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Background: Nel is a multimodular glycoprotein and plays important roles in neural development and functions.
Results: The N-terminal thrombospondin-1 domain is involved in multimer formation and heparin- and retinal axon-binding.
Cysteine-rich domains bind to and inhibit retinal axons.
Conclusion: Different molecular interactions and functions are mediated by distinct domains of Nel.
Significance: The findings provide insights into how Nel exerts diverse functions.

Nel (neural epidermal growth factor (EGF)-likemolecule) is a
multimeric, multimodular extracellular glycoprotein with hep-
arin-binding activity and structural similarities to thrombos-
pondin-1.Nel is predominantly expressed in the nervous system
and has been implicated in neuronal proliferation and differen-
tiation, retinal axon guidance, synaptic functions, and spatial
learning. The Nel protein contains an N-terminal thrombos-
pondin-1 (TSP-N) domain, five cysteine-rich domains, and six
EGF-like domains. However, little is known about the functions
of specific domains of the Nel protein. In this study, we have
performed structure-function analysis of Nel, by using a series
of expression constructs for different regions of theNel protein.
Our studies demonstrate that the TSP-N domain is responsible
for homo-multimer formation of Nel and its heparin-binding
activity. In vivo, Nel and related Nell1 are expressed in several
regions of the mouse central nervous system with partly over-
lapping patterns. When they are expressed in the same cells in
vitro, Nel and Nell1 can form hetero-multimers through the
TSP-Ndomain, but they do not hetero-oligomerizewith throm-
bospondin-1. Whereas both the TSP-N domain and cysteine-
rich domains can bind to retinal axons in vivo, only the latter
causes growth cone collapse in cultured retinal axons, suggest-
ing that cysteine-rich domains interact with and activate an
inhibitory axon guidance receptor. These results suggest that
Nel interacts with a range of molecules through its different
domains and exerts distinct functions.

Nel (neural epidermal growth factor (EGF)-like)3 is a multi-
modular extracellular glycoprotein that has structural similar-

ities to thrombospondin-1.Nelwas first isolated from a chicken
cDNA library and was so named because it contains EGF-like
domains and is strongly expressed in neural tissues (1, 2). Sub-
sequently, two related genes were identified in mammals and
termed Nell (Nel-like) 1 and 2 (3, 4). Based on sequence simi-
larities, Nell2 appeared to be the mammalian ortholog of
chicken Nel. Chicken Nell1 has not yet been identified. In this
report, we refer to chicken Nel and mammalian Nell2 as Nel.
The Nel gene is predominantly expressed in the developing

and adult nervous system (1, 2, 4–6). Nel has been shown to
play crucial roles in development and functioning of the nerv-
ous system. In the developing chicken nervous system,Nel pro-
motes differentiation of motor and sensory neurons and stim-
ulates mitogenesis in dorsal root ganglia (7). Nel also promotes
survival of embryonic cortical and hippocampal neurons in
vitro (8). In addition, we have recently shown that Nel inhibits
retinal axon outgrowth and induces growth cone collapse and
axon retraction, indicating that Nel can act as an inhibitory
axon guidance molecule (9). In the adult mouse brain, targeted
disruption of theNel gene results in significant enhancement of
long term potentiation in the dentate gyrus, suggesting that Nel
is a negative regulator of neuronal activity (10). Interestingly,
Nel mutant mice show impairment of spatial learning, further
suggesting that Nel plays important roles in regulation of syn-
aptic plasticity in the hippocampus (11). No specific cell surface
receptors have yet been identified for Nel.
The Nel genes (Nel and related Nell1) encode multimodular

proteins and belong to (i) the laminin G/TSP-N/pentraxin
supergene family (12), (ii) the chordin-like cysteine-rich
domain family (13), and (iii) the EGF-like domain family (14).
Structurally, Nel and Nell1 contain, from the N terminus to the
C terminus, a cleavable signal peptide, an N-terminal throm-
bospondin-1 (TSP-N) domain, two cysteine-rich domains that
have structural similarities to chordin and vonWillebrand fac-
tor C domain, six EGF-like domains, and three additional cys-
teine-rich domains. Secreted Nel and Nell1 proteins exist as
homo-trimers in solution andhave heparin-binding activity (4).

* This work was supported by grants from the Royal Society (UK) and the
Biotechnology and Biological Sciences Research Council (UK) (to M. N.).

1 Present address: Dept. of Laboratory and Vascular Medicine, Kagoshima
University Graduate School of Medical and Dental Sciences, Kagoshima
890-8520, Japan.

2 To whom correspondence should be addressed: Institute of Medical Sci-
ences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom. Tel.: 44-1224-
437317; Fax: 44-1224-437465; E-mail: m.nakamoto@abdn.ac.uk.

3 The abbreviations used are: Nel, neural EGF-like molecule; AP, alkaline phos-
phatase; BMP, bone morphogenetic proteins; CRC, C-terminal cysteine-
rich domain; CRN, N-terminal cysteine-rich domain; HSPG, heparan sulfate

proteoglycan; Nell1/2, Nel-like1/2; TSP-N, N-terminal thrombospondin
domain.

THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 5, pp. 3282–3291, January 27, 2012
© 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.

