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Abstract
We have systematically compared copy number variant (CNV) detection on eleven microarrays to
evaluate data quality and CNV calling, reproducibility, concordance across array platforms and
laboratory sites, breakpoint accuracy and analysis tool variability. Different analytic tools applied
to the same raw data typically yield CNV calls with <50% concordance. Moreover, reproducibility
in replicate experiments is <70% for most platforms. Nevertheless, these findings should not
preclude detection of large CNVs for clinical diagnostic purposes because large CNVs with poor
reproducibility are found primarily in complex genomic regions and would typically be removed
by standard clinical data curation. The striking differences between CNV calls from different
platforms and analytic tools highlight the importance of careful assessment of experimental design
in discovery and association studies and of strict data curation and filtering in diagnostics. The
CNV resource presented here allows independent data evaluation and provides a means to
benchmark new algorithms.
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Genomes of healthy individuals vary substantially with respect to structural genomic
variation, of which CNVs represent the largest component1–4. The number of identified
CNVs has increased dramatically as the resolution of detection technologies has improved,
and there are now >15,000 CNV regions reported in the Database of Genomic Variants
(DGV, http://projects.tcag.ca/variation/)1,5 Detection of CNVs has become a discipline to
itself, and an important part of genetic studies of disease susceptibility, including cancer
research6–8, clinical diagnostics9,10 and analysis of data from genome-wide association
studies11–14. A recent industry report estimates that in 2010, microarray-based molecular
diagnostics was a >$100 million market, primarily representing DNA-based arrays15.
Although many methods, including DNA sequencing, can be used for CNV
identification16,17, microarray screening remains the primary strategy used in clinical
diagnostics and is expected to be the main approach for several years to come18.

The two main types of microarrays used for CNV detection are comparative genomic
hybridization (CGH) arrays19 and single nucleotide polymorphism (SNP) arrays20. Multiple
commercial arrays, with ever-increasing resolution, have been released in the last few years.
However, the lack of standardized reporting of CNVs and of standardized reference samples
make comparison of results from different CNV discovery efforts problematic21. The
multitude of array types with different genome coverage and resolution further complicate
interpretation. Studies that have targeted the same subjects, using standard DNA collections
such as the HapMap22, have yielded results with minimal overlap2,11,23–25. CNV calls may
also differ substantially depending on the analytic tools employed to identify the
CNVs21,26,27. Because of these factors, concerns have been raised regarding the reliability,
consistency and potential application of array-based approaches in both research and clinical
settings28–31.

A number of studies have evaluated CNV detection abilities across microarray
platforms31–38. However, published studies are quickly outdated as new platforms are
introduced, and therefore provide little guidance to array users. The performance of CNV
calling algorithms has also been investigated26,27,39, but has been analyzed for CGH array
and SNP array data separately without an opportunity to compare the two. This dearth of
information means that we have a limited understanding of the advantages and
disadvantages associated with each platform.

In this study, we perform an exhaustive evaluation of 11 micro-arrays commonly used for
CNV analysis in an attempt to understand the advantages and limitations of each platform
for detecting CNVs. Six well-characterized control samples were tested in triplicate on each
array. Each data set was analyzed with one to five analytic tools, including those
recommended by each array producer. This resulted in >30 independent data sets for each
sample, which we have compared and analyzed. All the raw data and results are made
available to the community, providing an unprecedented reference set for future analysis and
tool development.

RESULTS
We processed six samples in triplicate using 11 different array platforms at one or two
laboratories. Each data set resulting from these experiments was analyzed by one or more
CNV calling algorithms. The DNA samples originate from HapMap lymphoblast cell lines
and were selected based on their inclusion in other large-scale projects and their lack of
previously detected cell line artifacts or large chromosomal aberrations. An overview of the
platforms, laboratories and algorithms is shown in Table 1, with additional details of the
arrays and their coverage in Supplementary Tables 1 and 2 and Supplementary Figure 1.
We assessed the experimental results at three different levels. First, we obtained measures of
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array signal variability based on raw data before CNV calling. Then, the data sets were
analyzed with one or more CNV calling algorithms to determine the number of calls,
between-replicate reproducibility and size distribution. In the third step, we compared the
CNV calls to well-characterized and validated sets of variants, in order to examine the
propensity for false-positive and false-negative calls and to estimate the accuracy of CNV
boundaries.

