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ABSTRACT
The VI gene encodes the heavy chain variable region of antibodies that

bind to phosphorylcholine in the Balb/c mouse. Vl genes have been cloned
from mouse sperm DNA, an IgM-producing tumor HPCM2 and an IgA-producing
tumor M167. The transcription start site of the Vi gene has been mapped
63i 1 base pairs from the coding sequence for both a and p transcripts.
Comparison of flanking DNA sequence 574 base pairs 5' to the Vl transcrip-
tion start site in sperm, HPCM2 and M167 DNA reveals that sperm and HPCM2
sequences are completely identical in this region and the M167 sequence
differs from them by a single base change. Although the coding region of
the Vi gene has undergone a high (4%) rate of somatic mutation in M167 we
demonstrate that the somatic mutation mechanism stops near the transcrip-
tion start site. These results demonstrate that initiation of Vl gene
transcription remains unchanged with respect to location and 5' sequences
throughout B-cell development.

INTRODUCTION

Immunoglobulin variable (V) region genes provide a unique opportunity to

study differential gene expression in a complex multigene family. Further-

more, these genes may provide an opportunity to understand novel regulatory

mechanisms which have not been described for other eukaryotic genes since

immunoglobulin genes are known to display several unique properties. Dur-

ing the development of antibody-producing B cells, V genes are subjected to

two different types of modification at the DNA level: 1) gene rearrange-

ment and 2) somatic hypermutation (for reviews see 1-5). Recent studies

have shown that both rearrangement and hypermutation are involved in gener-

ating the immense diversity displayed by the immune system, but the role

either may play in gene regulation remains obscure. Our current studies

are focused on transcriptional regulation of immunoglobulin genes. As a

first step toward understanding V gene transcriptional regulation,

therefore, we have assessed the effects of gene rearrangement and

hypermutation on the promoter region of a heavy chain V gene.
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Two types of immunoglobulin gene rearrangement occur during B-cell

development-- V(D)J joining and CH switching. Both rearrangements

involve deletion of DNA 3' to the expressed V gene but do not cause detect-

able changes in the DNA 5' to the expressed V gene. However, V(D)J joining

appears to be a prerequisite for transcription from V gene promoters. A

recent study by Mather and Perry (6) established that the transcriptional

activity of unrearranged Vk genes in myeloma cells is at least 16,000

fold lower than transcription of joined Vk genes. The mechanism for this

effect is not understood. Furthermore, it is not known if CH switching

affects DNA sequences which regulate VH gene transcription.

Modification of V gene DNA by somatic mutation has been demonstrated

for both light chains (7-10) and heavy chains (11). Recent studies sug-

gest somatic mutation of V genes occurs by an undefined hypermutational

mechanism late in B-cell development and is correlated with class switch-

ing (11). Variant genes contain altered bases scattered throughout the

variable region coding sequences (12) but it is not known if these somatic

alterations extend into the 5' region involved in initiation of V gene

transcription.

Another intriguing aspect of immunoglobulin (Ig) gene regulation is

the extremely high level of antibody protein and mRNA which are present in

terminally differentiated plasma cells, in the range of 3-4 x 104 copies

of mRNA per cell (13). It has been shown that this high level of mRNA

results from a combination of high transcription rate, rapid processing

and high messenger stability (13). However, at earlier stages of B-cell

development, Ig protein and mRNA are present in much lower amounts, prob-

ably reflecting a lowered transcription rate of the genes as well as regu-

lation at other levels (14-16).
We have chosen to focus our study on the transcriptional regulation

of the Vl heavy chain gene which encodes a major portion of the immune

response to phosphorylcholine in the Balb/c mouse (11). This is a parti-

cularly good VH gene for transcription studies because extensive infor-

mation is available on regulation of the phosphorylcholine response (17),
on protein sequences of heavy chains encoded by the Vi gene (18,8) and on

DNA sequences of the germline Vl gene, three closely homologous germline

genes (11) and somatic variants of the Vi gene (12). In this paper we

have investigated the affects of VDJ joining, CH switching and somatic

mutation on the promoter region of the Vi gene. We have determined the

exact site of transcription initiation for the VI gene and have analyzed
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the DNA sequence in a region more than 500 base pairs (bp) 5' to this

site. We demonstrate that following both types of DNA rearrangement--VDJ

joining and CH switching--neither the location of the transcription ini-

tiation site nor the DNA sequence of the 5' region is altered. Finally,

we show that a region of 574 bp 5' to the Vl gene transcription initiation

site is virtually unaffected by somatic mutation in a tumor line which

shows a high degree of somatic mutation in the VI coding sequence.

METHODS

Isolation of RNA. Nuclear and cytoplasmic RNA samples for blotting studies

and for Si nuclease studies were prepared from 2-4 x 108 HPCM2 cells grown

in suspension. Cells were washed with cold phosphate buffered saline and

lysed with 0.1% NP40. Nuclei were isolated and detergent washed as descri-

be4 by Federoff et al., (19) and Penman (20). Cytoplasmic and nuclear

fractions were phenol extracted and ethanol precipitated. Nuclear RNA was

treated for 15 minutes at 37°C with 10 ug/ml RNase-free DNase, extracted

and ethanol precipitated. All buffers up to this stage in the preparation

contained iOmM vanadyl ribonucleoside complex to inhibit endogenous RNases

(21). Both cytoplasmic and nuclear RNA samples were subjected to chromato-

graphy on oligo dT cellulose (Collaborative Research).

For dideoxy sequencing, HPCM2 and M167 heavy chain RNA was prepared

from solid tumor tissue. Tumors were pulverized in liquid nitrogen and

total RNA was isolated by the guanidium thiocyanate method (22). Poly (A+)
RNA was selected by 2-3 passes over an oligo dT cellulose column prior to

separation of heavy chain RNA on isokinetic sucrose gradients.