3282 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 287 • NUMBER 5 • JANUARY 27, 2012



However, little is known about the functions of specific
domains of Nel.
In this study, we have conducted structure-function analyses

of Nel, by using a series of expression constructs for specific
domains. We show that homo-multimer formation of Nel is
mediated by the TSP-N domain. Interestingly, Nel and Nell1
are expressed with partly overlapping patterns in several
regions of the developing mouse nervous system.When co-ex-
pressed in culture cells, Nel and Nell1 can form hetero-multi-
mers through the TSP-N domain. In contrast, thrombospon-
din-1 does not appear to form hetero-complexes with Nel or
Nell1. The TSP-N domain is also responsible for heparin-bind-
ing activity of Nel. Whereas both the TSP-N domain and cys-
teine-rich domains can bind to retinal axons in vivo, only cys-
teine-rich domains induce growth cone collapse in cultured
retinal axons, suggesting that cysteine-rich domains are
involved in binding to and activation of an inhibitory axon guid-
ance receptor on retinal axons. These results suggest that Nel
interactswith a range ofmolecules and exerts distinct functions
through its different domains.

EXPERIMENTAL PROCEDURES

PlasmidConstruction—Construction of an expression vector
for chicken Nel-AP was described previously (9). For expres-
sion of a myc-tagged Nel (Nel-myc), the protein-coding region
of chicken Nel cDNA (GenBankTM accession number
NM_001030740.1, nucleotides 118–2565) was amplified by
PCR from theNel-AP expression plasmidwith artificial 5�-NotI
and 3�-XhoI sites and was inserted between the NotI and XhoI
sites of the pCMV-Tag1 vector (Agilent Technologies, Santa
Clara, CA).
For construction of Nell1 expression vectors, the protein

coding region of mouse Nell1 (GenBankTM accession number
NM_001037906.2, nucleotides 40–2469) was amplified from
mouse embryonic cDNA library by PCR with artificial enzyme
sites (5�-EcoRI and 3�-BglII sites for AP tag, 5�-SacI, and
3�-XhoI sites for myc tag), and was inserted between the corre-
sponding restriction enzyme sites of the pCMV-AP vector and
pCMV tag1 vector, respectively.
For construction of the expression vectors for AP-taggedNel

domains, Nel cDNA fragments containing the TSP-N domain
(TSP, nucleotides 118–924 and 118–987), the first and second
cysteine-rich domains (CRN, nucleotides 931–1305), the six
EGF repeats (nucleotides 1306–2028), and the third to fifth
cysteine-rich domains (CRC, nucleotides 2029–2556) were
individually amplified by PCR with 5�-PstI and 3�-MluI sites
and inserted between the corresponding restriction enzyme
sites of the pCMV-Nel-AP vector (9). TheNel�TSP-AP vector
was constructed by replacing the HindIII-HindIII fragment of
Nel CRN-AP with that of Nel-AP. For construction of the Nel
TSP-EGF-AP vector, a cDNA fragment encoding the TSP-N
and EGF-like domains of Nel (nucleotides 118–924 plus 1306–
2028) was created with 5�-MluI and 3�-HindIII sites by overlap
extension PCR and inserted between the corresponding restric-
tion enzyme sites of the pCMV-AP vector.
The coding region of thrombospondin-1 was PCR-amplified

using pcDNA3 mTSP1 (a gift of Paul Bornstein; Addgene plas-
mid 12405 (Addgene (Cambridge,MA))) as a template andwith

artificial NotI/HindIII sites (for the AP tag) and MluI/HindIII
sites (for the myc tag), and inserted into the pCMV-AP and
pCMV tag1 vector, respectively.
Expression and Purification of Fusion Proteins—AP fusion

proteins were expressed and purified basically as previously
described (9), except that a calcium phosphate co-precipitation
method was used for transfection and 4 M MgCl2 for elution.
After elution, the proteins were dialyzed against cold PBS and
then concentrated by using Amicon Ultra columns (30K, Mil-
lipore, Billerica, MA).
Immunoprecipitation and Immunoblot Analysis—HEK293T

cells were transfected with combinations of AP- and myc-
tagged expression constructs. After 4–6 days, conditioned
media were collected, buffered with 10 mM HEPES (pH 7.0),
filtered (0.45-�m pore size PVDF membrane (Millipore, Bil-
lerica,MA)), and incubatedwith anti-human placental AP-aga-
rose (A2080, Sigma-Aldrich) or anti-c-myc agarose (A7470,
Sigma-Aldrich) at 4 °C. After washing withHBS (150mMNaCl,
20mMHEPES, pH7.0), the agarosewas boiled at 92 °C for 5min
in Laemmli sample buffer with or without 2-mercaptoethanol.
Proteins were separated by SDS-PAGE (5% polyacrylamide gel)
and transferred onto PVDF membranes (Bio-Rad). The filters
were blockedwith a blocking buffer (5% skimmedmilk either in
a Tris buffer (25 mM Tris (pH 7.4), 150 mM NaCl, 0.1% Tween
20) or in a phosphate buffer (PBS containing 0.05%Tween 20)),
and treated with sheep anti-AP antibody (AF5905, R&D Sys-
tems, Minneapolis, MN) or mouse anti-myc antibody (M5546,
Sigma-Aldrich) and then with HRP-conjugated anti-sheep IgG
(HAF016, R&D Systems) or anti-mouse IgG (Jackson Immu-
noResearch Laboratories,West Grove, PA). Detection was per-
formed using the ECL Plus system (GE Healthcare) or Rapid-
Step ECL (Merck, Darmstadt, Germany) reagent. For analysis
of cell lysates, cells were treated in the cell lysis buffer (50 mM

Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 50
mM NaF, 1 mM Na3VO4, 1% Triton X-100), and the soluble
fraction was incubated with antibody-conjugated agarose.
Heparin Binding Assay—Conditioned media containing

individual AP fusion proteins or control AP were incubated
with 20 �l (50% slurry) of heparin-Sepharose (GE Healthcare)
at 4 °C overnight. Afterwashingwith thewashing buffer (50mM

Tris, pH 7.5, 1 mM EDTA, 1 mM EGTA, 50 mM NaF, 1 mM

Na3VO3, 1%TritonX-100), proteinswere elutedwith thewash-
ing buffer containing 500mMNaCl. Eluted proteinswere boiled
at 92 °C for 5 min with Laemmli sample buffer containing
2-mercaptoethanol, and then subjected to SDS-PAGE and
immunoblot analysis as described under “Immunoprecipita-
tion and Immunoblot Analysis.”
Chick Embryos—FertilizedWhite Leghorn chicken eggswere

purchased from Henry Stewart (England) and incubated at
38 °C until use.
RNA in Situ Hybridization—To make RNA probes, a por-

tion of mouse Nell1 (GenBankTM accession number
NM_001037906.2, nucleotides 773–1460) and Nel (Gen-
BankTM accession number NM_016743.2, nucleotides 1000–
1693) cDNAwas PCR-amplified and subcloned into the pBlue-
script SK(�) vector (Agilent, Santa Clara, CA) between the
EcoRI and NotI sites. RNA in situ hybridization was performed
as described previously (9) by using digoxigenin-labeled probes.
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Affinity Probe in Situ of Embryonic Chicken Tecta—An affin-
ity probe in situ using AP-tagged full-length protein and differ-
ent domains of Nel was performed essentially as previously
described (15). Briefly, tecta were dissected out from day 17 or
day 18 chick embryos and incubated with AP fusion proteins or
control AP for 2 h at room temperature. After washing, the
tecta were fixedwith 65% (v/v) acetone and 8% (v/v) formalin in
20 mM HEPES for 2.5 min, washed, and heated for 100 min at
65 °C to inactivate endogenous APs. Binding of fusion proteins
was detected by incubation with 5-bromo-4-choloro-3-indolyl
phosphate/nitro blue tetrazolium.
Growth Cone Collapse Assays—Growth cone collapse assays

were performed essentially as described previously (16). Retinal
explants were prepared from day 6 or day 7 chick embryos and
cultured for 24–36 h on glass coverslips coated with 100 �g/ml
laminin in 6- or 12-well plates in the retinal culture medium
(15% FBS, 0.6% glucose, penicillin/streptomycin in DMEM/F-
12). Then retinal axons were treated with 0.3 �M/ml AP fusion
proteins or control AP. The explants were incubated at 37 °C
for up to 30 min, fixed, and stained with Alexa Fluor 488 Phal-
loidin (Invitrogen). In each experiment, at least 30 growth
cones were scored for each treatment as collapsed or not col-
lapsed, and three independent experiments were performed.

RESULTS

Expression of Nel Domains Fused with an AP Tag or a myc
Tag—To investigate the functions of different domains of Nel,
we have made a series of deletion mutant constructs that are
designed to express one or more specific domains of the Nel
protein (Fig. 1,A andB).We divided the full-length chickenNel
protein into the following four regions: (i) the TSP-N domain
(Nel TSP), (ii) the first and second cysteine-rich domains (Nel
CRN), (iii) the six EGF-like domains (Nel EGF), and (iv) the

third to fifth cysteine-rich domains (Nel CRC). Those regions
of Nel, as well as the full-length Nel and mouse Nell1, were
individually fused to either an AP tag (15) or a myc tag.
Nel Forms Homo-multimer through the TSP-N Domain—It

was previously reported that the secreted Nel protein (130 kDa
as amonomer) exists as trimers of�400 kDa in solution (4).We
first determined which domain is required for homo-multimer
formation. To test this, Nel-mycwas co-expressedwithNel-AP
or a series of AP-fused Nel domains in HEK293T cells, and
multimer formation in culture media was examined by immu-
noprecipitation with anti-AP antibody, followed by immuno-
blot analysis using anti-myc antibody (Fig. 2). When Nel-myc
was co-expressed with Nel-AP and SDS-PAGE was performed
under reducing conditions, anti-myc antibody detected a single
band of �130 kDa, which is the expected mobility for Nel-myc
monomers. In the absence of reductants, several high molecu-
lar bands were detected, indicating formation of oligomeric
complexes ofNel-AP andNel-myc, which is consistentwith the
previous description of Nel homo-oligomers in solution (4).
When Nel-myc was co-expressed with individual AP-fused
domains, Nel TSP-AP was found to form multimers with Nel-
myc. In contrast, Nel-myc was not co-immunoprecipitated

FIGURE 1. Schematic representation of Nel domain structure and expres-
sion constructs for different Nel domains used in this study. A, the Nel
protein consists of a signal sequence (SS), an N-terminal thrombospondin-like
domain (TSP-N), five cysteine-rich domains (CR 1–5), and six EGF-like domains
(EGF 1– 6). Asterisks indicate the three Ca2� binding type EGF-like domains. B
and C, Nel mutant constructs created for this study. B, a series of constructs for
expression of different regions of the Nel protein. C, constructs that lack spe-
cific domains of Nel. Deleted regions are indicated by dotted lines. The full-
length and mutant Nel proteins were fused to either an AP- or myc tag.