Measures of array variability and signal-to-noise ratio
Before calling CNVs, we performed analyses on the variability in intensities across the
probes for each array. This way, we could identify outlier experiments for each platform and
also calculate summary measures of variability for the different arrays before CNV calling.
We inspected platform-specific quality control measures including (i) mean, median and s.d.
of log R ratio and B allele frequency for Illumina arrays, (ii) contrast quality control and
median absolute pair-wise differences for Affymetrix arrays and (iii) producer-derived
derivative log2 ratio spread for CGH arrays. In addition, measures of variability were
calculated on the raw data for all platforms (Supplementary Methods), including the
derivative log2 ratio spread and interquartile range (Table 2). The derivative log2 ratio
spread statistic describes the absolute value of the log2 ratio variance from each probe to the
next, averaged over the entire genome. The interquartile range is a measure of the dispersion
of intensities in the center of the distribution, and is therefore less sensitive to outliers. The
variability estimates include both biological and technical variability, but the effect of
biological variability should be small on global statistics.

The different quality measures were highly correlated. The data show a correlation between
probe-length and variability, with longer probes giving less variance in fluorescence
intensity. For the SNP platforms, we observed that besides sample-specific variability,
systematic effects between a sample and the reference can also greatly inflate per-chip
variability estimates, and consequently the ability to make reliable CNV calls. Specifically
for Affymetrix results, we found large differences in quality control values depending on the
baseline reference library used (Supplementary Fig. 2). Based on these results, subsequent
analysis of Affymetrix data from The Centre for Applied Genomics (TCAG) was based on
an internal reference library, whereas analysis of Affymetrix 6.0 data produced at the
Wellcome Trust Sanger Institute (WTSI) was done using the Affymetrix-supplied reference
library (no internal reference was available).

Next, we assessed how well a particular platform can be applied to detect copy number
changes as an indication of the signal-to-noise ratio, by comparing the intensity ratios of
probe-sets randomly selected from a male sample (NA10851) and a female sample
(NA15510) for chromosome 2 versus chromosome X40, based on the assumption of a 2:1
ratio in males compared to females (Supplementary Methods). To estimate the sensitivity
and specificity for each platform, we determined true- and false-positive rates and plotted
the results as receiver operator characteristic (ROC) curves for CGH and SNP arrays
(Supplementary Fig. 3a,b). The area under the curve (AUC) for the ROC analysis for each
array (Table 2) shows a strong correlation with the fluorescence intensity variance as
measured by derivative log2 ratio spread and interquartile range. CGH arrays generally show
better signal-to-noise ratios compared to SNP arrays, probably as a consequence of longer
probes on the former platform. Older arrays tend to perform less well than newer arrays
from the same producer, with the exception of CNV focused arrays (Illumina 660W and
Agilent 2X244K) where the large fraction of probes located in regions deviating from a
copy number of two affects the global variance statistic. For all platforms, some
hybridizations were discarded under quality control procedures (Supplementary Methods).
For the Affymetrix 500K platform, experiments performed for the 250K Sty assay failed
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quality control, and we therefore used only results from the 250K Nsp assay for further
analyses.

CNV calling
There are multiple algorithms that can be used for calling CNVs, and many are specific to
certain array types. We decided to perform CNV calling with the algorithms recommended
by each array producer, as well as several additional established methods. In total, 11
different algorithms were used to call CNVs for different subsets of the data (Table 1). The
settings applied for these algorithms reflect parameters typically used in research
laboratories, with a minimum of 5 probes and a minimum size of 1kb to call a CNV (see
Supplementary Methods for settings used for each analysis tool).

