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Abstract
Cell signalling pathways and networks are complex and often non-linear. Signalling pathways can
be represented as systems of biochemical reactions that can be modelled using differential
equations. Computational modelling of cell signalling pathways is emerging as a tool that
facilitates mechanistic understanding of complex biological systems. Mathematical models are
also used to generate predictions that may be tested experimentally. In the present chapter, the
various steps involved in building models of cell signalling pathways are discussed. Depending on
the nature of the process being modelled and the scale of the model, different mathematical
formulations, ranging from stochastic representations to ordinary and partial differential equations
are discussed. This is followed by a brief summary of some recent modelling successes and the
state of future models.

Introduction
The perception of mathematical modelling in cell biology is changing from a theoretical
exercise of limited interest to a tool facilitating mechanistic understanding of complex
phenomena and better experimental design. As a result, there has been an enhanced
incorporation of mathematical modelling in the study of many complex biological processes.
A major goal of modelling biological systems is to be able to provide a mechanistic
explanation of the underlying processes. More often, models are built to predict behaviours
that may be hard to understand because of the multiple variables involved. These predictions
can then be tested by experiments and the model can be refined. Modelling is thus an
ongoing exercise of analysis and experimental validation, incorporating new biological data
as they become available.

Modelling is particularly useful in analysing information flow through cell signalling
networks. Cellular signalling pathways regulate the programmes for various cellular
functions that change in response to a stimulus. These functions arise from the underlying
biochemical reactions and, therefore, lend themselves to quantitative modelling. Modelling
of these networks and pathways allows us to organize existing knowledge and explore the
signalling pathways for emergent properties.

One of the key features of cell signalling networks is the non-linearity arising from the
presence of regulatory loops and branches in the signalling network. This non-linearity
makes it challenging to understand and predict responses to a single stimulus; predicting
responses is harder still for multiple stimuli, which is the norm in real biological systems.
Developing mathematical models for these complex networks allows us to express these
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non-linearities in the equations that constitute the computational models and explore the
models systematically.

Computational models of signalling networks serve two purposes: organization and
validation of known experimental data, and prediction of system behaviour that is not
intuitive from prior experiments. Predictions made from the numerical simulations can be
experimentally verified or nullified and the model can be improved by an iterative process
of models→experiments→models. Thus modelling serves as a tool for obtaining systems
level understanding of the underlying biological processes.

Complexity of signalling networks
The complexity of biological systems is well-known. Increasing the number of components
and the non-linear interactions between them leads to increasing system complexity [1]. This
complexity is reflected in the number of interacting species, the number of interactions
between them and the parameters involved. One purpose of computational models is to
identify behaviours that may not be evident from the experimental data. The number of
possible interactions increases combinatorially with the number of components. Assuming
each reaction requires at least two parameters (forward and backward rate for mass-action
relationships, and kcat and Km for enzymatic relationships), we have at least twice as many
kinetic parameters as we have reactions. In addition, we also need the initial concentrations
of the components in the system. The heterogeneity and complexity of biological systems
makes development of models challenging, but it is this complexity that also makes
modelling necessary. Using models it is possible to explain what is happening at different
time scales to different modules and components of a network.

Model construction
Model construction for signalling networks begins with a wiring diagram that shows the
interactions between the system components. The wiring diagram can be translated into a
series of coupled biochemical reactions and a system of differential equations (Figure 1).
Since we generally model a specific signalling pathway, it becomes necessary to identify the
boundaries of the system. Typically, a model for a signalling pathway might begin at the
receptor and end at an effector enzyme, transcription factor or channel whose activity is
altered by the receptor signal. Such a system can be described by a set of coupled ODEs
(ordinary differential equations). In contrast, a network that describes how cell-surface
adhesion molecules regulates the actin cytoskeleton requires a nuanced approach. Here, if
the focus of the pathway is the remodelling of the actin cytoskeleton, we can model this
process in at least two ways: as a biochemical reaction model of coupled ODEs where the
signalling interactions from the receptor to the downstream effectors are involved or as a
stochastic model where the change in the actin cytoskeleton is described by actin
remodelling biochemical reactions (branching, capping, polymerization etc.). The actin
remodelling reactions have been considered at various levels of detail [2–4] and, based on
the type of information sought, involve different levels of modelling complexity and
abstractions. These models range from Brownian ratchet studies of single reactions, such as
polymer elongation, to spatio–temporal models of multiple actin remodelling reactions.
Therefore the user has to identify and define boundaries of the system to be modelled.

