oscillation and the richness
of its structure.

the upscale energy cascade and to aid the development of improved stochastic
physics parametrizations [11]. The potential for such studies to provide a major
breakthrough in the development of stochastically based parametrizations is
considerable [12].

Finally, much progress has been made in ensemble systems for numerical
weather prediction so that the uncertainties from the initial conditions and
from model formulation are both represented. Probabilistic methods are now
fundamental to weather forecasting on all scales, including now-casting at the
cloud system-resolving scale of 1-2km. Further progress is likely to be achieved
through ongoing reductions in model biases from improved parametrizations and
through more innovative approaches to defining initial condition uncertainties,
using ensemble data assimilation [13]. Both factors will lead to increased
forecast skill and more reliable estimates of probabilities, especially related to
extreme events.

3. ‘Predictability in the midst of chaos’ why seasonal and decadal
forecasting is possible?

In 1981, Charney & Shukla [14] wrote ‘It is shown by numerical simulation that
the variability of average pressure and rainfall for July due to short-period flow
instabilities occurring in the absence of boundary anomalies can account for
most of the observed variability at mid-latitudes but not at low latitudes. On
the basis of the available evidence it is suggested that a large part of the low-
latitude variability is due to boundary anomalies in such quantities as sea surface
temperature, albedo and soil moisture, which, having longer time constants, are
more predictable than the flow instabilities’. And so the concept of seasonal
prediction was born.

Phil. Trans. R. Soc. A (2011)
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In terms of the Lorenz model, the concept of extended range predictability
associated with an external forcing, but still within a chaotic system, was
considered by Palmer [15]. He showed that if a forcing, f, is included in the Lorenz
equations (3.1), then the residence time in the regimes of the Lorenz attractor can
change in a predictable way; in other words, the climatic response is predictable,
even when the forcing is weak,

dX

EZ_UX+UY+,]('7
dY
N =—XZ+pX—-Y+f (3.1)
dz
d — =XY —3Z.
an di 6

Using the Lorenz model and varying the strength of the forcing, it can also
be shown that the number and spatial patterns of regimes remain the same,
but their frequency of occurrence is changed (figure 6). This is essentially what
Charney & Shukla [14] had surmised, at least for the tropical atmosphere, where
El Nino, in particular, affects regimes of tropical weather, and indeed mid-latitude
weather, especially over the western USA. On the other hand, it is possible that
for larger forcings, the number and pattern of regimes can change. An important
question is whether anthropogenic climate change due to increasing greenhouse
gases constitutes a strong enough forcing to lead to a population of new regimes.

In terms of seasonal to decadal prediction, the predictability of the system
resides primarily in the oceans, where the greater thermal capacity and the much
longer dynamical time scales for adjustment impart a memory to the coupled
ocean—atmosphere system, which exceeds that for the atmosphere alone by several
orders of magnitude. Nevertheless, the ocean, like the atmosphere, is a chaotic,
nonlinear system, and so an ensemble approach to seasonal to decadal prediction
is fundamental to forecasting on these time scales also.

The latest developments in seasonal to decadal forecasting involve fully coupled
models of the ocean and atmosphere, both of which have to be initialized for the
current state of the climate system from observations. As in weather forecasting,
the ensemble prediction systems typically consider initial condition uncertainty
and model uncertainty, using stochastic physics. And as in weather forecasting,
the predictability, at any point on the globe and for certain states of the coupled
system, is itself predictable. For example, El Nino has predictable effects around
the global tropics and over North and South America, and certain phases of El
Nino are more predictable than others (figure 7).

Unlike weather forecasting, however, model-specific biases grow more strongly
in a fully coupled system, to the extent that the distribution of probable outcomes
in seasonal to decadal forecasts may not reflect the observed distribution
(figure 8a), and thus the forecasts may not be reliable. It is essential, therefore,
that forecast reliability is assessed using large sets of model hindcasts.? This

2Hindcasts are essentially predictions performed on past cases where the outcome is known. The
same system is used for the hindcasts as for the forecasts, with the hindcasts being initialized from
the observations at that time. Typical hindcast sets consist of seasonal predictions performed every
three months for the last three to four decades.
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Figure 6. Examples of the time series of the X variable in the Lorenz model, evolving on the Lorenz
attractor for (a) no external forcing and for (b) strong external forcing. Changes in probability of
the upper regime/lower regime are affected predictably by the imposed ‘forcing’.

enables the forecast probabilities to be calibrated based on past performance and
the model bias to be corrected. However, these empirical correction methods are
essentially linear and yet we know that the real system is highly nonlinear. As
Turner et al. [16] have demonstrated, there is inherently much more predictive
skill if improvements in model formulation could be made that reduce these biases,
rather than correcting them after the fact.