The platforms with higher resolution, as well as those specifically designed for detection of
previously annotated CNVs, identified substantially higher numbers of variants compared to
lower resolution arrays. The total set of CNV calls for all platforms and algorithms is given
in Supplementary Table 3. To minimize the effects of outlier data on global statistics, we
created a set of high-confidence CNV calls for each data set, defined as regions with at least
80% reciprocal overlap identified in at least two of the three replicate experiments for each
sample (Supplementary Table 3). The size distribution of high confidence CNVs for each
array and algorithm combination is shown in Figure 1 and Supplementary Figure 4a,b.
Although the number of variants >50 kb is relatively even across platforms, the fraction of
variants 1–50 kb in size for each platform range from >5% for Affymetrix 250K to >95%
for Illumina 660W. As the arrays differ substantially in resolution and in distribution of
probes, it is also relevant to investigate the distribution of probes within the CNV call made
for each platform (Supplementary Fig. 5). This analysis shows that arrays that specifically
target CNVs detected in previous studies (e.g., Illumina 660W) have a very uniform
distribution of number of probes per CNV call compared to arrays such as Illumina 1M and
Affymetrix 6.0. Another aspect of the CNV calls that differ widely between platforms is the
ratio of copy number gains to losses. Certain arrays are very biased toward detection of
deletions, with the Illumina 660W showing the highest ratio of deletions to duplications
(Supplementary Figs. 4 and 5).

We further investigated the overlap between CNVs and genomic features such as genes and
segmental duplications. For platforms with a higher resolution, a lower proportion of CNVs
overlap genes (Supplementary Fig. 6a). This effect is likely because lower-resolution
platforms primarily detect larger CNVs that are more likely to overlap genes owing to their
size (Supplementary Fig. 6b). These results indicate that higher resolution platforms more
accurately capture the true proportion of genic CNVs. A similar effect is seen for segmental
duplications (SegDups; Supplementary Fig. 7).

Between-replicate CNV reproducibility
The experiments were performed in triplicate for each sample, allowing us to analyze the
reproducibility in CNV calling between replicates. A CNV call was considered replicated if
there was a reciprocal overlap of at least 80% between CNVs in a pair-wise comparison.
Reproducibility was measured by calculating the sample level Jaccard similarity coefficient,
defined as the number of replicated calls divided by the total number of nonredundant CNV
calls. We first investigated these parameters across the full size range, including all CNVs
>1 kb and with a minimum of five probes, representing cut-offs typically used in research
projects. The summary data of call reproducibility and the number of calls for each platform
and algorithm combination are shown in Figures 2a,b for high-resolution platforms and
Supplementary Figure 8a for lower resolution platforms. The reproducibility is found to be
<70% for most platform and algorithm combinations. In general, the most recently released
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arrays perform better, resulting in more CNV calls reproducibly obtained between replicates.
Of the CGH arrays, the Agilent (2 × 244K) platform produced the largest number of CNV
calls (an average of 377 and 387 calls per individual for the TCAG and WTSI sites,
respectively, using the ADM-2 algorithm, Fig. 2b) with a con-comitant high percentage of
CNV calls that were reproducible (67% and 62% for the two sites, respectively, Fig. 2a). For
SNP arrays, the largest number of CNVs was called for the new CNV-focused Illumina
arrays (an average of 263 and 240 calls per individual for Illumina 660W and OMNI,
respectively, for the site showing the highest replicate reproducibility). In terms of
reproducibility, the Affymetrix 6.0 and the three newest Illumina arrays (1M, 660W and
OMNI) showed very similar values, around 80%, when analyzed with the best performing
algorithms.

We observed that the variability in CNV calls was larger when using different CNV calling
algorithms on the same raw data, compared to when the same algorithm is used on the data
from different laboratories (Supplementary Figs. 8b,c). We find that results originating
from different laboratories tend to cluster together, indicating that the site where the
experiment was performed has less effect on resulting data than the choice of platform or
algorithm. Interlaboratory variability correlates with reproducibility, and platforms
exhibiting high reproducibility in replicates also seem more robust to interlaboratory
variability. The exceptions to this are the Affymetrix arrays, where CNV calls are highly
dependent on the reference data set used for analysis. We observe that the sample-level
concordance of CNV calls between any combinations of two algorithms is typically 25–50%
within a platform, and even lower for comparisons across platforms (Supplementary Fig.
9a). Larger CNVs would be expected to show higher concordance and we therefore divided
the data into CNVs of 1–50 kb and variants >50 kb. Although we see improvement, the
degree of concordance between platforms rarely exceeds 75% (Supplementary Fig. 9b,c).

