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E-cadherin is one of the key molecules in the formation of cell-cell adhesion and interacts intracellularly with a group of proteins
collectively named catenins, through which the E-cadherin-catenin complex is anchored to actin-based cytoskeletal components.
Although cell-cell adhesion is often disrupted in cancer cells by either genetic or epigenetic alterations in cell adhesion molecules,
disruption of cell-cell adhesion alone seems to be insufficient for the induction of cancer cell migration and invasion. A small GTP-
binding protein, Rac1, induces the specific cellular protrusions lamellipodia via WAVE2, a member of WASP/WAVE family of the
actin cytoskeletal regulatory proteins. Biochemical and pharmacological investigations have revealed that WAVE2 interacts with
many proteins that regulate microtubule growth, actin assembly, and membrane targeting of proteins, all of which are necessary for
directional cell migration through lamellipodia formation. These findings might have important implications for the development
of effective therapeutic agents against cancer cell migration and invasion.

1. Introduction

The cell adhesion molecule E-cadherin is among the key
molecules in the formation of the epithelial junctional
complex [1–3]. E-cadherin forms homodimers in the extra-
cellular domain between adjacent cells [4] and interacts
intracellularly with a group of proteins collectively named
catenins [5, 6]. Both the cadherin cytoplasmic domain and
the associated catenins are required for full cell adhesion
[7, 8], and α-catenin is suggested to play a role in anchoring
the cadherin-catenin complex to actin-based cytoskeletal
components that include α-actinin and vinculin [9]. Loss
or significant reduction of E-cadherin expression has been
observed in many epithelial cancers [10–14], and the α-
catenin gene is occasionally lost [14, 15] or mutated in
human cancer cells lines [16]. Unlike E-cadherin and α-
catenin, β-catenin loses its function upon tyrosine phospho-
rylation in response to growth factors [17–20] or v-Src [21,
22]. Tyrosine phosphorylation of β-catenin results in loss of
anchoring of the E-cadherin-catenin complex to the network
of actin filaments (F-actin) [23, 24]. In normal epithelial
cells in culture, tyrosine-phosphorylated β-catenin needs
to be dephosphorylated in order to link the E-cadherin-
catenin complex to F-actin. In fact, several protein tyrosine
phosphatases (PTPs), including DEP-1, PTP1B, and PTPμ,

are upregulated with increasing cell density [25, 26], and
they associate with the E-cadherin-catenin complex [27–
31]. Therefore, constitutive tyrosine phosphorylation of β-
catenin and concomitant loss of PTP might cause loss of E-
cadherin-mediated cell-cell adhesion in cancer cells.

Another mode of dysfunction of cell-cell adhesion is
induced by perturbation of F-actin assembly to which
the E-cadherin-catenin complex anchors. IQGAP1, the IQ
moti-containing guanine nucleotide-activating protein 1
(IQGAP1) [32], is an actin cross-linking protein [33, 34]
or scaffold protein [35]. IQGAP1 is recruited by protein
phosphatase (PP) 2A to the E-cadherin-catenin complex
that is constitutively associated with the small GTP-binding
protein Rac1 [36, 37], thereby leading to rearrangement
of F-actin by IQGAP1 in corporation with Rac1 to which
the E-cadherin-catenin complex anchors. Because inhibition
of PP2A activity or loss of PP2A expression results in
E-cadherin endocytosis [37, 38], PP2A is considered to
be involved in the establishment and maintenance of E-
cadherin-mediated cell-cell adhesion as well as in a wide
variety of biological processes such as tumor suppression
[39–41], formation of tight junctions [42], and integrin-
mediated cell-substratum adhesion [43–48]. Loss of cell-
cell adhesion due to the internalization or endocytosis of
E-cadherin without significant alterations in E-cadherin
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expression has been observed in many cells [38, 49–52].
Despite this, PP2A expression is lost in both invasive and
noninvasive cancer cells [38]. This implies that the loss of
cell-cell adhesion is necessary but insufficient alone for cell
migration and invasion.

