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The Ewing sarcoma family of tumors (ESFT) represents an aggressive spectrum of malignant tumour types with common defining
histological and cytogenetic features. To evaluate the functional activation of signal transducer and activator of transcription 3
(STAT3) in ESFT, we evaluated its activation in primary tissue sections and observed the functional consequences of its inhibition
in ESFT cell lines. STAT3 was activated (tyrosine 705-phosphorylated) in 18 out of 31 primary tumours (58%), either diffusely
(35%) or focally (23%). STAT3 was constitutively activated in 3 out of 3 ESFT cell lines tested, and its specific chemical inhibition
resulted in complete loss of cell viability. STAT3 inhibition in ESFT cell lines was associated with several consistent changes in
chemokine profile suggesting a role of STAT3 in ESFT in both cell survival and modification of the cellular immune environment.
Together these data support the investigation of STAT3 inhibitors for the Ewing family of tumors.

1. Introduction

The Ewing sarcoma family of tumors (ESFT) is an aggressive
malignancy of childhood comprising a spectrum of tumour
types with common defining histological and cytogenetic
features [1]. Overall mortality remains at around 40% de-
spite the introduction of multimodality therapy, and current
treatment protocols often cause significant long-term mor-
bidity amongst survivors [2, 3]. The prognosis of ESFT is
unlikely to change fundamentally, unless novel biological tar-
gets for treatment are identified. One interesting potential
approach is to target the pathways that activate the transcrip-
tion factor STAT3, which acts as a point of convergence of
many different oncogenic signals [4, 5]. In particular, STAT3
has been shown to integrate pathways which regulate tumour
growth and the immune microenvironment [6–8] and it is
known to be deregulated in a range of adult cancer types [9–
11]. However, the role of STAT3 in malignancies of child-
hood is poorly understood. Lai et al. demonstrated activated
STAT3 (i.e., STAT3 phosphorylated at the tyrosine 705 res-
idue) in approximately 50% of cases in a series of 49 ESFT

tumours by immunohistochemistry [12]. In this study we
sought to confirm their findings and investigate in vitro
whether STAT3 integrates control of proliferation and the
tumour microenvironment in ESFT tumors.

2. Materials and Methods

2.1. Tissue Arrays. Paraffin-embedded tumor samples were
randomly selected from hospital histology archived material.
Haematoxylin and eosin stained sections were examined to
identify areas of viable tumour. Tissue cores were taken from
these areas using a skin biopsy punch (diameter 4 mm) and
reembedded to produce 3 tissue arrays, comprising a total of
31 tumour cores.

2.2. Immunohistochemical Analysis. Immunohistochemical
analysis was performed on 4 μm-thick sections, as previously
described [13]. As primary antibody, the phosphorylated
STAT3 (P-STAT3) monoclonal antibody clone 3E2 (Cell Sig-
nalling Technology, Boston, USA) was used at a dilution of
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1 : 30. As positive control, tonsillar tissue was used. As nega-
tive control, the primary antibody was omitted. Analysis was
performed by two authors, initially independently and then
together to form a consensus opinion. The staining pattern
was assessed qualitatively and also semiquantitatively using
the following scoring system: 0, no reactivity; 1+, 1% to 10%
positive cells; 2+, 10% to 50% positive cells; 3+, more than
50% positive cells.

2.3. Cell Culture and Formalin Fixation. The ESFT cell lines
A673 and TC32 were kind donations of Professor Sue Burch-
ill, University of Leeds, UK. The ESFT cell line SKNMC, the
prostate cancer cell line PC3, and HeLa were obtained from
ATCC. Cell lines were maintained in the following media
by Gibco/Invitrogen (Pasley, UK): DMEM (cell lines A673,
SKNMC, HeLa), RPMI (cell line TC32), or F12 (cell line
PC3) media containing 10% foetal calf serum. For fixing of
20 ng/mL IL-6-treated HeLa cells (E-Bioscience), super-
natant was aspirated after 10 minutes activation, and cell
pellets were fixed in 10% formaldehyde for 10 minutes before
undergoing processing as for routine histopathology speci-
mens. Following processing, each sample was embedded in
paraffin.