Isolation of DNA Fragments. Restriction fragments used for Si nuclease

studies, as primer in dideoxy sequencing studies and for sequencing were

isolated from polyacrylamide gels by the method of Maxam and Gilbert (23)

or from agarose gels by electro elution onto DE81 paper (24).
RNA Blots. RNA samples (1-15 ug) were suspended in a solution containing

50% (v/v) recrystallized deionized formamide, 2.2M formaldehyde and 1X MOPS

buffer, heated at 57°C for 3 minutes and loaded immediately on 1% agarose

gels containing 2.2 M formaldehyde in 1X MOPS buffer. (1X MOPS buffer is

20mM Na-MOPS, pH 7.0, 5 mM NaOAc and 1 mM EDTA.) Ribosomal RNA was run in

outside lanes which were excised, stained with ethidium bromide and photo-

graphed to provide size standards. The remainder of the gel was blotted

without any pretreatment, using 20 X SSC and nitrocellulose as described by

Thomas (25). Filters were hybridized and washed as described by Thomas
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(25), using 10-20 ng/ml of nick translated probe of specific activity 1-5 x

108 cpm/ug. Filters were exposed to Kodak XAR film using Dupont Cronex

Lightening X intensifying screens at -70°C for 3 hrs to 1 week.

Sl Nuclease. SI nuclease mapping of HPCM.2 mRNA was performed according

to the method of Berk and Sharp (26). Poly (A+) cytoplasmic RNA (2 ug),

100 ng of nick translated DNA, specific activity 2-4 x 106 cpm/ug, corres-

ponding roughly to one nick per 5 kb (A. Berk, personal communication) and

5 ug of yeast tRNA were ethanol precipitated together and dissolved in 10

ul of 80% (vlv) recrystallized deionized formamide, 0.4 M NaCl, 0.04 M

Pipes, pH 6.4, 1 mM EDTA. The DNA was denatured by heating at 70°C for 10

minutes, then hybridization was allowed to proceed for 3 hrs at 49°C.

Hybridizations were stopped by the addition of 200 ul ice cold S1 buffer

(0.25 M NaCl, 0.03 M NaOAc pH 4.5, 1 mM ZnSO4, 5 ug/ml denatured calf thy-

mus DNA and 200-600 units/ml of S1 nuclease (New England Nuclear)). The

S1 reaction was incubated at 5°C for 60 minutes, then ethanol precipitated

and electrophoresed on an 8% polyacylamide 7 M urea sequencing gel using

end-labeled fragments of HpaII cut pBR322 DNA as standards.

Dideoxy Sequencing of mRNA. These reactions were carried out according to

the method of Sanger and Coulson (27) as modified by Levy et al. (28). A

77 bp AluI-DdeI fragment from the Vl cDNA clone was isolated from a 10%

polyacrylamide gel. One hundred ng of primer was denatured by boiling for

3 minutes and then hybridized with 200ng of heavy chain RNA in 1.5 X H

buffer (1X H buffer is 50 mM tris, pH 8.3, 6 mM Mg(OAc)2, 60 mM NaCl, 10

mM DTT) at 68°C for 45 minutes. cDNA synthesis catalyzed by avian myelo-

blastosis reverse transcriptase was carried out using 100 uM dATP, dCTP

and dTTp, 50 iCi 32p labeled dCTP (2000-3000 Ci/mole), 50 uM ddATP, ddGTP

and ddTTP and 0.4uM ddCTP. In one set of experiments, template RNA was

pretreated with methyl mercury hydroxide at a final concentration of 2.5

mM for 5 minutes, quenched with 13 mM 3-mercaptoethanol (29) and then used

in the sequencing reaction.

DNA Sequencing. DNA sequence determinations were carried out using the

chemical cleavage method of Maxam and Gilbert (23). A subclone of

ChM2-423 containing the 7.5 kb Eco Ri fragment was used as a source of

HPCM2 DNA and a subclone containing the 0.6 kb BamHI fragment from Chl67a

10 (12) (kindly provided by S. Kim) was used as a source of M167 DNA.

HPCM2 and M167 sequences were determined on both strands for most of the

sequence.
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RESULTS

The Active v Gene From HPCM2 Contains a Rearranged VI Gene

HPCM2 is an IgM producing hybridoma line which was shown by Gearhart

et al. (8) to secrete phosphorylcholine binding antibody having the T15

idiotype. The amino acid sequence of the VH segment of v chains from

HPCM2 corresponds exactly to the germline Vl gene segment sequence (11)

thus suggesting that Vl is rearranged and expressed in HPCM2 cells. We

have confirmed this by isolation and analysis of a Vl-Cv gene clone from a

library constructed in Charon 4A from HPCM2 genomic DNA partially digested

with EcoRl. Heteroduplex and restriction enzyme analyses of this clone,

ChM2-423, clearly establish that the Vi gene is rearranged and expressed

in HPCM2 (Fig. 1). In contrast to at gene clones, this clone represents

only one DNA rearrangement of the Vi gene, VDJ joining. Accordingly, we

decided to perform initial transcript mapping studies on ChM2-423. The

7.5 kb and 10.5 kb Eco RI restriction fragments containing the ViDJi

coding region and the C p coding region respectively were subcloned into

pBR322 for further study.

Secreted Mu, Membrane Mu and Cp-Only Transcripts Are Present in HPCM2

Nuclear RNA. Poly (A)+ nuclear RNA was isolated from HPCM2 cells grown in

culture and size-separated on denaturing formaldehyde-agarose gels. The

ChM2 -423 H
Bq H Hp 8 Hp X R

R Bo Hp X B B B |BIB Hp X R jX H H X I 4H K X

VI C

homology to gormlmo VI)
(homo.loy to formlmos C)

1Kb

Fig. 1. Map of the p heavy chain gene cloned from HPCM2 DNA.
Restriction sites on the mouse genomic DNA insert in Clone ChM2-423
are indicated by letters: R, EcoRl; Bg, Bgl II; Hp, Hpa II; X, Xba I;
B, BamHI; K, KpnI. Bgl II sites are not shown for the 10.5 Kb EcoRl
fragment containing CP sequences. Coding sequences are indicated by
raised boxes. Secreted and membrane carboxyterminal coding regions
of the Cv gene are indicated by S and M respectively; the Vi leader
region is indicated by L.