It is also the case that model-specific biases, both in the mean state and in the
internal variability, lead to under-dispersion in the ensemble. This has led to the
use of multi-model ensembles in which the differing model-specific biases allow
the forecast phase space to be sampled more completely with therefore greater
reliability in the ensemble prediction system [17]. However, it has to be recognized

Phil. Trans. R. Soc. A (2011)
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Figure 7. Two contrasting ensemble seasonal forecasts from the European Centre for Medium-range
Weather Forecasts (ECMWTF) for the evolution of El Nino. (@) The initiation of El Nino is difficult
to forecast owing to stochastic forcing from the atmosphere, e.g. westerly wind events. (b) Decay
of an El Nino is more predictable owing to the role of equatorial ocean dynamics.
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Figure 8. Schematic of ensemble prediction system on seasonal to decadal time scales based on
figure 1, showing (a) the impact of model biases and (b) a changing climate. The uncertainty in
the model forecasts arises from both initial condition uncertainty and model uncertainty.

that, compared with the stochastic parametrization approach, the multi-model
ensemble is a rather ‘ad hoc’ concept and, as discussed below, is dependent on
those models that happen to be available at the time of forecasts.

The process of forecast calibration using hindcasts presents some serious
challenges, however. Firstly, the observational base has improved substantially
over the last few decades, especially for the oceans, and so the skill of the forecasts
may also improve just because of better-defined initial conditions. Secondly,
the process of calibration assumes that the current climate is stationary, but
there is clear evidence that the climate is changing (see the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change (IPCC)), especially
in temperature; even in the UK, the signal is beginning to emerge in the last two
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Figure 9. (a) Response of the annual mean surface temperature and (b) precipitation to Special
Report on Emission Scenarios A1B emissions, in 21 climate models that contributed to the IPCC
Fourth Assessment Report. The solid black line is the multi-model mean.

decades. This means, for example, that the UK seasonal forecast for the winter
of 2009-2010 gave a 20 per cent chance of a cold winter when calibrated against
the last 40 years, but a much higher chance (over 40%) if the system had been
calibrated against the last 10 years.

Although both the limited nature of the observational base and a changing
climate pose some problems for seasonal prediction, for decadal prediction, they
are extremely challenging. There is decadal predictability in the climate system
through phenomena such as the Atlantic multi-decadal oscillation and the Pacific
decadal oscillation [18,19], but our understanding of these phenomena is still
limited largely owing to the paucity of ocean observations. However, decadal
prediction effectively bridges the gap between seasonal prediction and climate-
change projections. It therefore has an important role to play in understanding
climate sensitivity, as a significant part of the predictability on decadal time scales
comes from changing levels of greenhouse gas concentrations. So while operational
seasonal prediction is now well established, it will be some years before decadal
prediction can be used with confidence, but the potential is huge [20].

4. Uncertainty in climate-change projections

Uncertainty in climate-change projections presents some different challenges
from uncertainty in weather forecasting or seasonal prediction. The influence of
the ocean initial conditions is small beyond a decade or so, and ignoring the
uncertainties in the emission scenarios, the major source of uncertainty then
comes from the formulation of the models ([21]; figure 9), related particularly
to the sensitivity of the climate system to greenhouse gas forcing.

Uncertainty in climate-change projections® has traditionally been assessed
using multi-model ensembles of the type shown in figure 9, essentially an

3The term ‘projections’ is used here in place of ‘predictions’ because they depend strongly on
the emission scenario being used. In addition, the current practice is that these projections are
not initialized from the present state of the climate system. In that respect, they do not fit the
traditional view of predictability espoused by Lorenz, although natural, internal variability and
multi-scale stochastic processes are still important components of the uncertainty.
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‘ensemble of opportunity’. The strength of this approach is that each model differs
substantially in its structural assumptions and each has been extensively tested.
The credibility of its projection is derived from evaluation of its simulation of
the current climate against a wide range of observations. However, there are also
significant limitations to this approach. The ensemble has not been designed to
test the range of possible outcomes. Its size is too small (typically 10-20 members)
to give robust estimates of the most likely changes and associated uncertainties
and therefore it is hard to use in risk assessments.