Although detection of variants in the 1–50 kb range is important for research and discovery
projects, clinical laboratories generally remove or disregard smaller variants. To address the
question of reproducibility across different size ranges, all CNVs were divided into size
bins, and the replicate reproducibility was analyzed in each bin. We performed this analysis
separately for the different algorithms, platforms and sites (Supplementary Table 4a–c,
respectively). Contrary to our expectations, we found that reproducibility is generally similar
for large and small CNVs. We note that the reproducibility of large CNV calls is
disproportionally affected by genome complexity as they tend to overlap SegDups to a
larger extent than small CNVs: 55% of nonreplicated large calls (>200 kb) have at least 50%
overlap with SegDups, compared to 4% for small calls (1–10 kb) (Supplementary Table 5).
SegDups tend to complicate probe design, suffer from low probe coverage and cross-
hybridization, and they are therefore often refractory to CNV detection using array-based
techniques. Indeed, CNVs overlapping SegDups generally have fewer probes supporting
them (Supplementary Fig. 7) and their reproducibility is lower compared to CNVs in
unique sequence. Another contributing factor influencing the reproducibility of large CNVs
is call fragmentation, that is, a single CNV is detected as multiple smaller variants. After
lowering the minimum overlap required for a call to be considered replicated from 80% to
any overlap, the reproducibility of large calls increases (Supplementary Table 4). Taken
together, these factors likely offset the benefit of the increased number of probes in larger
CNVs for call reproducibility.

We further investigated to what extent the different platforms detect CNVs >50 kb. Results
of each platform were compared at the sample level, one platform at a time, to all variants
>50 kb that were identified by the other platforms. We also performed the same comparison
to variants detected by at least two other platforms (Supplementary Table 6). The results of
the latter analysis show that the fraction of calls missed by each platform (of the regions
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detected by at least two other arrays), ranges from 15% for Agilent 2×244K to ~73–77% for
Illumina SNP arrays. These differences between platforms may to some extent be explained
by overlap with SegDups. The Agilent 2×244K data set has a larger fraction of calls >50 kb
as well as a larger fraction of calls overlapping SegDups, compared to results from the
Illumina SNP arrays. Indeed, we find that 80–85% of such missing Illumina calls overlap
with SegDups (Supplementary Methods). We also find that many of the calls missed by
SNP arrays but detected by CGH arrays are duplications. We ascribe this effect to a
combination of differences in probe coverage and the type of reference used. Whereas SNP
arrays use a population reference, CGH arrays use a single sample reference. The CGH
arrays therefore have greater sensitivity to detect small differences in copy number (e.g.,
four versus five copies).

Comparison to independent CNV data sets
To estimate the accuracy of CNV calls, we compared the variants from each array and
algorithm to existing CNV maps (Fig. 2c). We used four different `gold standard' data sets
for comparison to minimize potential biases (Supplementary Fig. 10). The first data set is
based on the Database of Genomic Variants (DGV v.9). We downloaded all variants in
DGV and filtered the data to yield a high-quality gold standard data set (Supplementary
Methods). The second data set we used was 8,599 validated CNV calls from a tiling-oligo
CGH array from the Genome Structural Variation consortium11. The same study also
produced CNV genotype data for 4,978 variants in 450 HapMap samples, including five of
the six samples used in the present study (for sample-level comparisons, see
Supplementary Fig. 11). Finally, we also used data from paired-end mapping based on
fosmid end sequencing41.

The overlap analysis with these gold standard data sets was performed using the high-
confidence CNV calls for each platform and algorithm combination. CNVs with a reciprocal
overlap of at least 50% with gold standard variants were considered validated (Fig. 2c). For
most platforms, at least 50% of the variants have been previously reported. There is better
overlap with regions previously reported by array studies than regions originating from
sequencing studies, which might be expected as all our CNV data stems from arrays. The
overlap with CNVs identified by fosmid-end sequencing41 is low as most CNVs called in
this work are below the detection limit of the fosmid-based approach . It is important to note
that all samples included in the current study have also been interrogated in other studies
represented in DGV using different platforms. This likely contributes to a higher overlap
than what would be found with previously uncharacterized samples.