In this paper, we focus on recent advances in the under-
standing of the mechanisms underlying regulation of cell
migration and invasion that have been possible through the
use of biochemical and pharmacological approaches.

2. Regulation of Cell Migration

Cell migration and invasion generally require rearrangement
of F-actin at the leading edge of cells [53] and are associated
with the formation of specific cellular protrusions termed
lamellipodia or filopodia [54]. Rearrangement of F-actin
is directed by the Arp2/3 complex through induction of
nucleation and branching of F-actin [54–56] and is regulated
by small GTP-binding proteins such as Rac1 and Cdc42
[57] through Wiskott-Aldrich syndrome protein (WASP)
and WASP verprolin homology proteins (WAVE) [55, 58–
62]. N-WASP is a member of the WASP family of proteins
[58, 60] and is thought to be necessary for lamellipodia
formation [63]. WAVE family proteins, including WAVE1,
-2, and -3 [58, 61], induce both lamellipodia [64–66] and
filopodia [67]. Among the WASP/WAVE family, WAVE2 has
been the most intensively investigated and has been identified
as functioning downstream of Rac [68, 69].

Although direct interaction between Rac1 and WAVE2
is not detected in human breast cancer cells, Rac1 forms
a complex with CLIP-170, a microtubule-binding protein
[70, 71], an actin cross-linking protein IQGAP1 [33, 34], and
kinesin-1, one of the major motor proteins [72, 73], under
the growth-arrested conditions [74] (Figure 1(a)). CLIP-170
and IQGAP1 bind microtubules and F-actin, respectively,
and kinesin-1 transports many cytoplasmic vesicles, proteins,
and mRNAs as “cargo” toward the growing plus-ends of
microtubules. Therefore, formation of the Rac1, CLIP-170,
IQGAP1, and kinesin-1 complex induces linking of Rac1
to both F-actin and microtubules by IQGAP1 and CLIP-
170, respectively [74, 75]. Depletion of CLIP-170 expression
causes growth factor-independent dissociation of IQGAP1
and kinesin-1 from Rac1 and the promotion of random
lamellipodia formation and invasion [74]. This suggests that
CLIP-170 may play a role in preventing cells from growth
factor-independent lamellipodia formation and invasion, by
tethering IQGAP1 and kinesin-1 to Rac1 until stimulation
by growth factors. Following the stimulation of cells with
growth factor, IQGAP1 and kinesin-1 dissociate from the
Rac1-CLIP-170 complex [74] (Figure 1(b)). As lamellipodia
formation and dissociation of IQGAP1 and kinesin-1 are
inhibited by a phosphoinositide 3-kinase (PI3K) inhibitor,
the dissociation of IQGAP1 and kinesin-1 from the Rac1-
CLIP-170 complex is a prerequisite for lamellipodia forma-
tion in response to growth factor stimulation; this depends
on PI3K that is activated by the activated growth factor
receptor (Figure 1(a)).