As already noted, much of the uncertainty in the projections shown in
figure 9 comes from the representation of sub-gridscale physical processes in the
model, particularly cloud-radiation feedbacks [22]. More recently, the response
of the carbon cycle to global warming [23] has been shown to be important,
but not universally included yet in the projections. A more comprehensive,
systematic and quantitative exploration of the sources of model uncertainty
using large perturbed-parameter ensembles has been undertaken by Murphy
et al. [24] and Stainforth et al. [25] to explore the wider range of possible future
global climate sensitivities. The concept is to use a single-model framework
to systematically perturb poorly constrained model parameters, related to key
physical and biogeochemical (carbon cycle) processes, within expert-specified
ranges. As in the multi-model approach, there is still the need to test each
version of the model against the current climate before allowing it to enter
the perturbed parameter ensemble. An obvious disadvantage of this approach is
that it does not sample the structural uncertainty in models, such as resolution,
grid structures and numerical methods because it relies on using a single-model
framework.

As the ensemble sizes in the perturbed ensemble approach run to hundreds or
even many thousands of members, the outcome is a probability distribution of
climate change rather than an uncertainty range from a limited set of equally
possible outcomes, as shown in figure 9. This means that decision-making on
adaptation, for example, can now use a risk-based approach based on the
probability of a particular outcome.

This concept was extended further by Murphy et al. [26] to regional climate
change over Europe, based on regional model downscaling from the global model
perturbed parameter ensemble. It also included a Bayesian statistical framework
designed to support the generation of probabilities constrained by a wide range
of observational metrics. This essentially allowed the members of the ensemble
to be weighted depending on their ability to reproduce the current climate. The
Bayesian framework also accounts for additional model structural uncertainty
using the multi-model ensemble.

This approach was used to produce the 2009 UK Climate Projections
(UKCPO09), the first example of a fully probabilistic approach to climate-change
projection (http://ukclimateprojections.defra.gov.uk/). UKCP09 essentially
moved climate-change projection from uncertainty to probability. Future
scenarios of climate change can now be given in terms of probabilities of their
occurring rather than just being equally likely outcomes of global warming
(figure 10). This means that users can assess their vulnerability to different
scenarios of climate change and decide what level of risk they are prepared to
take based on their own exposure and the probability of that scenario happening.
UKCP09 was the first example of a systematic approach to delivering probabilistic

Phil. Trans. R. Soc. A (2011)
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Figure 10. Three potential scenarios of summer rainfall in the 2080s for a high emission scenario
(from UKCPO09) expressed as a percentage change from the current climate. The middle image
shows the central estimate (50% probability) while the left (right) images represent the scenarios
where it is unlikely (i.e. 10% probability) that the rainfall may be less (more) than the depicted
changes.

information on future regional climate scenarios and it has its limitations.
For example, it does not sample uncertainty associated with the resolution of
the global driving model, which is now recognized to be important [27] for
representing synoptic weather systems with some fidelity.

The other distinct advantage of perturbed parameter ensembles is the ability
to quantify the sources of uncertainty and how the sources of uncertainty
evolve with the lead time of the forecast. Figure 11 shows an example of
where the uncertainties come from in the UKCP09 scenarios for the 2020s
and 2080s, in this case, for winter rainfall in southeast England. Of course, as
figure 9 indicates, the overall uncertainty increases with time, but the origins
of that uncertainty also change. For near-term projections, natural internal
variability and regional downscaling dominate the uncertainty, and as suggested
by Hawkins & Sutton [21], model uncertainties, including the carbon cycle,
dominate at longer lead times.

By delving deeper, it is also possible to identify the particular parameters
that contribute the most to the model uncertainty and focus basic research
and model development on those science areas. Likewise, the uncertainty from
internal variability may be reduced, at least in the near-term projections, through
initializing the model with the current state of the climate system. Nevertheless,
because the climate is a chaotic system and contains natural variability on all
time scales, there is a level of uncertainty that will always exist however much
the model uncertainty is reduced.

Phil. Trans. R. Soc. A (2011)
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Figure 11. Example of the partitioning of uncertainty in projections of southeast England rainfall
for the (a) 2020s and (b) 2080s from UKCP09.