Once the boundaries of the model are well-defined, the next step is the choice of the nature
of the mathematical representation; this can vary from fine-grained models for single
processes (mostly stochastic) to coarse-grained models for multiple processes or
combinations thereof (Figure 2). A stochastic process is one in which the behaviour of the
system is non-deterministic and includes some randomness. The behaviour of processes in
which the copy number of the species involved is small is often modelled using stochastic
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calculus, incorporating the randomness and noise in the process. A good example of a
stochastic process is the binding of transcription factors to the promoter region of DNA.
Deterministic models developed using differential equations are used to model processes in
which the concentrations of participating chemical species can be treated as continuous
variables because of their abundance. Usually such concentrations are in the nM to mM
range. Whereas ODEs capture the temporal dynamics alone, partial differential equations
capture both the spatial and temporal dynamics of the signalling pathway.

Parameter estimation
After the biochemical interactions have been identified, the next step in model construction
is the estimation of the kinetic parameters and initial concentrations. Kinetic parameters for
some biochemical reactions can be found in the literature in studies conducted using purified
proteins in vitro. Although it is not clear whether the in vivo reactions occur at the same rate,
these parameters are good starting points for conducting simulations using the computational
model. The exact value of the amount of a given protein present in a cell is known for very
few proteins. Therefore, initial concentrations of proteins and other signalling components
are often estimates. In addition to rate constants and initial concentrations, development of a
spatial model requires the estimation of diffusion coefficients. Diffusion coefficients are
hard to measure experimentally for mixtures of proteins. Because the diffusibility of a
molecule depends on its size, we can calculate an approximate diffusion coefficient based on
the molecular mass of the component. In some cases, it is possible to measure the diffusion
coefficient of a component using FRAP (fluorescence recovery after photobleaching).

Recently, Sible and Tyson [4a] have described a step-by-step procedure for the development
of ODE models of cell cycle control. A description of parameter choices, parameter
optimization and software tools available are also discussed in detail.

Model validation and comparison with experiments
A key step in model validation is comparing experimental results with simulations. It is this
step that tells us whether the model recapitulates the known aspects of the biological
process. When a model follows observed experimental behaviour closely, the confidence
level of the generated predictions increases. For certain signalling pathways [such as EGFR
(epidermal growth factor receptor), MAPK (mitogen-activated protein kinase), NF-κB
(nuclear factor κB) and cell cycle] extensive information is available [5–9] and models built
for these systems are elaborate and match experimental data closely. However, for systems
where prior knowledge is limited and experimental studies are ongoing, it is harder to build
elaborate models. In these cases, we can generate initial mechanistic models that validate
key observations in the system behaviour and make predictions about possible interactions
and regulatory mechanisms. Because a number of parameters are estimated, it is not often
possible to generate exact matches between experiments and simulation. Parameter space
exploration, either by sensitivity analysis [10] or by studying different input conditions [11],
can help with understanding the conditions that lead to experimentally observed behaviour.
The key point to note in parameter space exploration is that when a large number of
parameters influence the system dynamics, a number of combinations of parameters can lead
to similar system behaviour. It is therefore essential to choose these parameters in a
biologically justifiable manner. The user must validate the model by comparing simulation
results to experimental results. It is sometimes difficult to obtain parameters which
quantitatively reproduce all the experimental observations. In such cases, the comparison
between model and experiment is limited to obtaining good agreement of well-characterized
system properties. Often, it is possible to find a middle ground where we can obtain close
quantitative matches for some components and qualitatively similar behaviour for others.
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Spatio–temporal considerations
Using live-cell imaging techniques, it is increasingly becoming obvious that cell signalling
networks are spatially specified and, unlike physico– chemical interactions occurring in
vitro, biological interactions are also spatially regulated. Advances in imaging technology
and fluorescent probes have resulted in experimental techniques that allow us to capture the
spatio– temporal dynamics of cell signalling [12,13]. In addition to the previously described
parameters, we then have to consider localization of the component [ER (endoplasmic
reticulum), membrane, Golgi, cytoplasm etc.] and rates of transport across these subcellular
compartments. Spatial localization of components and interactions across compartments
requires the generation of flux mechanisms and diffusive behaviour in addition to kinetic
parameters. To accurately model spatial localization, it is important to consider the
biophysical properties of the compartment. Consider, for instance, the plasma membrane
and synthesis of phosphoinositides [14,15]. Diffusion in the plasma membrane occurs
essentially in a two-dimensional plane and is hindered by the presence of other molecules
and electrostatic interactions. PtdIns(4,5)P2, in the membrane, has a diffusion coefficient of
1 μm2/s [15]. In contrast, the ubiquitous second messenger cAMP has a diffusion coefficient
of 300 μm2/s in the cytoplasm [16]. Thus the cellular localization of the component plays a
key role in determining its diffusivity.

An overview of modelling successes
In this section, we discuss a few modelling successes that have led to the identification of
emergent properties in signalling networks and enhanced our understanding of certain
complex biological phenomena.