FIGURE 2. Multimer formation of Nel is mediated by the TSP-N domain. A
Nel-myc expression vector was transfected into HEK293T cells with an expres-
sion construct for AP-fused domains of Nel (TSP, CRN, EGF, and CRC), uncon-
jugated AP (AP), or full-length Nel-AP (WT). Culture media were collected after
4 – 6 days and subjected to immunoprecipitation (IP) and immunoblot anal-
ysis (IB) as indicated. SDS-PAGE was performed under non-reducing or reduc-
ing conditions. Nel-myc was co-immunoprecipitated with Nel TSP-AP (TSP)
and full-length Nel-AP (WT), but not with Nel CRN-AP (CRN), Nel EGF-AP (EGF),
or Nel CRC-AP (CRC). High molecular bands of Nel-myc/Nel-AP oligomers
were detected under non-reducing conditions (top, arrows), whereas reduc-
ing conditions yielded a single band of Nel-myc monomer (130 kDa).
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with either Nel CRN-AP, Nel EGF-AP, Nel CRC-AP, or control
AP. These results indicate that the TSP-N domain of Nel is
responsible for homo-multimer formation.
Nel Can Form Hetero-complexes with Mouse Nell1 through

the TSP-N Domain—Although previous studies of Nell1 have
mainly focused on its expression and functions in non-neural
tissues, particularly in skeletal tissues (17–20),Nell1 expression
has been detected in the developing and adult nervous system
(4). Remarkably, Nel and Nell1 are co-expressed in the rat hip-
pocampus, although expression of Nell1 is weaker than that of
Nel (4). In examinations of their expression patterns during
mouse development, we also have found thatNel andNell1 are
both strongly expressed in the embryonic inferior olive and
spinal cord with partly overlapping patterns (Fig. 3). In both
regions,Nel is expressed in broader areas than Nell1. Structur-
ally, Nel and Nell1 share significant sequence similarities, and
their overall domain organizations are conserved. In addition,
thrombospondin-1, which has structural similarities with the
Nel family members, has been shown to form both homo- and
hetero-trimers (21). These findings raised the possibility that
Nel may be able to form a hetero-complex with Nell1.
To test this possibility, Nel-myc andNell1-APwere co-trans-

fected into HEK293T cells, and Nel-Nell1 association was
examined by immunoprecipitation with anti-AP antibody and
immunoblot analysis with anti-myc antibody. Under reducing
conditions, a single band of 130 kDa that corresponds to the
size of Nel-myc monomers was detected by anti-myc antibody,
whereas several highmolecular size bands were detected under
the non-reducing conditions, indicating that Nel-Nell1 hetero-
complexes are formed in solution (Fig. 4A, left). To confirm the
results, HEK293T cells were transfected with Nel-AP and

Nell1-myc expression constructs, and culture media were
examined similarly. As expected, Nel-AP was co-immunopre-
cipitated with Nell1-myc, and high molecular bands of hetero-
complexes were detected under non-reducing conditions (Fig.
4A, right). These results indicate that Nel and Nell1 can form
hetero-oligomer when co-expressed in the same cells.
The Nel/Nell1 hetero-complexes could be formed either

within the cells prior to secretion and/or in the extracellular
solution after secretion. To distinguish these possibilities, we
examined whether Nel and Nell1 exist as hetero-complexes in
lysates of HEK293T cells that express both Nel-AP and Nell1-
myc. Cell lysates were immunoprecipitated with anti-AP anti-
body and immunoblotted with anti-myc antibody. As shown in
Fig. 4B, formation of Nel/Nell1 hetero-complex could be
detected in the cell lysates, indicating that Nel/Nell complexes
already exist within the cells. We next tested by pull-down
assays whether Nel and Nell1 can assemble into hetero-com-
plexes in solution after secretion. Culture medium of Nel-
transfected HEK293T cells was mixed with that of Nell1-trans-
fected cells, incubated overnight at 4 °C, and then analyzed by
co-immunoprecipitation and immunoblotting. In contrast to
cell lysates, formation of hetero-complexes could not be
detected when Nel and Nell1 were mixed in solution (Fig. 4B).
These results indicate that formation of Nel-Nell1 hetero-com-
plexes occurs prior to secretion, in the secretion pathway
within the cells.
Next we examined which domain of Nel is involved in its

association with Nell1. Because the TSP-N domain is responsi-
ble for homo-oligomer formation of Nel, we were interested in
whether the same domain is also involved in the Nel-Nell1
interaction. To examine this, we expressed AP-tagged domains
of Nel with Nell1-myc in HEK293T cells, and complex forma-
tion was examined by immunoprecipitation and immunoblot-
ting. As expected, Nell1-myc was co-immunoprecipitated with
Nel TSP-AP, but not with Nel CRN-AP, Nel EGF-AP, or Nel
CRC-AP (Fig. 4C). Taken together, our results show that the
TSP-N domain can mediate both homo- and hetero-multimer
formation of Nel.
Thrombospondin-1 Does Not Form Hetero-complexes with