3. Membrane Targeting of
WAVE2 along Microtubules

In order to form lamellipodia, WAVE2 needs to be trans-
ported to the leading edge of cells prior to lamellipodia
formation [76, 77]. WAVE2 is known to form multiprotein
complexes that include Abi-1, Sra-1, Nap-1, and HSPC300
[78–80]. WAVE2 also forms a complex with IQGAP1 and
kinesin-1 in growth-arrested breast cancer cells (Figure 1(a)),
and the amounts of these proteins relative to WAVE2
increase after stimulation of the cells with growth factor
[65] (Figure 1(b)). As IQGAP1 and kinesin-1 dissociate from
the Rac1-CLIP-170 complex upon growth factor stimula-
tion, without significant alterations in the total amounts
of IQGAP1 and kinesin-1, IQGAP1 and kinesin-1 that
are bound to WAVE2 might be proteins that previously
dissociated from the complex (Figure 1(b)). In spite of this,
additional binding of IQGAP1 and kinesin-1 to WAVE2
appears to be insufficient for WAVE2 translocation to the
cell cortex. Many investigations have revealed that a p21-
activated protein kinase Pak1 [81, 82], which is one of the
downstream effectors of Rac1 [81, 83, 84], is constitutively
associated with WAVE2 [66] (Figure 2(a)). Pak1 is thought
to regulate not only actin reorganization through several
reported substrates, including LIM kinase [85], p41-Arc [86],
and filamin [87], but also microtubule dynamics through
stathmin [88–90], a microtubule destabilizing protein [91,
92]. As direct interaction between Rac1 and Pak1 or WAVE2
is not detected in breast cancer cells, it is reasonable to
assume that βPIX, the Pak-interacting nucleotide exchange
factor of Rac/Cdc42 [93], plays an important role in
the signal transduction between Rac1 and Pak1. βPIX is
constitutively coupled to GIT1 and recruited to WAVE2-
bound Pak1 in response to growth factor stimulation [94].
Upon growth factor stimulation, the WAVE2-bound Pak1
is activated and in turn phosphorylates stathmin [66]
(Figures 2(a) and 2(b)). The putative phosphorylation sites
within stathmin are Ser16, Ser25, Ser38, and Ser63 [95].
Among these, growth factor stimulation causes phospho-
rylation at Ser25 and Ser38, although phosphorylation at
Ser38 alone is dependent on Pak1 in breast cancer cells
[66]. This implies that serine/threonine protein kinases other
than Pak1 phosphorylate stathmin at Ser25. In either case,
the microtubule destabilizing activity of stathmin is inacti-
vated by phosphorylation [88–90], and the phosphorylated
stathmin is recruited to kinesin-1; this complexes with
WAVE2 and Pak1 and leads to the promotion of microtubule
growth [66] (Figure 2(b)). Stathmin binding to kinesin-
1 was thought to be transient and to play a role in the
transportation of tubulin heterodimers to the microtubule
ends [95]; however, stathmin binding to kinesin-1 and
tubulin heterodimers is maintained after growth factor
stimulation [66]. This suggests the presence of a partner
protein that facilitates the sustained linking of stathmin to
the microtubule ends. The dynamic properties of micro-
tubules are regulated by “plus-end-binding proteins” [96–
98] that include CLIP, CLIP-associated protein (CLASPs),
dynein/dynactin, APC (adenomatous polyposis coli), and
EB-family proteins [99–101]. EB1 recognizes specific sites
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Figure 1: PI3K-dependent dissociation of IQGAP1 and kinesin-1 from the Rac1-CLIP-170 complex and successive binding of them to
WAVE2 after GF stimulation. (a) IQGAP1 and kinesin-1, which are bound to Rac1 via CLIP-170 in growth-arrested cells, dissociate from
the Rac1-CLIP-170 complex after GF stimulation in a PI3K-dependent manner. (b) Dissociated IQGAP1 and kinesin-1 bind to the WAVE2
complex, which consists of IQGAP1 and kinesin-1. GF: growth factor; GF-R: growth factor receptor; PI3K: phosphoinositide 3-kinase;
CLIP-170: cytoplasmic linker protein 170; IQGAP1: IQ motif-containing guanine nucleotide activating protein 1; WAVE2: Wiskott-Aldrich
protein verprolin homology protein 2; F-actin: actin filaments.

at the ends of growing microtubules [102] and promotes
persistent microtubule growth [103]. Investigation of the
stathmin-binding partners revealed that stathmin is consti-
tutively associated with EB1 in the cytoplasm of growth-
arrested cells [104]. After phosphorylation of stathmin by
Pak1, the phosphorylated stathmin-EB1 complex becomes
associated, in an EB1-dependent manner, with the ends of

microtubules that bear the WAVE2 complex [104]. Deple-
tion of stathmin does not inhibit microtubule growth but
inhibits WAVE2 translocation and lamellipodia formation
[66], while EB1 depletion does not inhibit microtubule
growth but inhibits stathmin binding to kinesin-1 at the
microtubule ends, WAVE2 translocation, and lamellipodia
formation [104]. Taken together, growth factor-induced



4 Journal of Oncology

Membrane

Rac1

CLIP-170

IQGAP1

Kinesin-1

Microtubules

GF-R

GF

?