Deterministic models
Many signalling pathways have been successfully modelled using ODEs; however, in this
section, we will focus on models of MAPK activation to highlight the approaches taken and
modelling results. Activation of the MAPK pathway can lead to different cellular responses,
including cell survival, cytoskeletal remodelling, motility and differentiation. The MAPK
network has been studied extensively from different perspectives using ODE models
[6,8,17–23]. Computational analysis of the three-tier cascade of MAPK activation shows
that the presence of the multi-layered activation cascade is important for regulation and the
feedback loops are necessary for decision making and memory formation [18]. Some of the
key results were that signal integration occurs across different time scales and the output
depends not only on the duration and strength of input but also on the nature of the feedback
loops. Sustained activation of the MAPK pathway after withdrawal of the signal and bistable
(with two steady states) steady-state behaviour in response to input signal were observed as
a result of feedback mechanisms. Thus the positive-feedback loop acts as a switch through a
cascade of biochemical reactions [16,24]. Using a combination of experimental and
computational analyses, it has been shown that interactions between pathways in a network
lead to adaptation and recovery patterns [25,26]. In the MAPK network, the system exhibits
bistable behaviour in response to low concentrations of MKP (MAPK phosphatase) leading
to sustained MAPK activation in response to a brief stimulus. An increase in MKP
concentrations eliminates this bistability and sustained activation response and instead leads
to a monostable, proportional response state [26]. Further feedback effects can result from
sequestration effects and competing docking interactions leading to bistability [21]. Thus,
even for a simple signalling cascade, modelling allows for insights that are not intuitive.
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Delay models
Time delays incorporated in ODEs result in DDEs (delay differential equations). DDEs are
used to reduce the number of variables involved and offer a mechanistic insight into
regulatory mechanisms, when the entire process details are unknown. Using
phosphorylation–dephosphorylation cycles, it has been shown that DDEs can capture
observed system behaviour using fewer variables [27,28]. DDEs have been used to
mechanistically model transcriptional effects in the feedback regulation of the NF-kB
pathway [29] and the effects of pharmacological agents on this pathway [30].

Spatio–temporal models
In order to model the local activation of signalling components, multi-compartment models
and spatial models can be used. A compartment-specific model of Ras activation highlights
the role of trafficking and compartment-specific feedback loops [31]. Positive and negative
regulators of calcium signalling are activated in a context-dependent manner and lead to
context-dependent localization of Ras. This study analysed how a signal originating at the
plasma membrane propagates to different subcellular locations.

Spatial analysis of signalling from phosphoinositides was carried out in a series of studies
that combined experimental and computational modelling methods [32–34]. These studies
showed how uniform stimulation can lead to asymmetric phosphoinositide gradients.
Furthermore, experiments allowed for parameter estimation for the model and for the
analysis of the effect of cell morphology on gradients of phosphoinositides. A partial
differential equation model to study the effect of phosphoinositides and Rho-family
GTPases on actin cytoskeleton remodelling has been developed [35]. This spatial model
explains how Rho-GTPases act as a spatial switch and the phosphoinositide gradients that
are important in determining the front from the rear of the cell. Thus spatio–temporal models
are necessary for understanding the localization of cellular components and the role played
by signal gradients in defining cellular processes.