The homology to germline Vi and Cp DNA, as indicated by bars, was
ascertained by heteroduplex and restriction enzyme analyses.
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RNA was transferred to nitrocellulose filters and probed with CP (30) and

VI (31) cDNA probes. As shown in Fig. 2a, the Cv cDNA probe hybridized to

three large RNA species: a very faint band of 12.0 kb and stronger bands

at 10.1 and 9.2 kb. A strong broad region of hybridization at 2.4 kb is

A
c DNA Probes

ju, VI

12.0 I

9 2.4 2

Intervening Sequence and Flanking
Region Probes

A B C D E F

12.0 12.0
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9:.

2-4~~~~~~~~~~.:
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98Kb
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Subcloned
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Fig. 2. RNA blot analysis of nuclear transcripts from HPCM2.
2a Poly(A+) nuclear RNA from HPCM2 cells was separated on 1%
agarose-formaldehyde gels, transferred to nitrocellulose and hybri-
dized with the indicated probes, as described in methods.
2b The genomic location of subcloned probes used for RNA blot hybri-
dizations is indicated. Lines above the map indicate the lengths of
genomic DNA between the coding regions indicated. The location of
precursor transcripts on the genomic DNA is indicated in the lower
portion of the figure.
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also seen which corresponds in size to mature jmRNA. The Vl cDNA probe

also hybridizes to the 2.4 Kb band and to the 10.1 kb band, but does not

hybridize to the 9.2 kb or 12.0 Kb band. Failure to hybridize to the 12.0

kb band may have been caused, however, by the low amount of RNA in this

band and the fact that the VI probe is approximately one third the length

of the Cp probe. Results with the membrane probe discussed below, suggest

that the 12.0 Kb transcript does in fact contain VI sequences.

In order to map Vl-Cj transcripts on the genomic clone, we subcloned

several DNA restriction fragments from the 5' flanking region, the J1-Cp
intervening sequence and membrane exon sequences of ChM2-423 as illustra-

ted in Fig. 2b. 5' Probes "A", "B" and "C" do not hybridize with any of

the C1 or Vl containing transcripts in HPCM2 nuclear RNA. This result

strongly suggests that the primary transcript of this gene initiates down-

stream from the 3' end of the "C" probe. The "C" probe contains a BamHl

restriction fragment located approximately 60 bp 5' to the Vl gene leader

coding sequences. These results therefore suggest that transcription of

the gene initiates less than 100 bp 5' of the VI coding sequences. These

results do not rule out, however, the possibility of a larger, very short-

lived primary transcript of the gene which is not detected by our blotting

analysis of steady state nuclear transcripts and which is rapidly process-

ed at the 5' end. However, further experiments described in the following

section show that the 5' end of the mRNA maps close to the leader coding

sequence and are consistent with the interpretation that these large

transcripts represent precursors which have not been processed at their 5'

ends.

Lanes hybridized with probes "D" and *E" show that the 5' end of the

9.2 kb transcript maps somewhere between the 3' side of probe "D" and the

3' side of probe "E" since this transcript hybridizes with the "E" but not

with the "D" probe. This is also consistent with the fact that the 9.2 kb

transcript contains Cp but not Vl cDNA sequences. Since the 9.2 kb

transcript does not contain V1 sequence, we assume that it does not encode

a p chain and represents a nonproductive transcript. Genomic southern

blots of HPCM2 DNA show that these cells contain only a single C-p allele,

the productively rearranged one represented by ChM2-423 (M. Mercola and

K. Calame, unpublished results). Therefore, the 9.2 Cp-only transcript,

as well as the productive 12.0 and 10.1 Kb transcripts, is initiated on

this allele.

The "F" probe is specific for membrane sequences and contians a 1.0
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kb Kpn I-Xbal fragment which includes the 3' part of the intervening

sequence between secreted (s) and membrane (m) and part of the p exons.

It hybridizes to the 12.0 kb transcript and to a 2.7 kb component of the

broad mRNA band. The presence of a mature 2.7 kb mRNA which was shown

previously to be the size of membrane ImRNA (31,32), is consistent with

the assumption that the 12.0 kb transcript does contain Vl sequence be-

cause without VH sequences it is very unlikely that a mRNA of 2.7 kb

would be generated. Failure of the membrane specific probe to hybridize

to the 2.4 kb secreted mRNA demonstrates that the 3' end of this RNA is 5'

to the Kpn site and we assume that it contains the same 3' untranslated

sequence as the secreted ImRNA from myeloma M104E (30). Faintly

hybridizing species below the 12.0 kb band suggest that a small portion of

the Cr-only transcript (9.2kb) may also contain membrane sequences. (We
have not mapped the processing intermediate of 5.2 kb which hybridizes

with the membrane probe.) The pattern of hybridization with probe "F"

demonstrates: 1) that a fraction of HPCM2 imRNA is the 2.7 kb membrane

species (32,33) and 2) the 12.0 kb transcript represent transcription

across the s- m intervening sequence into the m exons, as illustrated in

the lower portion of Fig. 3. Our results do not distinguish between two

.4 _

I,s- z

of E * < s E
m a I

-r __~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
45bp 381 bp

100bp
Fragments used
for 5' SI mopping 5.3KbHhl

.112Kb lamn

Fragment used
for primer in
dideoxy synthesis 77bp Dde Alu fragment from cDNA clone

*o --
_,

Fig. 3. Map of the VI gene showing the DNA fragments used for Si nuclease
and dideoxynucleotide sequencing studies. Dotted lines indicate the
absence of L/V1 intervening sequences in the fragment isolated from
the cDNA clone.
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possible synthetic routes for the 10.1 kb secreted transcript. As first

suggested by Rogers et al. (33), the 10.1 kb transcript may be derived

from the 12 kb transcript by processing at the 3' end, in which case the

10.1 kb transcript does not represent a primary transcript of the gene.