PaK1 WAVE2

PI3K

(a)

Membrane

Rac1

CLIP-170

IQGAP1

Kinesin-1

Microtubules

Stathmin

EB1

PaK1 WAVE2

PI3K

(b)

Figure 2: Activation of WAVE2-bound Pak1, phosphorylation of stathmin by Pak1, and recruitment of the phosphorylated stathmin-EB1
complex to the microtubule ends that bear the WAVE2 complex. (a) WAVE2-bound Pak1 is activated and in turn phosphorylates stathmin
that complexes with EB1. (b) The phosphorylated stathmin-EB1 complex is recruited to microtubule ends that bear the WAVE2 complex
through kinesin-1. Pak1: p21-activated protein kinase 1; EB1: microtubule end-binding protein 1.
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and Pak1-dependent phosphorylation of stathmin triggers
the EB1-mediated specific binding of the phosphorylated
stathmin-EB1 complex to the WAVE2-bearing microtubule
ends, thereby leading to WAVE2 translocation and lamellipo-
dia formation (Figure 2(b)).

4. Control of Directional Lamellipodia
Formation toward Growth Factor

The process of cancer cell migration and invasion involves
intravasation and extravasation of cells into and out of
blood vessels [105]. Therefore, it is highly likely that cancer
cell migration and invasion are directionally controlled
by extracellular stimuli such as serum growth factors. If
this theory is correct, promotion of persistent growth of
the WAVE2-bearing microtubules by the binding of the
stathmin-EB1 complex seems to be insufficient for the
directional membrane anchoring of microtubules, that is,
without the aid of partner proteins. For example, the end-
binding proteins CLASPs link microtubule ends to the cell
cortex by the phosphatidylinosito 3,4,5-triphosphat- (PIP3-)
binding protein LL5β as a partner protein [106]. PIP3, a
lipid component of the cytoplasmic membrane produced by
PI3K, is known to be the membrane target of many pro-
teins [107–111] that contain the pleckstrin homology (PH)
domain (e.g., PKB/Akt [112, 113]), the basic region (e.g.,
WASP and WAVE2 [76, 114]), or the IRSp53/missing-in-
metastasis (MIM) domain IMD (e.g., IRSp53 [115, 116]). In
lamellipodia-forming breast cancer cells, IRSp53 is constitu-
tively associated with the WAVE2 complex that involves EB1
and plays an indispensable role in anchoring the complex
to PIP3 [117]. IRSp53 is a linker protein [118–120] that
interacts with the proline-rich region of WAVE2 through its
central Src-homology 3 (SH3) domain [118, 121]. Therefore,
directional cell migration through lamellipodia formation
may be regulated by the interaction between WAVE2-bound
IRSp53 as the PIP3-binding partner protein and PIP3 as the
membrane target molecule; this suggests that the direction of
membrane anchoring of microtubules that bear the WAVE2
complex is determined by the sites where PIP3 is produced.
In cells cultured in a chemotaxis chamber, only growth factor
receptor in the membrane region facing high concentrations
of growth factor was activated [104]. Local activation of the
receptor causes recruitment of PI3K that in turn produces
PIP3 in close proximity to the activated receptor [104]
(Figure 3(a)), thereby leading to local interaction between
IRSp53-bound WAVE2 and PIP3, and thus the directional
formation of lamellipodia towards the growth factor source
(Figure 3(b)).

In the context of PIP3-binding proteins for lamellipodia
formation, nonmuscle myosin IIA heavy chain MYH9 [122–
124] has the ability to bind to both PIP3 and WAVE2
[125]. Whereas MYH9 binding to WAVE2 is constitutive
and requires the motor activity of myosin II, MYH9 binding
to PIP3 is induced only after WAVE2 membrane targeting
by growth factor activation [125]. The binding of MYH9
to WAVE2 is probably through the interaction between the
SH3-like domain of MYH9 and the proline-rich domain