Stochastic models
Most models of signalling networks are deterministic in nature and use systems of ordinary
or partial differential equations. However, not all signalling processes are deterministic in
nature and in certain cases, where the number of molecules involved is small, the process is
inherently stochastic. Typical examples of stochastic processes include binding of
transcription factors to promoter regions and branching of individual actin filaments.
Implementation of stochasticity to study temporal dynamics is often carried out using
Gillespie's algorithm [36,37]. The core of this algorithm is the chemical master equation that
determines the probability that each species will have a defined population at a given future
time. The SSA (stochastic simulation algorithm) is a Monte Carlo procedure for computing
the dynamics of the population in accordance with the master equation. Stochastic
simulation of signalling networks has been used to evaluate the behaviour of the system in
many different studies [38–40]. One of the challenges with stochastic approaches is the
larger computation time required compared with deterministic systems. Examples of models
based on these methods can be found in [38,40]. We have recently developed a spatio–
temporal stochastic model for cell spreading based on actin remodelling reactions (Y.
Xiong, P. Rangamani, B. Dubin-Thaler, M.P. Sheetz and R. Iyengar, unpublished work). In
this model, we capture isotropic cell spreading on a substrate using actin filament
elongation, branching and capping regulated by membrane resistance forces. It is anticipated
that for large signalling networks, hybrid models will be built where part of the system
follows deterministic behaviour and the rest of the system follows stochastic behaviour.
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Example of a deterministic model
We now discuss an example of a deterministic model to illustrate the concepts discussed in
the present chapter. This model studies the role of feedback loops on system dynamics and
we can see how analysis of a mathematical model leads to mechanistic understanding of
system behaviour [26]. The signalling network is shown in Figure 3(A). Activation of the
PDGF (platelet-derived growth factor) receptor by PDGF leads to activation of MAPK via
the Grb2/Sos pathway. Negative feedback is present via MKP. MKP is activated by MAPK
and inhibits the same. In this case, as more MAPK is activated, more MKP will be activated
and leads to the balance of MAPK activity via inhibition. Thus the role of a negative-
feedback loop is to attenuate the signal flow in the network. In contrast, positive feedback is
present via MAPK activation of PLA2 (phospholipase A2), which leads to further activation
of Ras and Raf via arachidonic acid and PKC (protein kinase C). The role of a positive-
feedback loop is to enhance signal flow through the network. How does the presence of
these loops affect system behaviour? Developing an ODE model for this network allows us
to follow the temporal dynamics of the concentrations and study the role of these feedback
mechanisms. Simulations showed that a brief stimulus (5 min) could result in sustained
MAPK activation for 40 min. When we analyse the steady-state MAPK activation by PLA2
and the activation of PLA2 by MAPK, we see that the concentration–effect curves intersect
at three points (Figure 3B). (Each of these defines the system at steady state.) Point 1 is the
basal state, point 2 is the metastable state and point 3 is the high stable state of activity. This
kind of behaviour is called bistability. Low-level stimulation of the system results in a
transient increase in activity with the system coming back to a basal state upon termination
of the stimulus. Stimulation by PDGF to levels above the metastable state (point 2) allows
the system to attain the activated steady state and stay there even when the stimulus is
terminated. If the positive-feedback loop via PLA2, arachidonic acid and PKC is responsible
for this sustained activation, then blocking the feedback loop should result in loss of
sustained MAPK activation. This prediction was experimentally verified using
pharmacological inhibitors of PLA2 (Figure 3C). Thus a computational model was used to
provide insight into the role of feedback loops and how the configuration of signalling
networks can lead to sustained activity.

Perspective
Many of the published works on modelling of biological systems talk about modelling
successes and how well the data match experiments and how the predictions were validated
by further experiments. This raises the question: what is the value of a model that fails? The
failure of a model is equally important. Such failures can be used for gap analysis because
we can determine the information about the process that we do not have and that the system
can be further explored experimentally to build a refined model. Often by analysing parts of
a failed model, it is possible to identify which parts of the system require further
experimental study, to better specify the system.

Thus far, modelling of signalling networks has focused on the behaviour of systems in
response to different extracellular stimuli, maintaining the structure of the network itself
constant. However, it is well-known that the topology of the network itself is spatio–
temporally dynamic [42]. The next advances in realistic modelling of cellular pathways are
incorporating interactions that capture the dynamic properties of the network itself. In
addition to parameters that define each reaction or interaction in the network, the dynamic
network model should then include the conditions for switching of interactions when
components move in space. Given the impact modelling has made in a relatively short time
on our understanding of cellular processes, it may not be too long before we have hybrid
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dynamically evolving models that capture both the spatial and temporal characteristics and
explain cellular behaviours that currently seem puzzling.
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Summary

• Mathematical modelling of signalling networks provides mechanistic
understanding of dynamics, of information processing and flow through the
system.

• Models can be stochastic or deterministic and can also involve spatial
specifications.

• Parameter estimation is a key step in model development. Constraining a model
to experimental data is important for model validation.

• Failure of a model to recapitulate experimental observations is often useful and
serves as an indicator of the need for more data to specify the system being
modelled.
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Figure 1. A simple signalling pathway
A signalling pathway, represented as a wiring diagram. The interactions in the signalling
pathway can be rewritten as coupled biochemical reactions and ODEs based on reaction
rates that give the temporal dynamics of the activity state of the different components.
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Figure 2. Different levels of modelling
Computational modelling can be carried out at different cellular levels, resulting in models
of different complexity. Models for processes with a small number of molecules involve
stochastic computations. Temporal and spatio–temporal dynamics for cell signalling can be
modelled using differential equations.
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Figure 3. Positive-feedback loop and bistability
(A) The positive-feedback loop between MAPK and arachidonic acid (AA) is shown in the
light-blue region. The positive-feedback loop is shown. (B) The concentration–effect curves
of MAPK activity and PLA2 intersect at three points resulting in three steady states. Point 1
is the stable basal activity state, point 2 is metastable and point 3 is the highly active stable
steady state. AA, arachidonic acid. (C) Disruption of the positive-feedback loop by
inhibition of PLA2 results in loss of sustained MAPK activity, confi rming the role of the
positive-feedback loop in sustaining MAPK activation. Adapted from [26], with permission.
© 2002 American Association for the Advancement of Science.

Rangamani and Iyengar Page 12

Essays Biochem. Author manuscript; available in PMC 2012 February 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