Alternatively, the 10.1 kb transcript may represent a primary transcript

which terminates 3' to the s sequences and 5' to the m (and probe "F)

sequences. In either case, the transcripts map on the genomic clone as

shown in the lower portion of Fig. 2b.

The 5' End of HPCM2 PmRNA Maps 63 bp From the Vl Leader Coding Sequence.

Capping of nascent eucaryotic transcripts occurs very early in the trans-

cription process (34), and it has been established that the cap site and

transcription initiation site are coincident (35-36). Therefore, we have

mapped the 5' end of pmRNA from HPCM2 using two different approaches: Si

nuclease protection studies (26) and primer extension with dideoxynucleo-

side triphosphate sequencing (27). Fig. 3 shows an enlarged map of the

region of genomic DNA involved and indicates the restriction fragments

which were used for these experiments.

Fig. 4 shows the results of Si protection studies using two different

uniformly labeled restriction fragments from subclones of ChM2-423.

Hybridization of poly (A+) cytoplasmic RNA from HPCM2 with the 5.3 kb Hhal

fragment yields two Si protected fragments of 36010 bp and 108±2bp (lanes

C and D). The 360±10 bp protected fragment clearly corresponds to the 355

bp VI coding region which extends from the HhaI site in the Ji region to

the beginning of the intervening sequence between Vi and the leader coding

region. The 108±2 bp fragment, therefore, corresponds to 45 bp of leader

coding sequence plus 5' untranslated sequences of about 63±2 bp. There is

a BamHl site located 57 bp from the end of the leader coding sequence, as

shown by RNA and DNA sequence analyses in the following sections. We made

use of this restriction site to map the 5' Si protected fragment more

accurately. As shown in Fig. 5 lanes A and B the Bam 1.2 kb fragment

generates a 380*10 bp DNA fragment and a 102*2 bp fragment. The former

band corresponds to the VDJ coding region (381 bp). In this experiment

the leader-5' untranslated protected fragment is 102±2 bp, 6*2 bp smaller.

The sequence of the 5' end of pmRNA from HPCM2 tumors was determined

by dideoxy sequencing using purified pmRNA as the template and a restric-

tion fragment from the Vi cDNA clone as primer for cDNA synthesis cata-

lyzed by reverse transcriptase (27). The primer was a 77bp DdeI-AluI

fragment which included the leader coding sequences and 14 base pairs 5'
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to the leader, as illustrated in the lower portion of Fig. 3. Results

using this primer are shown in Fig. 5a. Synthesis stopped completely

after 49 bp in each lane, including a control lane (0) which contained no

dideoxy chain terminators. The halt in synthesis is not a result of non-

specific termination effects because we have shown by using primer frag-

ments located closer to the 3' end of the Vl sequence, that the primer

extension reaction under our conditions can proceed for at least 150 bp

(data not shown). The sequence can be read clearly from within 9 bp of

the DdeI site to within 2 or 3 bp of the end of the mRNA and corresponds

exactly with the DNA sequence in the region 5' to the leader coding

sequence (Fig. 6). These results thus place the 5' end of the pmRNA 63+1

z z
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380 10
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A B

Z z

E E
+ I

._._

360*10
___4

- 527
<- 403

^- 309

Fig. 4. SI nuclease analysis of wmRNA
from HPCM2. Poly (A+) cytoplasmic RNA
from HPCM2 cells was hybridized with
uniformly labeled probes, Bam 1.2 kb
(A&B) or Hha 5.3 kb (C&D) under R-loop
conditions. After treatment with SI
nuclease, the protected fragments
were separated on sequencing gels.
Lane E is standard pBR322 digested with
Hpa II.
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bp from the leader coding sequence and 4±1 bp from the BamHl restriction

site as shown in Fig. 6. This is completely consistent with the Si pro-

tection results and thus rules out the possibility that synthesis stopped

at some secondary structure block in the mRNA rather than at the 5' end.

Furthermore, when mRNA was treated with methylmercury hydroxide (29) just

prior to cDNA synthesis to remove secondary structure, results identical

to those shown in Fig. 5a were obtained (data not shown). Placement of

the 5' end of mRNA 63±1 bp 5' to the coding sequences is also consistent

with the RNA blotting experiments (Fig. 2); accordingly, we believe that

this is the site where VI gene transcription initiates in HPCM2.

Transcription of the Vi Gene Initiates at the Same Site in IgA Producer

M167 as in IgM Producer HPCM2.

The IgA producing myeloma M167 has been shown to express the Vi gene

A. B.

N
N
CC

TA
G
A
CA

C
Tc
AA

T GG
TAG G',GA

A

G
TG

ATA
GT

TT\

2 3 4 5
2451 i

I t

6 7

-It

l.:.

s .-

t

8

Fig. 5. Primer extension and dideoxynucleoside triphosphate sequencing of
Vl gene transcripts.
5a Purified UmRNA from HPCM2 was hybridized to the 77 base pair
AluI-DdI fragment shown in Fig. 4 and used to prime DNA synthesis
catalyzed by avian myeloblastosis reverse transcriptase in the pres-
ence of chain terminators. Lanes indicate: A, ddATP; C, ddCTP; G,
ddGTP; T,ddTTP and 0, no chain terminator.
5b Products of similar dideoxy sequencing reactions using purified
PmRNA from HPCM2 (lanes 1-4) and amRNA from M167 (lanes 5-8).
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(11). In order to determine if transcription of the Vl gene initiates at

the same site in M167 as in HPCM2, we repeated the dideoxy sequencing

experiment described above using purified amRNA from M167 tumors and the

same DdeI-AluI primer fragment. The results shown in Fig. 5b clearly show

that cDNA synthesis on the M167 pmRNA template stops at exactly the same

point where it stops using the HPCM2 PmRNA template. The sequence again

corresponds exactly to the M167 DNA sequence 5' to the VI leader (12) and

differs in this region at one site from HPCM2 and germline sequences.

DNA Sequence Analyses of 574 bp 5' to the Cap Site of the Vi Gene Show

Minimal Differences Between Germline, HPCM2 and M167 DNA.