Nel or Nell1—Because the TSP-N domain of the Nel family
members has structural similarities to the corresponding
region of thrombospondin-1, we tested whether Nel and Nell1
can formhetero-complexes with thrombospondin-1. To exam-
ine this, we co-transfected an expression construct for
AP-tagged thrombospondin-1 (TSP-1-AP) into HEK293T
cells, with a construct formyc-tagged thrombospondin-1 (TSP-
1-myc), Nel-myc, or Nell1-myc. Then, oligomer formation was
examined by immunoprecipitation with anti-AP antibody and
immunoblot analysis with anti-myc antibody (Fig. 5). Consist-
ent with previous reports (21, 22), co-immunoprecipitation of
TSP-1-AP and TSP-1-myc was observed. In contrast, TSP-
1-AP did not appear to form hetero-complex with Nel-myc or
Nell1-myc. These finding suggests that there is some specificity
in interactions between different TSP-N domains.
The TSP-N Domain of Nel Has Heparin-binding Activity—It

has been previously shown that the Nel family proteins have
heparin-binding activity, suggesting that secreted Nel proteins
interact with heparan sulfate proteoglycans (HSPGs) on the cell

FIGURE 3. Partly overlapping expression of Nel and Nell1 in the develop-
ing mouse central nervous system. Coronal sections of the developing
mouse central nervous system were hybridized with RNA probes for Nel (A
and C) or Nell1 (B and D). Dorsal is at the top. A and B, Nel is strongly expressed
in most parts of the E17.5 inferior olive (IO), whereas Nell1 expression is
restricted to ventral regions of the nucleus. C and D, Nel and Nell1 are co-ex-
pressed in the motor column (M) of the E13.5 spinal cord. Weak expression of
Nel extends to dorsal parts of the spinal cord. Scale bars, 100 �m.
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surface (4). To determine the domain of Nel that interacts with
heparin, HEK293T cells were transfected with expression con-
structs for different regions of Nel. Culture media were applied
to heparin-Sepharose, and bound proteinswere elutedwith 500
mM NaCl. As shown in Fig. 6, Nel TSP-AP showed significant
binding to heparin, whereas no binding activity was detected
for Nel CRN-AP, Nel EGF-AP, or Nel CRC-AP, indicating that
Nel interacts with heparin through the TSP-N domain.
Nel Binds to Retinal Axons with Its TSP-N and Cysteine-rich

Domains—In our previous studies, we have shown that Nel can
bind to retinal axons in vivo and that this interaction induces
growth cone collapse in vitro (9).Whereas themolecular nature

of Nel receptor(s) has not been identified, our results suggest
that Nel binds to a specific receptor expressed on retinal axons
and acts as an inhibitory guidance molecule. Therefore, we
were interested in determining which domains of Nel interact
with the potential receptor expressed in retinal axons in vivo. In
addition, we evaluated whether Nell1 has similar retinal axon-
binding activities. To this end, we performed affinity probe in
situ assays (15) using specific domains ofNel and the full-length
Nell1 fused to an AP tag as probes.When individual AP-tagged
domains of Nel were expressed in HEK293T cells, however, we
found that the yields of Nel TSP-APwere very low, andwewere
unable to collect sufficient amounts of purified Nel TSP-AP for

FIGURE 4. Hetero-oligomer formation of Nel and Nell1. A, HEK293T cells were transfected with expression constructs of Nel-myc and Nell1-AP (left), or Nel-AP
and Nell1-myc (right). Culture media were collected after 4 – 6 days and subjected to immunoprecipitation (IP) and immunoblot analysis (IB) as indicated.
SDS-PAGE was performed under non-reducing or reducing conditions. Co-immunoprecipitation of Nel and Nell1 was detected as high molecular bands of
Nel-Nell1 heterocomplexes (non-reducing conditions) or a single band of Nel or Nell1 monomers (reducing conditions). B, conditioned media of HEK293T cells
that had been individually transfected with Nel-AP and Nell1-myc expression constructs were mixed and incubated (Medium, Nel-AP only �, and Nell1-myc
only), and formation of Nel-Nell1 hetero-complexes was examined by immunoprecipitation and immunoblotting under reducing conditions. No hetero-
complex was detected. In contrast, when HEK293T cells were co-transfected with Nel and Nell1 expression vectors, Nel-Nell1 hetero-complex was detected
both in medium (Medium, Nel-AP �, and Nell1-myc �) and in cell lysate. An empty vector (mock) and unconjugated AP (AP) were used as negative controls. C,
a Nell1-myc expression construct was transfected into HEK293T cells with expression constructs for AP-fused domains of Nel (TSP, CRN, EGF, and CRC), and
Nel-Nell1 association was examined as indicated. Nell1-myc was co-immunoprecipitated with Nel TSP-AP (TSP), but not with Nel CRN-AP (CRN), Nel EGF-AP
(EGF), or Nel CRC-AP (CRC).
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the assay. The low yields of Nel TSP-AP are consistent with the
previous report that an alternative splice variant of rat Nel that
contains only the signal peptide and TSP-N domain is secreted
at notably lower levels compared with the full-length Nel (23).