Estimation of breakpoint accuracy
Another aspect of CNV accuracy is how well the reported start and end coordinates correlate
with the actual breakpoints, and how reproducible the breakpoint estimates are. To analyze
breakpoints, we first investigated reproducibility in the triplicate experiments. For every
CNV call set generated, we took the regions called in at least two of the three replicate
experiments for each sample and calculated the distance between the breakpoints on the left
and right side of the CNV call, respectively. The distribution of differences in breakpoint
estimates between replicate experiments reflects, in part, the resolution of the platform and
the reproducibility of the data (Fig. 3). To normalize for variable probe density between
platforms, we performed the same analysis based on the number of probes that differed
between replicate CNV calls, and the results are very similar (data not shown). One
observation from these analyses is that there are clear differences between analytic tools
when applied to the same raw data. Algorithms with predefined variant sets (e.g.,
Birdsuite42) and algorithms searching for clustering across samples (such as iPattern13)
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show substantially better reproducibility in breakpoint estimation for common CNVs than
do algorithms treating each sample as an independent analysis.

In addition to reproducibility, we also sought to measure the accuracy of the breakpoints
called by each platform. To perform this analysis, we used two data sets providing well-
defined breakpoint information. First, we created a data set with nucleotide resolution
breakpoints by combining data from capture and sequencing of CNV breakpoints43 with
breakpoints collated44 from personal sequencing projects (Supplementary Fig. 12). The
distance between the sequenced breakpoints and the CNV call coordinates in the present
study was binned and plotted (Fig. 4a and Supplementary Methods). Only the more recent
high-resolution arrays had enough CNV calls to yield meaningful results for this analysis
(Supplementary Fig. 13). The data show that all platforms tend to underestimate the size of
CNVs. This might be expected as the results reported for each algorithm correspond to the
last probes within the variant showing evidence of a copy number difference. Arrays
targeting known CNVs show the highest accuracy, as a result of their high probe density at
these loci.

We also measured breakpoint accuracy at the sample level by comparing deletion calls in
this study with deletions from the 1000 Genomes Project45,46. Four of the samples used in
this study were sequenced by that project, and those samples had 3,124–4,200 breakpoints
annotated. The data were compared at the sample level for each combination of platform and
algorithm. The results for a representative sample (NA18517) are displayed in Figure 4b
(remaining samples in Supplementary Fig. 14), showing the overlap and breakpoint
distance for each breakpoint from the 1000 Genomes Project. The results of these analyses
are similar to those above, where all platforms show underestimation of the variable regions.
Compared to other platforms the CNV-enriched SNP arrays (Illumina 660W and Omni)
detect a substantially larger number of variants, which are present in the data from the 1000
Genomes Project. The Agilent 2×244k array, which also targets known CNVs, performs
extremely well in relation to its probe density, especially when analyzed with the ADM-2
algorithm.

DISCUSSION
To our knowledge, this study represents the most comprehensive analysis of arrays and
algorithms for CNV calling performed to date. The results provide insight into platform and
algorithm performance, and the data should be a resource for the community that may be
used as a benchmark for further comparisons and algorithm development. Our study differs
from previous studies in that we have explored the full size spectrum of CNVs in healthy
controls, rather than relying on large chromosomal aberrations or creating bacterial artificial
chromosome (BAC) clone spike-in samples. As a result, we think this study provides better
benchmarks for research aimed at CNV discovery and association, while still providing
important insight for data interpretation in clinical laboratories.

As expected, the newer arrays, with a subset of probes specifically targeting CNVs,
outperformed older arrays both in terms of the number of calls and the reproducibility of
those calls. Analysis of the deviation in breakpoint estimates (based on number of probes)
shows that this difference is not only due to an increased resolution, but is also consistent
with increased individual probe performance in the newer arrays. These results highlight that
newer arrays provide more accurate data, whether the focus is on smaller or larger variants.