The sequence of 574 bp 5' to the transcription initiation site of the VI

gene was determined for HPCM2 and M167 DNA; a short stretch of HPCM2 DNA

3' to the cap site was also sequenced. This analysis, shown in Fig. 6,

M167DNA TCCACATGTATGATTTTAATGTCAGATAAAGAATATTTCCAAGAATTATCCCCAAAATATAAGTATAAATATGTGCAAMCTTGTTTATT
M2DNA TCCACATGTATGATTTTAATGTCAGATAAAGAATATTTCCAAGAATTATCCCCAAAATATAAGTATAAATATGTGCAAAACTTGTTTATT
sperm DNA TCCACATGTATGATTTTAATGTCAGATAAAGAATATTTCCAAGAATTATcCCCAAAATATAAGTATAAATATGTGCAAAACTTGTTTATT

-570 -560 -550 -540 -530 -520 -510 -500 1490
M167DNA AACTTATTTATCTTAAAATCTGGTGCTTCATGTTTAAATCCAATCTATTGTCTGAAAGACATCCTGGCAGTTTAATATCCAGTAAATCTTTCATGTACCT
M2DNA AACTTATTTATCTTAAAATCTGGTGC TTCATGTTTAAATCCAATC TATTGTCT GAAMGACATCCTGGCAGTTTAATATCCAGTAAMTC TTTCATGTACCT
sperm DNA AACTTATTTATCTTAAAATCTGGTGCTTCATGTTTAAATCCAATCTATTGTCTGAAAGACATCCTGGCAGTTTAATATCCAGTAAATCTTTCATGTACCT

-480 -470 -460 -450 -440 -430 -420 -410 -400 -390
M167DNA ACAAAAAATAAAAAAATAAAGAATTTCCTACATGAGTACACCCTCCCCAAACACAAATAAATGAGTAATTTAGTGAAMATTAGMMM
M2DNA ACAAAAAATAAAAAAATAAAGAATTTCCTACATGAGTACACCCTCCCCAAACACAAATAAATGAGTAATTTAGTGAAAATTAGAAAAAA

-380 -370 -360 -350 -340 -330 -320 -310 -300
M167DNA AAAGAAAAGAAATGTCAMTACCAGTGAAGACATGAAGAATAGGTAGTCTTAGATATTGTTAGTTGGAAGGTGAACTTGTTAAATCACAAT
M2DNA AAAGAAAAGAAATGTCAATACCAGTGAAGACATGAAGAATAGGTAGTCTTAGATATTGTTAGTTGGAAGGTGAACTTGTTAAATCACAAT

-290 -280 -270 -260 -250 -240 -230 -220 -210
M167DNA AAAATATTGAAGTGTTATCACATACACATACTAAACAATTTTC TAACATTGTTACTGATAGCTGATTCATTCAC&TATCCCTGCATTTT
M2DNA AAAATATTGAAGTGTTATCACATACACATACTAAACAATTTTCTAACATTGTTACTGATAGCTGATTCATTCACTATATCCCTGCATTTT
sperm DNA AAAATATTGAAGTGTTATCACATACACATACTAAACAATTTTCTAACATTGTTACTGATAGCTGATTCATTCACTATATCCCTGCATTTT

-200 -190 -180 -170 -160 -150 -140 -130 -120
M167DNA GTAATAATAACTTCACTCTCTACAACTTCAATCCTAGAGCTAATGATATAGCAGAAAGACATGCAAATTAGGCCACCCTCATCACATGAAAACCAGCCCA
M2DNA GTAATAATAACTTCAC TCTCTACAACTTCAATCC TAGAGCTAATGATATAGCAGAAMGACATGCAAMTTAGGCCACCCTCATCACATGAAAACCAGCCCA
sperm DNA GTAATAATAACTTCACTCTCTACAACTTCAATCCTAGAGCTAATGATATAGCAGAAAGACATGCAAATTAGGCCACCCTCATCACATGAAAACCAGCCCA

-110 -0oo -9o -80 -70 -60 -50 40 -30 -20

met lys
M167DNA GAGTGACTCTAGCAGTGGGATCCTGTCCTGAGTTCCCCAATCOTCACATTCAGAAATCAGCACTCAGTCCTGTCACT ATG AAG....
M2DNA GAGTGACTCTAGCAGTGGGATCCTGTCCTGAGTTCCCCAATCTTCACATTCAGAAATCAGCACTCAGTCCTGTCACT ATG AAG ....
spernDNA GAGTGACTCTAGCAGTGGGATCCTGTCCTGAGTTCCCCAATCTTCACATTCAGAAATCAGCACTCAGTCCTGTCACT ATG AAG....
M2mRNA NNGGGATCCTGTCCTGAGTTCCCCAATCTTCACATTCAGAA.... LM167mRNA -10 NNG6GATCCT6TCCTGAGTTCCCCAATC6TCACATTCAG0....

110 120 130 140
5 end of mRNA Start of

signal peptide

Fig. 6. DNA sequence of the N terminal portion of the Vi gene and the
region 5' to it in mouse sperm DNA, HPCM2 DNA and M167 DNA.
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reveals that the Vl gene has a variant of the "AATAA" box, "ATGAAAA',

between -23 and -29, a "CAAT' sequence, CAAAT between -46 and -51, and a

variant of the "CAAT" sequence, CTAAT, between -71 and -75 (numbering from

the transcription initiation site at +1). The region 5' to these sequen-

ces appears to be very AT rich, for example from-282 to -330 is 84% AT,

-466 to -521 is 86% AT and -359 to -385 is 93% AT. We also note that the

region 5' to the "CAAT" sequence at -71 and extending about 450 bp in the

5' direction contains many runs of direct and inverted repeats which vary

in length from ten to twenty base pairs.