We therefore tested binding activity of the other three regions
of Nel (Nel CRN-AP, Nel EGF-AP, and Nel CRC-AP) as well as
the full-length Nell1 (Nell1-AP).
In the chicken visual system, the optic tectum is the primary

target of the retinal axons. Because retinal axons enter the tec-
tum through its most superficial layer, stratum opticum, they
can be labeled and detected in wholemount preparations of the
tectum (e.g. Ref. 24).We dissected out chick tecta at embryonic
day (E) 17 or 18, when most of the retinal axons have entered
the tectum, and incubated them with either Nel-AP, AP-fused
Nel domains, Nell1-AP, or unconjugated AP control. Binding
of each fusion protein was then detected by the AP enzyme
reaction. Consistent with our previous results, strong binding
of the full-length Nel-AP was detected on the entire surface of
the tectum (Fig. 7, A and E). Among the AP-tagged domains
used in the study, Nel CRN-AP (Fig. 7, B and F) and Nel
CRC-AP (Fig. 7, D and H) showed significant binding activity,
followed by weaker binding activity of Nel EGF-AP (Fig. 7, C
andG). No significant bindingwas observed for controlAP (Fig.
7,L andP). These results suggest that cysteine-rich domains are
involved in binding to retinal axons. In contrast, Nell1-AP
showed significantly weaker binding to retinal axons on the
tectal surface than Nel-AP (Fig. 7, K and O).
To examine whether the TSP-N domain is involved in inter-

action with retinal axons, we made two additional AP-tagged
deletion mutants; one construct lacks the TSP-N domain (Nel
�TSP-AP), and the other mutant contains the TSP-N domain

FIGURE 5. Thrombospondin-1 does not form hetero-complexes with Nel
or Nell1. An expression construct for AP-fused thrombospondin-1 (TSP-1-AP)
was co-transfected into HEK293T cells with a construct for myc-tagged
thrombospondin-1 (TSP-1-myc), Nel-myc, or Nell1-myc. Culture media were
collected after 4 – 6 days and subjected to immunoprecipitation (IP) and
immunoblot analysis (IB) as indicated. SDS-PAGE was performed under
reducing conditions. TSP-1-AP was co-immunoprecipitated with TSP-1-myc,
but not with Nel-myc or Nell1-myc. mock, an empty vector.

FIGURE 6. Nel binds to heparin through its TSP-N domain. Culture media of
HEK293T cells that express AP-tagged domains of Nel (TSP, CRN, EGF, and
CRC), full-length Nel-AP (WT) or unconjugated AP (AP) were incubated with
heparin-Sepharose beads. Top, after washing, the bound proteins (Bound)
were eluted with 500 mM NaCl and subjected to SDS-PAGE and immunoblot
analysis using anti-AP antibody. Nel TSP-AP (TSP) and the full-length Nel-AP
bound to heparin-Sepharose, whereas the other domains of Nel (CRN, EGF,
and CRC) or unconjugated AP (AP) did not show detectable heparin-binding
activity. Bottom, culture supernatants (Culture sup) were immunoprecipitated
and immunoblotted with anti-AP antibody. SDS-PAGE was performed under
reducing conditions.

FIGURE 7. Binding activity of specific regions of Nel to retinal axons inner-
vating into the tectum in vivo. Tecta of E17–18 chick were incubated with
AP fusions of the full-length Nel (A and E), Nel CRN (B and F), Nel EGF (C and G),
Nel CRC (D and H), Nel �TSP (I and M), Nel TSP-EGF (J and N), Nell1 (K and O), or
unconjugated AP control (L and P). E–H and M–P are higher magnification
views of A–D and I–L, respectively. Nel-AP showed strong binding activity to
retinal axons navigating the tectal surface, whereas no binding was detected
for control AP. Among the deletion mutant proteins of Nel, Nel TSP-EGF-AP
showed strong binding activity that is comparable to that of Nel-AP. Nel CRN-
AP, Nel CRC-AP, and Nel �TSP-AP also had significant binding activity, fol-
lowed by weaker binding of Nel EGF-AP. Nell1-AP appeared to have weaker
binding activity than Nel-AP. In higher magnification views, linear patterns of
labeled retinal axon bundles can be seen.
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and EGF-like domains but lacks all the cysteine-rich domains
(Nel TSP-EGF-AP) (Fig. 1C). We then tested them for binding
to retinal axons. Significant binding activity was detected for
Nel �TSP-AP (Fig. 7, I and M), which is consistent with the
observed binding activity of cysteine-rich domains (Nel
CRN-AP and Nel CRC-AP). Interestingly, Nel TSP-EGF-AP
showed strong binding activity (Fig. 7, J and N) that is compa-
rable to that of the full-length Nel-AP. Because Nel TSP-
EGF-AP consists of the TSP-N and EGF-like domains of Nel,
and the latter by themselves did not show strong binding, these
results suggest that the TSP-N domain has strong binding
activity to retinal axons. Taken together, our results suggest
that Nel can interact with retinal axons through two distinct
regions, the TSP-N domain and cysteine-rich domains.
Cysteine-richDomains butNot theTSP-NDomain ofNel Can

Induce Growth Cone Collapse in Retinal Axons—Next we
examined whether the binding of the TSP-N and cysteine-rich
domains to retinal axons have any functional consequences.
Because we have previously shown that Nel can act as an inhib-
itory guidance cue for retinal axons (9), we tested whether the
fusion proteins used for binding assay can cause growth cone
collapse. Retinal explants were prepared from E6–7 chick and
cultured on a laminin-coated substratum to allow retinal axons
to grow out. After 24–36 h culture, the tip of almost all axons
had growth cones with well developed lamellipodia and filopo-
dia. AP-tagged domain fragments were then added to the cul-
ture, and the morphology of growth cones was observed after
30 min (Fig. 8). As shown previously, treatment with Nel-AP
induced growth cone collapse in �80% of retinal axons. Con-
sistent with the binding activities of cysteine-rich domains of
Nel, Nel CRN-AP, Nel CRC-AP, and Nel �TSP-AP exerted
remarkable growth cone collapsing activities. Nel EGF-AP was
found to have weak collapsing activity. Surprisingly, despite its
strong binding activity to retinal axons, Nel TSP-EGF-AP did

not induce strong growth cone collapse, but showed only a
weak activity that is comparable to that of Nel EGF-AP.
Nell1-AP or control AP did not show any obvious effects on the
growth cone morphology. These results indicate that cysteine-
rich domains play major roles in Nel-induced growth cone col-
lapse of retinal axons.