of WAVE2; however, MYH9 lacks a PH domain, unlike
myosin 1b and myosin X, which bind to PIP3 through
their PH domains [126, 127]. Nevertheless, both MYH9 and
the motor activity of nonmuscle myosin II are crucial for
lamellipodia formation, as they induce convex F-actin arcs
at the leading edge of cells [125] (Figure 4). Nonmuscle cells
express multiple myosin II proteins, including myosin IIA,
myosin IIB, and myosin IIC [122–124]; these are impli-
cated in regulating many cellular processes, including cell
spreading, migration, and cytokinesis [128–131], through
generating the intracellular contractile forces and tension
as conventional motor proteins by associating with F-actin.
Thus, myosin IIA might also play a crucial role in cell
migration through lamellipodia formation by providing
the contractile forces and tension for the F-actin network
initially rearranged by WAVE2, IRSp53, and PIP3 through the
variable turnover dynamics of F-actin [132, 133] to form a
convex arc at the leading edge of cells (Figure 4). As IRSp53
exhibits F-actin-bundling activity [134, 135], the formation
of a lining of F-actin at the leading edge of cells might
be mediated by nonmuscle myosin IIA in cooperation with
IRSp53.

Among the proteins and molecules that are involved
in regulation of lamellipodia formation, WAVE2, N-WASP,
PI3K, Rac1, stathmin, and microtubules are also necessary
for cell invasion [69, 136–139]. Because cell invasion is
accomplished by intensive accumulation of the F-actin bun-
dles at the tips of cell protrusions where cells invade through
the basement membrane matrix and narrow gaps [138], the
signaling and regulatory molecules leading to cell invasion
may share many common molecules, leading to cell migra-
tion through lamellipodia formation.

5. Conclusion

Cell migration and invasion are believed to require the
formation of lamellipodia at the leading edge of cells
by rearrangement of F-actin. Lamellipodia formation is
preceded by membrane targeting of WAVE2 along micro-
tubules. WAVE2 forms multiprotein complexes consisting of
IQGAP1, kinesin-1, Pak1, IRSp53, and nonmuscle myosin
IIA. Membrane targeting of the WAVE2 complex is triggered
by binding of IQGAP1 and kinesin-1, which are dissociated
from the Rac1-CLIP-170 complex upon PI3K activation
by the activated growth factor receptor. Concomitantly,
WAVE2-bound Pak1 after Rac1-dependent activation phos-
phorylates stathmin, followed by binding of the stathmin-
EB1 complex to the microtubule ends that bear the WAVE2
complex; this results in the promotion of persistent micro-
tubule growth towards the cell cortex. The WAVE2 complex
that targets the cell membrane is anchored by WAVE2-
bound IRSp53 and nonmuscle myosin IIA to PIP3; PIP3

is produced by PI3K near the growth factor receptor that
is locally activated in the membrane region facing higher
concentrations of growth factor. Colocalization of WAVE2,
IRSp53, nonmuscle myosin IIA, and PIP3 induces the
directional formation of a convex F-actin arc lamellipodium.
The discovery of many essential signaling and regulatory
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Figure 3: Directional membrane targeting and anchoring of WAVE2 to PIP3 by IRSp53, leading to the directional formation of lamellipodia
toward GF. (a) Promotion of microtubule growth through recruitment of the stathmin-EB1 complex to the microtubule ends induces
membrane targeting of the WAVE2 complex along microtubules. The WAVE2 complex targets the cell cortex and is anchored by IRSp53.
IRSp53 links WAVE2 to PIP3 produced by PI3K near GF-R locally activated in the membrane region facing GF. (b) Colocalization of WAVE2,
IRSp53, and PIP3 results in the directional formation of lamellipodia towards high concentrations of GF. IRSp53: insulin receptor substrate
p53; PIP3: phosphoinositide 3,4,5-triphosphate.
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Figure 4: The role of nonmuscle myosin IIA in lamellipodia formation. The network of F-actin, initially rearranged by WAVE2, IRSp53, and
PIP3, is assembled into lamellipodium, a convex arc of F-actin, by the WAVE2-bound nonmuscle myosin IIA heavy chain MYH9 and the
motor activity of nonmuscle myosin II.

molecules for cell migration might have important impli-
cations for the development of effective therapeutic agents
against cancer cell migration and invasion.
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