Comparison of the DNA sequences from mouse sperm, HPCM2 and M167 show

no differences for 129 bp 5' to the transcription initiation site. More-

over, there is only one base pair change in the entire 574 bp which were

sequenced 5' to the transcription initiation site. This change occurs at

-130 where a T residue in HPCM2 is replaced by an A residue in M167. The

germline and HPCM2 sequences are completely identical throughout the

region sequenced.

DISCUSSION

The transcription start site of the Vl heavy chain gene has been mapped in

this study 63*1 bp 5' to the leader coding sequence. Primer extension and

dideoxy sequencing results were in excellent agreement with Si protection

studies in mapping the 5' end of HPCM2 jmRNA to within 1 base pair of the

same location. In all known cases, the 5' end of mRNA corresponds to the

transcription start site (34-38). We have confirmed that this is true

for HPCM2 u transcripts by probing blots of HPCM2 nuclear RNA with sub-

cloned fragments of 5' flanking DNA. Sequences located between 60 bp to 5

kb 5' to the Vl gene did not hybridize to u transcripts (Fig. 2).

Recently the cap site of the Vk gene in MPCll was mapped by Kelley et

al. (37). Their results showed the 5' untranslated region of the kappa

mRNA consisted of only three base pairs. Similar results were obtained by

Hamlyn and Milstein (39) by dideoxy sequencing of the k mRNA from MOPC21.

Our results demonstrate that both pandamRNAs containing the Vi gene

contain 63 bp of 5' untranslated sequence. Kataoka et al. (40) have used

primer extension and SI protection studies to locate the 5' end of the yl

mRNA from MC101 about 30 bp from the coding sequence. These data suggest

that every functional immunoglobulin V gene segment has a transcription

start site located relatively near the coding sequences. DNA sequence

analyses 5' to several other V genes reveal putative "AATAA" sequences in a
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region within 100 bp of V coding sequence, although transcription start

sites in these cases can only be inferred because they have not been mapped

(41-44). DNA sequence studies on VH genes closely related to VI are also

consistent with this hypothesis (S. Crews, G. Siu and L. Hood unpublished

results).

The DNA sequence analysis in Fig. 6 shows that the region 5' to the Vl

gene contains sequences characteristic of the promoters for other Pol II

transcripts (38). Studies on many eukaryotic genes have shown that the

"AATAA" homology region is a component of the RNA polymerase II promoter

and has a role in directing specific initiation of transcription about

25-30 bp to its 3' side (38,45-49). We note that the Vi MAATAA" sequence

contains an unusual G residue. Although their role in initiation of trans-

cription is not well understood, "CAAT" sequences have been noted 5' to

several genes and have been shown to be important for modulating transcrip-

tion of the rabbit beta globin gene in vivo (50). There is a sequence

CAAAT at -51 and another CTAAT at -70. Determination of whether the 'CAAT'

sequences are significant components of Ig gene promoters is not possible

until more promoter regions are mapped and sequenced, although it is inter-

esting to note that the yl gene analyzed by Kataoka et al. (40) has a

"CAAT' sequence at -50 and the K gene described by Kelly et al. (37) also

has a "CAAT" sequence at -77.

A complete understanding of the components of an RNA polymerase II

promoter is not possible, however, at present (38). In addition to "ATAA"

and "CAAT" sequences, transcription of some genes is also modulated by

sequences two or three hundred base pairs 5' to the transcription initia-

tion site (51,52). Therefore, we extended our DNA sequence analyses more

than 500 base pairs 5' to the Vi transcription initiation site.

We have been able to compare systematically the 5' DNA sequence of a

single VH gene in the germline form, after VDJ joining, and after VDJ

joining plus CH switching. Our results establish that neither VDJ join-

ing nor CH switching alters Vl DNA sequences 5' to the coding region.

This result is not surprising since heteroduplex and restriction enzyme

analyses had previously shown there was no detectable alteration in this

region (53,54). DNA sequence analyses of regions 5' to other V genes have

also shown no differences between germline and variously rearranged genes

(40,10,42), although no systematic comparison of both rearrangements has

been carried out previously. In addition, the dideoxy sequencing experi-

ments on M167 mRNA demonstrate that the site of transcription initiation

7744



Nucleic Acids Research

for the Vi gene is not altered after class switching from u to a. Thus,

the same promoter, virtually unchanged in sequence for at least 574 bp, is

operative throughout B-cell development for the transcription of the Vl

gene. We expect that this pattern will prove to be true for other Ig

genes.

It is of particular interest that the DNA sequence of 129 bp 5' to

the Vi gene cloned from M167 DNA was shown to be identical to that of

HPCM2 and mouse sperm. M167 is a somatic variant of the Vl gene which

expresses a heavy chain protein differing from the T15 prototype by eight

amino acid residues (18). We chose to analyze the 5' flanking region of

M167 because it represents the most altered form of the Vi gene which has

been observed. DNA sequence analyses have shown previously that M167 has

46 alterations out of 1158 nucleotides analyzed (4% overall mutation) when

compared to the germline Vl sequence (12). The alterations, which inclu-

ded small deletions and insertions as well as single base substitutions,

occurred throughout the Vi coding region, in the Ji coding region and in

the intervening sequence 3' to Ji extending thru J2 and in the 5' untrans-

lated region. However, 5' to the transcription start site no alterations

were found in the first 129 bp of sequence (0% mutation) and only one was

found in the entire 574 bp 5' to the transcription start site (0.17% muta-

tion). Although it has not been formally proved, we consider it unlikely

that this single change makes a functional difference in the region.

These observations establish two important points. First, the hypermuta-

tional mechanism which operates on the Vi gene is very specific with re-

spect to where it ends; it stops near the transcription start site. It

will be interesting to determine if hypermutation of V genes is related to

their transcriptional state. Secondly, since 574 bp 5' to the Vi gene

remains virtually unaltered in M167, it is apparent that somatic changes

in this region do not cause promoter-up mutations which might have

explained how variants could be selected or the increased transcription

rate in plasma cells.