DISCUSSION

Nel has recently emerged as an important regulator of neural
development and functions. The Nel protein has a multimodu-
lar structure and contains conserved domains that play impor-
tant roles in molecular interactions and cell-cell communica-
tions in other extracellular molecules. To elucidate the
mechanisms by which Nel exerts its diverse functions, it is
important to understand the roles of its individual domains. In
this study, we have performed structure-function analysis of
Nel by using a series of expression constructs for specific Nel
domains. Our studies have determined the domains that are
responsible for homo- and hetero-multimer formation, hepa-
rin-binding activity, binding to potential receptors on retinal
axons, and growth cone-collapsing activity.
Homo- and Hetero-multimer Formation Mediated by the

TSP-N Domain—The results of co-immunoprecipitation ex-
periments have shown that homo-multimer formation of Nel is
mediated by the TSP-N domain (Fig. 2). In addition, when co-
expressed in the same cells, Nel and Nell1 can form hetero-
complexes through the TSP-N domain (Fig. 4, A and C). Nel/
Nell1 complexes are also detected in lysates of cells expressing
both proteins (Fig. 4B), indicating that hetero-oligomer forma-
tion occurs within the cells prior to secretion. Previous studies
have shown that thrombospondin-1, which has structural sim-
ilarities with Nel, can form both a homo-trimer and hetero-
trimers via two conserved cysteine residues in their N-terminal
region (21, 22). The TSP-N domain of Nel contains cysteine

FIGURE 8. Growth cone collapse of retinal axons is induced by cysteine-rich domains of Nel. Retinal explants were prepared from E6 –7 chick embryos and
cultured in vitro for 24 –36 h to allow retinal axons to grow out. Then, Nel-AP (Nel WT), AP-fused domains of Nel (Nel CRN, Nel EGF, Nel CRC, Nel �TSP, and Nel
TSP-EGF), Nell1-AP, or unconjugated AP (AP), was added to the culture, and the growth cone morphology was observed 30 min later. A–H, representative
growth cone morphology after the treatment with Nel-AP (A), AP-fused domains of Nel (B–F), Nell1-AP (G), or unconjugated AP (H). Treatment with Nel-AP
induced growth cone collapse in most of retinal axons, whereas Nell1-AP or control AP did not cause obvious effects. AP fusion constructs that contain
cysteine-rich domains of Nel (Nel CRN-AP, Nel CRC-AP, and Nel �TSP-AP) exerted strong growth cone-collapsing activity. Nel EGF-AP and Nel TSP-EGF-AP
showed weak growth cone-collapsing activity. I, quantification of the growth cone-collapsing activities. The percentages of collapsed growth cones were
plotted as mean � S.E. The growth cone-collapsing activity of each construct was compared with that of AP. *, p � 0.001.
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residues that are conserved in Nell1, and inter-chain disulfide
linkages between some of those residues may be involved in
Nel/Nell1 hetero-complex formation. Despite their structural
similarities, neither Nel nor Nell1 has appeared to form hetero-
complexes with thrombospondin-1 (Fig. 5), indicating the
specificity in multimer formation through the TSP-N domain
of Nel family proteins.
Nel andNell1 have been found, by using RNA in situ hybrid-

ization, to be co-expressed in several regions of the developing
nervous system, such as the inferior olive and spinal cord (Fig.
3), suggesting the possibility that Nel/Nell1 hetero-complexes
exist and function in vivo. Depending on the relative expression
levels of Nel and Nell1 in those areas, there is probably a
dynamic balance between the homo- and hetero-oligomeric
forms of the molecules. In neuronal cells that express both Nel
andNell1, the spectrumof homo- and hetero-complexes can be
simply altered by modulating the synthesis of either or both
molecules. If expressions of Nel and Nell1 are regulated by dif-
ferent extracellular factors, signals at the cell surface may pref-
erentially alter the synthesis of Nel or Nell1 and, thereby, influ-
ence the homo-/hetero-multimer equilibrium. In our affinity
probe in situ and growth cone collapse assays, Nel and Nell1
have shown different binding and growth cone collapsing activ-
ities (Figs. 7 and 8). Differential binding patterns between Nel
andNell1 have also been found in other tissues, such as kidney,4
suggesting that they recognize different receptors and/or bind
to the same set of receptors with different affinities. Therefore,
production of hetero-multimers may regulate the function of
Nel and Nell1 by modulating their receptor repertoires and
binding affinities.
Heparin-binding Activity of the TSP-NDomain—The affinity