2.4. Western Blotting. For production of lysates the following
experimental protocol was followed for ESFT and the PC3
cell lines. 500,000 cells were incubated in 2 mL media for 16
hours. Media was then removed and replaced by 1 mL of
fresh media in the presence or absence of the pharmacologi-
cal STAT3 inhibitor, S3i-201 (Calbiochem, Darmstadt, Ger-
many), at a concentration of 100 μmol/L. 24 hours later the
cells were harvested and lysed using RIPA buffer (Pierce
Biotechnology, Rockford, USA) containing protease inhibi-
tor cocktail (Pierce Biotechnology, Rockford, USA) and sodi-
um orthovanadate (Sigma-Aldrich, St. Louis, USA). West-
ern blotting was then performed on equal amounts (in
weight) of lysate as previously described [5], substituting the
milk-containing blocking solution with 10% bovine serum
albumin. The following primary antibodies were used with
overnight incubations: P-STAT3 (clone 9131, 1 : 500 solu-
tion) and STAT3 (clone 79D7, 1 : 2000 solution), both from
Cell Signalling Technology (Boston, USA), GADPH (1 : 2000
solution of clone G9545, Sigma-Aldrich, St. Louis, USA). As
positive control for P-STAT3, lysates of IL-6-stimulated HeLa
cells were used. As positive control for STAT3, lysates of HeLa
cells cultured in the presence of 0% foetal calf serum were
used.

2.5. Cell Viability Growth Assay. 25,000 cells were plated in
96-well flat-bottom plates suspended in 100 μL of media. 16
hours later, treatment was added. Each treatment condition
was performed in triplicates. 24 hours later, cell viability was
assessed, using 20 μL of the CellTiter 96 Aqueous nonradio-
active cell proliferation assay based on the tetrazolium com-
pound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-
phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, MTS
(Promega, Madison, USA). Absorbance was measured using

the 96-well plate BIO-RAD Model 680 microplate reader
(Hercules, USA).

2.6. Chemokine Arrays and Array Analysis. Supernatants for
chemokine array analysis were produced by following the
experimental protocol for production of lysates, as outlined
above. Before harvesting and lysing cells, spent media was
removed and stored at−80◦C, after centrifugation to remove
debris. The supernatants were analysed at a later stage using
the Ray Biotech (Norcross, USA) Human Chemokine Array 1
according to the manufacturer’s instructions, using over-
night incubations. The spots on the developed films were
scanned with a BIO-RAD GS-800 Calibrated Densitometer
(Hercules, USA) and quantified using ImageQuant software
(GE Healthcare, Little Chalfont, UK). From each spot that
represented a chemokine, the background (negative control
spots) was subtracted. The chemokine spots were then nor-
malised against positive control spots. The values that were
obtained thus were density values expressed as percentage of
positive control spots. Further analysis was then carried out
using Microsoft Excel 2007 (Redmond, USA). Chemokines
which had changed in control experiments (PC3 cell line)
by more than 10% were excluded from further analysis, to
exclude potential off-target effects. A change in chemokine
level was arbitrarily defined as an increase or decrease by
more than 10%, observed in arrays from two independent
experiments.

3. Results

3.1. ESFT Are Characterised by a High Incidence of STAT3
Activation and Associated with Discrete Tissue Distribution
Patterns. Previous work has described a high incidence of
STAT3 activation in ESFT [12], and we were interested in
confirming this finding in an independent tissue set, as well
as analysing tissue distribution of activated STAT3 within the
tumor microenvironment. As a marker of STAT3 activation,
we made use of a monoclonal antibody with specificity for
the tyrosine705-phosphorylated form of STAT3 (P-STAT3)
and first validated its specificity using IL-6-treated or -
untreated HeLa cells (Figure 1(a)). We next stained a total
of 31 ESFT primary tumors and found that 18 cores (58%)
contained P-STAT3 positive tumour cells. Amongst these
positive samples we identified 2 distinct distribution patterns
of P-STAT3 staining (Figure 1(b)). Positive cells were either
scattered throughout the tumor with no recognisable pattern
(termed diffuse staining n = 11; 35%), or they existed in pos-
itively staining clusters (termed focal staining n = 7; 23%),
particularly along fibrovascular bundles. The extent of P-
STAT3 positive tumor cells amongst diffusely positive tumors
was graded as follows: 8 tumors 1+; 2 tumors 2+; 1 tumor 3+.