We investigated the effects of using different CNV calling algorithms and found that the
choice of analysis tool can be as important as the choice of array for accurate CNV
detection. Different algorithms give substantially different quantity and quality of CNV

Pinto et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2012 February 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



calls, even when identical raw data are used as the input. This has important implications
both for CNV-based, genome-wide association studies and for the genetic diagnostics field.
We show that algorithms developed specifically for a certain data type (e.g., Birdsuite for
Affymetrix 6.0 and DNA Analytics for Agilent data) generally perform better than platform-
independent algorithms (e.g., Nexus Copy Number) or tools that have been readapted for
newer versions of an array (e.g., dCHIP on Affymetrix 6.0 data).

Given the obvious variability between calling algorithms, we and others13,47,48 have found
that using multiple algorithms minimizes the number of false discoveries. Based on our
experience this scheme allows for greater experimental validation by qPCR, which are
typically >95% for variants >30 kb13. Because the algorithms use different strategies for
CNV calling, their strengths can be leveraged to ensure maximum specificity. Nevertheless,
we still observe that up to 50% of the calls detected by only one of two algorithms can be
validated when compared to sample-level CNVs11 (Supplementary Fig. 15), indicating that
CNVs may be missed in this stringent approach and that merging call sets from multiple
methods could improve sensitivity. Our results also show that one single tool is not always
best for each array, but that the optimal algorithm for a data set is dependent upon the noise
specific to that experiment. As an example, iPattern was one of the best performing
algorithms for high-quality data from Affymetrix 6.0, but would not work properly for
noisier Affymetrix 6.0 data.

There are limitations to our analysis that could be improved in future studies. The current
lack of a gold standard for CNVs across the entire size spectrum makes it difficult to
accurately assess the false-discovery rate. We consider the `gold standard' data sets used in
the current analysis to be the best available to date, but the analysis should be updated once
higher quality sequence-based data for both deletions and duplications exist. Another
limitation of the data analysis is that we have not tested every algorithm across a large range
of parameters. Our settings are based on substantial experience analyzing the same type of
data from the same laboratories and on previous studies where optimal parameters have been
established. We note that Birdsuite (and possibly other algorithms) have been trained on
HapMap samples, raising the possibility of biased results. However, we see no clear
evidence of this in comparison of the HapMap and non-HapMap samples in our study. Not
all experiments passed quality control thresholds, but this was mainly the case for the lower
resolution platforms (Affymetrix 250K, Illumina 650Y). The quality control steps also
highlighted the problems of using an external reference set for analysis of Affymetrix data.
Both for the 250K array run at TCAG and the Affymetrix 6.0 arrays run at WTSI, the lack
of an internal reference led to poor signal-to-noise ratios. Finally, the different laboratories
involved may be more experienced processing certain array types, leading to relatively
better results, and the data inevitably contain subtle batch effects across sites and time points
that is present in all data sets49. Nevertheless, we believe that the current study is
representative of the results being obtained at different laboratories processing these arrays.

Our data highlight a number of factors that should be considered when designing array
studies. For large cohort studies, it is important that all experiments are processed in one
facility. Even though the data from different sites can be quite similar, they still differ
enough to create problems in association analyses. It is also clear that comparison of data
sets resulting from different platforms and/or different analytic tools will cause problems in
association analyses and may create false association signals.

Our results are also important for the clinical diagnostics field. Typically, the assessment of
data in clinical laboratories is focused on larger CNVs (different thresholds are used in
different laboratories). We therefore performed a more detailed analysis of CNVs >50 kb.
To our surprise, we found that the lack of overlap between platforms, algorithms and
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replicates that was found in the full data set similarly applied to large CNVs. A closer look
at these regions indicates that most can be explained by overlap with complex regions and
call fragmentation. In standard clinical assessment of patient data, curation of results and
filtering of polymorphic regions would lead to removal of these variants. We therefore do
not think that our data contradict previous reports of high accuracy in detecting clinically
significant rearrangements in patients across different laboratories and array types.
However, our results bring light to the problems of clinical interpretation of variants in
complex regions and highlight the risks of incorporating less stringent filtering of data in
diagnostics.