chromatography experiments have shown that the TSP-N
domain is responsible for heparin-binding activity of Nel (Fig.
6). The N-terminal region of thrombospondin-1 also has hep-
arin-binding activity (25), indicating that this property is con-
served between the two proteins. Heparin-binding activity of
the TSP-N domain may be important for regulation of the dis-
tribution and axon guidance functions of Nel in vivo. We have
previously shown thatNelmRNA is expressed in specific layers
of the developing chick tectum. AlthoughNel is a secreted pro-
tein, immunohistochemical analysis has revealed that most of
the Nel protein remains in the layers of its origin (9). This lim-
ited diffusion may be because the secreted Nel protein is
trapped in situbyHSPGs,which are abundant in the developing
tectum (26). Because Nel exerts inhibitory effects on retinal
axons in vitro and retinal axons do not normally invade the
tectal layers that express Nel in vivo, we have proposed that Nel
may act as an inhibitory guidance cue in the layer-specific reti-
notectal projection (9). Topographically specific distribution is
an essential feature of axon guidance cues, and therefore hepa-
rin-binding activity of the TSP-N domain may play a crucial
role in Nel-mediated regulation of retinal axon projection.
Binding to Retinal Axons and Induction of Growth Cone Col-

lapse by Cysteine-rich Domains—To date, no specific receptors
have been identified forNel, and its intracellular signaling path-

way is still unknown. Affinity probe in situ assays in this study
have revealed that the TSP-N domain and cysteine-rich
domains can independently bind to retinal axons (Fig. 7). Inter-
estingly, cysteine-rich domains, but not the TSP-N domain,
have exerted strong growth cone-collapsing functions (Fig. 8),
suggesting that cysteine-rich domains ofNel can interact with a
cognate receptor on retinal axons and transduce signals that
lead to alterations of growth cone morphology. Because cys-
teine-rich domains are not involved in interaction between Nel
monomers, our results also indicate that oligomerization is not
necessary for receptor binding and activation, although the
results do not rule out the possibility that valency can influence
binding affinities of Nel to the receptor and its functions.
We have observed that, although the TSP-N domain of Nel

has strong binding activity to retinal axons, it does not appear to
have strong growth cone-collapsing activity. Because the
TSP-N domain has heparin-binding activity, its strong binding
to retinal axonsmay be attributed, at least in part, to interaction
with cell surface HSPGs (4). Similar interactions have been
reported for thrombospondin-1 (27, 28). The binding of the
TSP-N domain to cell surface HSPGs may modulate the inter-
action between Nel cysteine-rich domains and their signal
transducing receptors, as is the case for other heparin-binding
factors, such as fibroblast growth factors (29). Alternatively, the
TSP-N domainmay bind to its specific receptor that is different
from the receptor for cysteine-rich domains and exert distinct
functions. Further studies, particularly identification of the
cognate receptors, will be required for understanding molecu-
lar mechanisms by which Nel exerts its diverse functions.
Diversity in Molecular Interactions of Nel—In view of the

structural similarities between Nel and thrombospondin-1, it
seems likely that Nel interacts with a diverse range of extracel-
lular and cell surfacemolecules by using different domains (30).
The TSP-N domain of thrombospondin-1 interacts with integ-
rins, calreticulin, low density lipoprotein receptor-related pro-
tein, sulfatides, and cell surface HSPGs and chondroitin sulfate
proteoglycans (31). Because the TSP-N domain of Nel also has
heparin-binding activity, some binding partners may be shared
by the TSP-N domains of Nel and thrombospondin-1.
The cysteine-rich domains of the Nel family of proteins have

structural similarities to those of chordin, which acts as an
antagonist for bone morphogenetic proteins (BMPs) in the
extracellular space by directly binding to BMPs and thereby
preventing the activation of BMP receptors (32, 33). The struc-
tural similarities are reflected in the spacing of cysteines and in
the presence of the CXXCXC and CCXXC motifs and con-
served glycine and tryptophan residues, although the degree of
similarity varies between different cysteine-rich domains of
Nel. Interestingly, chordin-like cysteine-rich domains are pres-
ent in a number of extracellular proteins, and some of those
proteins have appeared to regulate the BMP and other trans-
forming growth factor (TGF) � signaling positively or nega-
tively (13). Although it remains to be determined whether Nel
family proteins bind TGF� family members, the structural fea-
ture of Nel cysteine-rich domain raises the intriguing possibil-
ity that Nel may modulate growth factor signaling via binding
and sequestration of ligands, as well as via binding to its one or
more cognate receptors.4 R. Nakamura and M. Nakamoto, unpublished observation.
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EGF-like domains have been found in a number of eukaryotic
proteins that are involved in cell proliferation, growth inhibi-
tion, and differentiation (14). For examples, EGF-like domains
of thrombospondin-1 have been recently shown to indirectly
activate the EGF receptor and downstream phospholipase C�
and stimulate cell migration (34). Although no functions have
been identified in this study for the six EGF-like domains ofNel,
it is likely that they are involved in interactions with a variety of
extracellular molecules. Interestingly, it has been previously
indicated that EGF-like domains of Nel can interact with pro-
tein kinase C (4, 35). Because Nel has an alternative splicing
form that encodes cytoplasmic protein, Nel may regulate intra-
cellular signaling through its EGF-like repeats.
In summary, the present study has determined the one or

more domains of Nel that are responsible for interactions
with other extracellular molecules. Taken together with the
results of previous reports, these findings strongly suggest
that Nel plays a diverse range of functions by using its differ-
ent domains.
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