5. Concluding remarks

This paper has considered how Lorenz’s theory of the atmosphere (and ocean) as a
chaotic, nonlinear system pervades all of weather and climate prediction and how
this has influenced the development of probabilistic ensemble prediction systems
on all forecast lead times. It has also shown that the sources of uncertainty are
not confined to the initial conditions, the basis of the Lorenz model, but that
model uncertainty plays a critical role on all time scales.

It is important, however, to distinguish between model uncertainty that arises
from imperfect knowledge of the real system, such as the representation of
the carbon cycle, and uncertainty that comes from sub-gridscale phenomena
that are understood quite well, but are inadequately represented because
of the resolution of the model. In weather forecasting, there has been a
continuous drive to higher-and-higher resolution with substantial benefits in
terms of model performance and forecast skill. Furthermore, recent studies
with ultra-high-resolution (approx. 3km) global models, the so-called cloud
system-resolving models, have shown a remarkable ability to capture the multi-
scale nature of tropical convection of the type seen in figure 4 [28]. However,
the resolution of climate models, still typically 100km or more, has been
constrained fundamentally by a lack of computing resources [29], even though
there is compelling evidence to suggest significant improvements in climate model
performance with higher horizontal and vertical resolution in both the atmosphere
and ocean [27].

Finally, Lorenz’s theory of the atmosphere (and ocean) as a chaotic system
raises fundamental, but unanswered questions about how much the uncertainties
in climate-change projections can be reduced. In 1969, Lorenz [30] wrote: ‘Perhaps
we can visualize the day when all of the relevant physical principles will be
perfectly known. It may then still not be possible to express these principles
as mathematical equations which can be solved by digital computers. We may
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Figure 12. Time series of sea surface temperatures ( Ts) for the Nino3 region (5° S-5° N and 150° W—
90° W), in the equatorial east Pacific from (a) 2000 years of climate model simulation with constant
forcing representative of the current climate; (b) shows the equivalent time series from observations.
Green circles show multi-decadal periods with contrasting El Nino behaviour, including a period in
the model’s sixteenth century that closely resembles the observed record. Red and blue boxes show

extended century-scale periods with contrasting strong and weak El Nino activity, respectively.
(Figure courtesy of V. Ramanathan, GFDL, Princeton, NJ, USA).

believe, for example, that the motion of the unsaturated portion of the atmosphere
is governed by the Navier—Stokes equations, but to use these equations properly
we should have to describe each turbulent eddy—a task far beyond the capacity
of the largest computer. We must therefore express the pertinent statistical
properties of turbulent eddies as functions of the larger-scale motions. We do
not yet know how to do this, nor have we proven that the desired functions
exist’. Thirty years later, this problem remains unsolved, and may possibly be
unsolvable.

So how much will uncertainties in climate-change predictions of the large-scale
reduce if models are run at 20, 2 or even 0.2 km resolution rather than say 100 km
resolution? Equally, we may ask whether there is a certain resolution (e.g. 20 km),
where it might be feasible to represent small-scale motions using stochastic
equations, rather than trying to resolve them? These questions urgently need
answering as the pressures grow on the climate science community to estimate,
and if possible reduce uncertainties, and provide more reliable and confident
predictions of regional climate change, hazardous weather and extremes.

Phil. Trans. R. Soc. A (2011)



4766 J. Slingo and T. Palmer

Nevertheless, however much models improve, there will always be an irreducible
level of uncertainty—*‘flap of the seagull’s wings’—because of the chaotic nature
of the system. Even the climate we have observed over the past century or so is
only one realization of what the real system might produce.

Figure 12 shows 2000 years of El Nino behaviour simulated by a state-of-the-
art climate model forced with present day solar irradiance and greenhouse gas
concentrations. The richness of the El Nino behaviour, decade by decade and
century by century, testifies to the fundamentally chaotic nature of the system
that we are attempting to predict. It challenges the way in which we evaluate
models and emphasizes the importance of continuing to focus on observing and
understanding processes and phenomena in the climate system. It is also a classic
demonstration of the need for ensemble prediction systems on all time scales in
order to sample the range of possible outcomes that even the real world could
produce. Nothing is certain.

The authors thank James Murphy, Ken Mylne, David Sexton and Glenn Shutts for providing
material presented in this paper.
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