The results of this study clearly rule out transcriptional regulation

by gene rearrangement or somatic mutation in the region extending 574 bp

5' to the transcription start site of the Vi gene. Thus we must consider

and test other models for transcriptional regulation of Ig genes. At

least two types of regulation are evident--the activation of transcription

which appears to be concommitant with VDJ joining and the increased trans-

cription which occurs in plasma cells. The results of Mather and Perry
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(6) showing that high rates of V gene transcription are limited to

rearranged V genes, in conjunction with the present work, strongly suggest

that 3' DNA sequences distant from promoter regions affect the transcrip-

tional activity of V genes. In the case of the Vl gene, these putative

regulatory sequences must be located at least 649 bp 3' to the transcrip-

tion initiation site (63 bp of 5' untranslated, 45 bp of leader coding,

160 bp of leader/V intervening sequence and 381 bp of VlDJl coding). One

possibility is that negative regulatory sequences which are removed upon

joining might be located 3' to germline V genes. Alternatively, positive

regulatory sequences might be located 5' to C gene segments. Several

lines of evidence, in fact, support the second possibility. We have pre-

sented evidence (Fig. 2) which suggests that there is a promoter site

located 3' to Jl which transcribes the Cp gene segment. Previous RNA

blotting studies have demonstrated Cq-only transcripts in other lymphoid

and myeloid cell lines (16,55,56). Perry et al. (57) and Van Ness et al.

(58) have studied in detail a similar transcript of the germline Ck gene.

In addition, Storb et al. (59,60) have shown that both Cp and Ck genes in

B and T cells are sensitive to DNase I digestion and Rogers and Wall (61)

have noted that both expressed and non-expressed Cp alleles are under-

methylated in the B cell lymphoma WEHI279. In sum, these studies show

that C genes exist in a transcriptionally active state prior to V(D)J

joining and suggest the presence of activating sequences near C genes.

Alt et al., (56) have noted recently that deletions in the region between

J4 and C1i result in lower levels of p transcripts in an Abelson transform-

ed pre-B cell line. Experiments are in progress in our laboratory to

search for transcriptional enhancer sequences (62,63) in the region

between J4 and CU. One expects, however, that other developmentally

regulated cellular factors may also play a role in C gene activation,

because C genes are not transcriptionally active outside of the B, T or

myeloid cell lineages.

Enhancement of Ig gene transcription which occurs later in B cell

development could also be mediated by alterations in putative regulatory

sequences located between J and C gene segments. If such regulatory

sequences can be identified, this hypothesis is easily tested. One

possibility, first suggested by Yaoita et al., (64) is that the GC rich

region near the Cp switch site may hinder efficient transcription required

for high levels of expression in plasma cells. About 2 kb of DNA from
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this region in HPCM2 have been deleted (Fig. 1), which is consistent with

this hypothesis.

ACKNOWLEDGMENTS

We thank Arnold Berk, Kevin McEntee, Larry Simpson and Mark Mercola

for helpful discussions concerning this work and Kevin McEntee for

critically reading the manuscript.

We gratefully acknowledge J. Beard for supplying avian myeloblastosis

reverse transcriptase, S. Kim for supplying a subclone of M167 genomic DNA

and P. Gearhart for the HPCM2 cell line.

This work was supported by a grant from the National Institute of

General Medical Sciences to K.C., J.G. was supported by a Gianini

postdoctoral fellowship; C.C. was supported by a Genetics predoctoral

training grant; P.D.B. by a Cell and Molecular Biology predoctoral

training grant, S.C. & G.S. by NRSA fellowships.

We are grateful to Vivian Windsor for preparation of the manuscript

and to John Prehn for computer analyses of DNA sequences.

REFERENCES

1. Adams, J. (1980) Immunol. Today 1: 10-17.
2. Hood, L., Davis, M., Early, P., Calame, K., Kim, S., Crews, S. and

Huang, H. (1981) C.S.H.S.Q.B. 45: 887-898.
3. Honjo, T., Nakai, S., Nishida, Y., Kataoka, T., Yamawki-Kataoka, Y.,

Takahashi, N., Obata, M., Shimizu, A., Yaoita, Y., Nikaido, T. and
Ishida, N. (1981) Immunol. Rev. 59:

4. Adams, J., Kemp, D., Bernard, O., Gough, N., Webb, E., Tyler, B.,
Gerondakis, S. and Cory, S. (1981) Immunol. Rev. 59: 5-32.

5. Baltimore, D. (1981) Cell 26: 295-296.
6. Mather, E. and Perry, R. (1981) Nuc. Acid Res. 9: 6855-6867.
7. Weigert, M. and Riblet, R. (1976) C.S.H.S.Q.B. 41: 837-846.
8. Gearhart, P., Johnson, N., Douglas, R. and Hood, L. (1981) Nature

291: 29-34.
9. Selsing, E. and Storb, U. (1981) Cell 25: 47-58.

10. Pech, M., Hochtl, J., Schnell, H. and Zachau, H. (1981) Nature 291:
668-670.

11. Crews, S., Griffin, J., Huang, H., Calame, K. and Hood, L. (1981)
Cell 25: 59-66.

12. Kim, S., Davis, M., Sinn, E., Patten, P. and Hood, L. (1981) Cell 27:
573-582.

13. Schibler, U., Marcu, K. and Perry, R. (1978) Cell 15: 1495-1509.
14. Siden, J., Baltimore, D., Clark, D. and Rosenberg, N. (1979) Cell 16:

389-396.
15. Levitt, D. and Cooper, M. (1980) Cell 19: 617-625.
16. Zuniga, M., D'Eustachio, P. & Ruddle, N. (1982) Proc. Natl. Acad.

Sci. 79: 3015-3019.
17. Bottomly, K. (1981) ICN-UCLA Symp. on Mol. and Cell. Biol. XX:

517-532.