3.2. Phosphorylated STAT3 Is Present in Ewing’s Cell Lines, But
Not PC3, Can Be Diminished by a STAT3 Inhibitor, and Re-
duces Viability in ESFT Cell Lines. We assessed the role of
P-STAT3 in contributing to tumour growth by performing
in vitro cell viability growth assays in a panel of ESFT cell
lines and in the STAT3-null prostate cancer cell line, PC3.
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Figure 1: PSTAT3 staining identifies two distinct distribution patterns of PSTAT3 tumour cells in ESFT specimens. (a) Hela cells were
cultured in the presence or absence of IL-6 prior to formation of cell pellets for generating lysate or embedding in paraffin following formalin
fixation. A phospho-STAT3-specific antibody was used to probe lysates by Western blot or to stain cells by immunohistochemistry, magni-
fication ×200. (b) Representative staining patterns of primary ESFT samples. In the left panel, tumor cells are P-STAT3 negative whereas
endothelial cells stained positive for PSTAT3 (acting as an internal positive control, black arrows), magnification ×200.

The presence or absence of P-STAT3 in the cell lines was dem-
onstrated by Western blotting as was the ability of the specific
STAT3 inhibitor, S3i-201 [14], to abolish phosphorylation of
STAT3 (Figure 2(a)). Representative results of independent
cell growth assays (at least three per cell line) are shown in
Figure 2(b). Pharmacological inhibition of P-STAT3 by S3i-
201 for 24 hours resulted in reduced tumour proliferation
at a concentration of 100 μmol/L in ESFT cell lines, but not
in the STAT3-negative PC3 cell line. S3i-201 treatment non-
specifically inhibited viability in growth conditions in all cell
lines (including the STAT3 negative PC3 cell line) at concen-
trations of 300 μmol/L and 1000 μmol/L, respectively.

3.3. STAT3 Inhibition in ESFT Cells Alters the Levels of a Lim-
ited Number of Chemokines. We next studied the effects of
STAT3 inhibition on chemokine secretion patterns of ESFT
cell lines and of the STAT3-negative PC3 cell line. Chemokine
arrays were performed on supernatants obtained from cells
cultured in the presence or absence of pharmacological
P-STAT3 inhibition. For each cell line, two independent

experiments were performed. Prior to analysis by chemokine
arrays, we confirmed by Western blotting that P-STAT3 had
been blocked in the cells from which the supernatants had
been harvested (data not shown). Known STAT3-regulated
chemokines (e.g., IL-8 [15]) were affected by P-STAT3 inhibi-
tion in all ESFT cell lines, but not in the STAT3-negative PC3
cell line. In addition to this, each ESFT cell line exhibited
a distinct pattern of changes in chemokine levels shown in
Figure 3.

4. Discussion

We sought to confirm that STAT3 is present in a subset of
ESFT tumours and to investigate the role of STAT3 in ESFT.
We were particularly interested in the role of STAT3 in con-
tributing to tumour growth and immune regulation, which
are classical roles described for STAT3 in adult tumours.

In our series, we demonstrated P-STAT3 positive tumour
cells in 18/31 ESFT cores. In comparison, Lai et al. previously
found P-STAT3 positive tumour cells in 25 out of 49 tumour



4 Sarcoma

C
ell lin

e
T

C
32

SK
N

M
C

A
673

P
C

3
H

eLa

P
STA

T
3

G
A

D
P

H

DMSO

S3i-201 100 μMol

STA
T

3

Treatment

S3i-201 30 μMol

S3i-201 10 μMol

DMSO

S3i-201 100 μMol

S3i-201 30 μMol

S3i-201 10 μMol

DMSO

S3i-201 100 μMol

S3i-201 30 μMol

S3i-201 10 μMol

S3i-201 100 μMol

DMSO

Nil

(a)

1 10 100 1000

0

50

100

PC3
SKNMC

TC32
A673

A
bs

or
ba

n
ce

 o
f 

co
n

tr
ol

 (
%

)

Concentration S3i-201/μmol/L (logarithmic scale)

(D
M

SO
-t

re
at

ed
 c

el
ls

)

(b)

Figure 2: Phosphorylated STAT3 is present in Ewing’s cell lines, but not PC3, which can be diminished by S3i-201 and reduces viability in
ESFT cell lines. (a) Western blot analysis; Lysates from IL-6-stimulated and -unstimulated HeLa cells served as positive controls for P-STAT3
and total STAT3, respectively. The GADPH band is representative of loading in each lane. Data are representative of at least three independent
experiments per cell line. (b) Cell viability is determined by MTT assay. Data are representative of at least three independent experiments
per cell line.

cores [4]. A particular strength and distinguishing feature of
our tissue arrays is the relatively large surface area of individ-
ual tissue cores (4 mm diameter), which allows us to assess
tumour architecture. We made the observation that P-STAT3
positive cells were distributed in two distinct patterns, which
we termed diffuse and focal. Although we are unable to com-
ment on the significance of this observation, the level of
organisation seen in the focal distribution pattern is intrigu-
ing. Given that around half of ESFT samples contained ac-
tivated STAT3 tumour cells, we continued to investigate the
role of STAT3 in ESFT in vitro.