We expect that the use of microarrays will continue to grow over the next few years and that
they will be a mainstay in genome-wide diagnostics for some time. Our study represents a
comprehensive assessment of the capabilities of current technologies for research and
diagnostic use. By making these data sets available to the research community, we anticipate
that they will be a valuable resource for further analyses and development of CNV calling
algorithms and as test data for comparison with additional current and future platforms.

METhODS
Methods and any associated references are available in the online version of the paper at
http://www.nature.com/nbt/index.html.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Size distribution of CNV calls. The size distribution for the high-confidence CNV calls (that
is, CNV calls made in at least two of three replicates) is shown for all combinations of
algorithms (Table 1, CNV analysis tools) and platforms. Each bin represents a different
range of CNV lengths and the bars show the percentage of CNVs falling into each size bin.
Representative results are shown for one genotyping site only, where the average number of
CNVs per sample for that site is given in parentheses. The size distribution is therefore not
representative of a sample. Instead, it represents the sizes of CNV calls detected in a total of
six samples. Results for all sites and further breakdown into gains-only and losses-only can
be found in Supplementary Figure 4. *For Affymetrix 250K-Nsp, dChip detects on
average one CNV per sample. Affy, Affymetrix; Ilmn, Illumina; AG, Agilent; BAC,
bacterial artificial chromosome; cnvPart, cnvPartition; NG, NimbleGen; PCNV, PennCNV;
QSNP, QuantiSNP.

Pinto et al. Page 12

Nat Biotechnol. Author manuscript; available in PMC 2012 February 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
CNV calling reproducibility. (a–c) Call reproducibility was evaluated by either comparing
calls obtained from triplicate experiments (a,b) or by a comparison to various independent
reference data sets (c). The percentage of concordant CNV calls between replicates for each
combination of array, algorithm and site (a). The corresponding average number of CNVs
per sample is given in b. The results for the lower-resolution arrays can be found in
Supplementary Figure 8. (c) The percentage of high-confidence CNV calls for each set of
results that overlaps (minimum of 50% reciprocal overlap) with data from DGV, and
references 11 and 41. The DGV data were divided into array-based CNVs and sequence-
based CNVs, and for the reference 11 data we independently considered a set of 8,599
validated variants as well as a subset of 4,978 CNVs that were genotyped. The poor
performance of the BAC array is explained by the fact that the DGV data set was filtered so
that low-resolution studies (including BAC array data) were removed. Site abbreviations:
see Table 1 legend.
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Figure 3.
Reproducibility of CNV breakpoint assignments. The distances between the breakpoints for
replicated CNV calls were divided into size bins for each platform, and the proportion of
CNVs in each bin are plotted separately for the start (red, left) and end (blue, right)
coordinates. The total number of breakpoints is given in parentheses. The data show that
high-resolution platforms are highly consistent in the assignment of start and end
coordinates for CNVs called across replicate experiments. Affy, Affymetrix; BAC, bacterial
artificial chromosome; brkpt, breakpoint; HMS, Harvard Medical School; Ilmn, Illumina;
TCAG, The Centre for Applied Genomics; WTSI, Wellcome Trust Sanger Institute.
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Figure 4.
CNV breakpoint accuracy. (a,b) The breakpoint accuracy for CNV deletions on each
platform was assessed in a comparison to published sequencing data sets of nucleotide-
resolution breakpoints compiled from various studies43,44 (a), or detected in the 1000
Genomes Project45,46 (b). Only a subset of platforms is included in this figure, as the lower
resolution arrays did not have enough overlapping variants to make the comparison
meaningful. In b, a total of 3,544 deletion breakpoints for sample NA18517 were collected
from the 1000 Genomes Project and compared to the CNVs detected in each of the analyses
in this study. Every row in the diagram corresponds to one of the 3,544 deletions and the
color indicates whether that deletion was detected in the present study. Each row represents
the distance between array versus sequencing-based breakpoints (`left' + `right' breakpoints
for the same event are listed in adjacent rows). Schematic below shows sample-based
comparisons between deletion breakpoints obtained with array versus sequencing methods.
Gray means the deletion was not detected, whereas a color on the red-green scale is
indicative of the accuracy of detected breakpoints. 1000G, 1000 Genomes Project.
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