7747



Nucleic Acids Research

18. Barstad, P., Farnsworth, V., Weigert, M., Cohn, M. and Hood, L.
(1974) Proc. Natl. Acad. Sci. 71: 4096-4100.

19. Federoff, N., Wellauer, P. and Wall, R. (1977) Cell 10: 597-610.
20. Penman, S. (1969) in Fundamental Techniques in Virology (K. Habel and

N. Salzman, eds.) Academic press, N.Y. pp. 35-48.
21. Berger, S. and Birkenmeier, C. (1979) Biochem. 18: 5143-5149.
22. Enea, V. and Zinder, N. (1975) Sci. 190: 584-586.
23. Maxam, A. and Gilbert, W. (1980) Meth. in Enzymol. 65: 499-560.
24. Dretzen, G., Vellard, M., Sassone-Corsi, P. and Chambon, P. (1981)

Anal. Biochem. 112: 295-298.
25. Thomas, P. (1980) Proc. Natl. Acad. Sci. 77: 5201-5205.
26. Berk, A. and Sharp, P. (1977) Cell 12: 721-732.
27. Sanger, F., Nicklen, S. and Coulson, A. (1977) Proc. Natl. Acad.

Sci. 74: 5463-5467.
28. Levy, S., Sures, I. and Kedes, L. (1979) Nature 279: 737-739.

Nishioka, Y. and Leder, P. (1980) J. Biol. Chem. 255: 3691-3694.
29. Puyvar, F. and Schimke, R. (1979) J. Biol. Chem. 224: 7636-7642.
30. Calame, K., Rogers, J., Early, P., Davis, M1., Livant, D., Wall, R.

and Hood, L. (1980) Nature 284: 452-455.
31. Early, P., Huang, H., Davis, M., Calame, K. and Hood, L. (1980a) Cell

19: 981-992.
32. Early, P., Rogers, J., Davis, M., Calame, K., Bond, M., Wall, R. and

Hood, L. (1980) Cell 20: 313-319.
33. Rogers, J., Early, P., Carter, C., Calame, K., Wall, R. and Hood, L.

(1980) Cell 20: 303-312.
34. Shatkin, A., Darzynkiewicz, E., Furuichi, Y., Kroath, H., Morgan, M.,

Tahara, S. and Yamakawa, M. (1982) Proc. of Brit. Biochem. Soc. in
press.

35. Hagenbuchle, 0. & Schibler, U. (1981) P.N.A.S. 78: 2283-2286.
36. Gidoni, D., Kahana, C., Canaani, D. & Groner, Y. (1981) P.N.A.S. 78:

2174-2178.
37. Kelley, D., Coleclough, C. and Perry, R. (1982) Cell 29: 681-689.
38. Breathnach, R. and Chambon, P. (1981) Ann. Rev. Biochem. 50: 349-383.
39. Hamlyn, P., Gait, M. and Milstein, C. (1981) Nuc. Acid Res. 18:

4485-4492.
40. Kataoka, T., Nikaido, T., Miyata, T., Moriwaki, K. and Honjo, T.

(1982) J. Biol. Chem. 257: 277-285.
41. Seidman, J., Max, E. and Leder, P. (1979) Nature 280: 370-375.
42. Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. and Tonegawa, S.

(1980) Nature 286: 676-683.
43. Bernard, O., Hozumi, N. and Tonegawa, S. (1978) Cell 15: 1133-1144.
44. Nishioka, Y. and Leder, P. (1980) J. Biol. Chem. 255: 3691-3694.
45. Benoist, Ch. and Chambon, P. (1981) Nature 290: 304-310.
46. Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger,

C. and Chambon, P. (1980) Sci. 209: 1406-1414.
47. Faye, G., Leung, D., Tatchell, K., Hall, B. and Smith, M. (1981)

Proc. Natl. Acad. Sci. 78: 2258-2268.
48. Osborne, T., Schell, R., Burch-Jaffe, E., Berget, S. and Berk, A.

(1981) Proc. Natl. Acad. Sci. 78: 1381-1385.
49. Wasylyk, B., Kedinger, C., Corden, J., Brison, 0. and Chambon, P.

(1980) Nature 285: 367-373.
50. Dierks, P., van Ooyen, A., Mantei, N. and Weissman, C. (1981) Proc.

Natl. Acad. Sci. 78: 1411-1415.
51. Grosschedl, R. and Birnstiel, M. (1980a) Proc. Natl. Acad. Sci. 77:

1432-1436.
52. Grosschedl, R. and Birnstiel, M. (1980b) Proc. Natl. Acad. Sci. 77:

7102-7106.

7748



Nucleic Acids Research

53. Davis, M., Calame, K., Early, P., Livant, D., Joho, R., Weissman, I.
and Hood, L. (1980) Nature 283: 733-738.

54. Davis, M., Early, P., Calame, K. and Hood, L. (1979) ICN-UCLA Symp.
on Mol. and Cell. Biol. VIII: 393-406.

55. Kemp, D., Harris, A., Cory, S. & Adams, J. (1980) Proc. Natl. Acad.
Sci. 77: 2876-2880.

56. Alt, F., Rosenberg, N., Casanova, R., Thomas, E. and Baltimore, D.
(1982) Nature 296: 325-331.

57. Perry, R., Kelley, D., Coleclough, C., Seidman, J., Leder, P.,
Tonegawa, S., Matthyssens, G. and Weigert, M. (1980) Proc. Natl.
Acad. Sci. 77: 1937-1941.

58. Van Ness, B., Weigert, M., Coleclough, C., Mather, E., Kelley, D. and
Perry, R. (1981) Cell 27: 593-602.

59. Storb, U., Wilson, R., Selsing, E. and Walfield, A. (1981a) Biochem.
20: 990-996.

60. Storb, U., Arp, B. and Wilson, R. (1981b) Nature 294: 90-92.
61. Rogers, J. and Wall, R. (1981) Proc. Natl. Acad. Sci. 78: 7497-7501.
62. Gruss, P., Dhar, R. and Khoury, G. (1981) Proc. Natl. Acad. Sci. 78:

943-947.
63. Levinson, B., Khoury, G., Van de Woude, G. and Gruss, P. (1982)

Nature 295: 568-572.
64. Yaoita, Y., Kumagai, Y., Okumura, K. and Honjo, T. (1982) Nature 297:

697-699.

7749