We studied whether STAT3 contributes to tumour
growth by performing viability assays of cells in growth con-
ditions in a panel of three ESFT cell lines, which harbour
constitutively activated STAT3. As a STAT3 negative control
cell line, we used in our experiments the prostate cancer line
PC3, which is homozygous STAT3 null [16]. As a pharma-
cological inhibitor of STAT3, we used S3i-201, which has
been developed through structure-based virtual screening
and targets the STAT3 SH2-domain [14]. We found that at
100 μmol/L (previously reported IC50 of 86 ± 33 μmol/L)
S31-201 reduced viability of STAT3 positive ESFT tumour

cells, but not of the STAT3 null PC3 cell line. At higher drug
concentrations, cell viability was also diminished in the PC3
cell line, indicating STAT3-indepedent effects of S3i-201 at
such concentrations. Our findings are consistent with data
presented in the original drug discovery paper of S3i-201.
Here Siddiquee et al. reported that in breast cancer cell lines
S3i-201 inhibited tumour growth, with an IC50 of 86 ±
33 μmol/L and with STAT3-independent cytotoxic effects at
higher drug concentrations [14]. Our observations therefore
lend support to the hypothesis that STAT3 plays a nonre-
dundant role in contributing to growth of ESFT cell lines.
The high IC50 of S3i-201 almost certainly disqualifies it from
being a clinically usable drug.

Next we studied the effects of STAT3 inhibition on che-
mokine secretion patterns of ESFT cell lines through che-
mokine arrays performed on supernatants of ESFT cells. We
confirmed STAT3 inhibition in the cells that produced the
supernatants through Western blotting, and we used a STAT3
null cell line PC3 to exclude nonspecific effects. We found
changes in chemokine levels of known STAT3 targets such
as IL-8 whose secretion was increased by STAT3 inhibition
in all three ESFT cell lines, but not in PC3. In addition,
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Figure 3: STAT3 inhibition in ESFT cells alters the levels of a limited number of chemokines. Upper panel the gray up-pointing triangle
denotes an increase, and the black down-pointing triangle denotes a decrease, of more than 10%, observed in two independent experiments
for each cell line. The changes represent a ratio of density values, comparing arrays of STAT3-inihibited cells with arrays of DMSO-treated
cells. Lower panel examples of arrays performed on supernatants of STAT3 null control cells (PC3) and the ESFT cell line SKNMC, cultured
in the absence (DMSO treatment) or presence (S3i-201 treatment) of STAT3 inhibition. Cκβ8-1 = CCL23, ENA-78 = CXCL5, GRO = pan
marker for GRO family chemokines, GROα = CXCL1, IL-8 = CXCL8, IP-10 = CXCL10, MDC = CCL22, MIP-1β = CCL4, MIP-1δ = CCL15,
PARC = CCL18, and RANTES = CCL5.

STAT3 inhibition induced a distinct the pattern of changes in
chemokine secretion in each ESFT cell line. The significance
of these findings is twofold. First, they suggest that STAT3
plays a role in regulating the chemokine environment of
ESFT cell lines. Second, our observations highlight that in
each ESFT cell lines STAT3 may be integrated into different
immunological pathways.

5. Conclusion

In this study we confirm the finding that a subset of ESFT
contains P-STAT3 positive tumour cells. Furthermore, we
describe two novel distribution patterns of PSTAT3 positive
tumour cells. Our in vitro experiments provide evidence that,
in ESFT cell lines, STAT3 plays its classical role of contribut-
ing to tumour growth and regulating the tumour immune
environment. As global efforts are underway to develop clin-
ically usable STAT3 inhibitors, our findings have to be vali-
dated in different in vitro and in vivo models of ESFT, to pro-
vide a rationale for targeting STAT3 in patients suffering
from ESFT.
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