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Selectivity for Spectral Motion as a Neural Computation for
Encoding Natural Communication Signals in Bat Inferior

Colliculus

Sari Andoni and George D. Pollak

Section of Neurobiology, Institute for Neuroscience, and Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712

This study examines the neural computations performed by neurons in the auditory system to be selective for the direction and velocity
of signals sweeping upward or downward in frequency, termed spectral motion. We show that neurons in the auditory midbrain of
Mexican free-tailed bats encode multiple spectrotemporal features of natural communication sounds. These features to which each
neuron is tuned are nonlinearly combined to produce selectivity for spectral motion cues present in their conspecific calls, such as
direction and velocity. We find that the neural computations resulting in selectivity for spectral motion are analogous to models of motion
selectivity studied in vision. Our analysis revealed that auditory neurons in the inferior colliculus (IC) are avoiding spectrotemporal
modulations that are redundant across different bat communication signals and are specifically tuned for modulations that distinguish
each call from another by their frequency-modulated direction and velocity, suggesting that spectral motion is the neural computation
through which IC neurons are encoding specific features of conspecific vocalizations.

Introduction

Natural sounds, such as conspecific vocalizations and human
speech, represent an important part of the sensory signals
animals and humans encounter in their daily lives. Under-
standing the neural mechanisms involved in the processing of
natural stimuli presents many challenges in all sensory modal-
ities including vision and audition. While this has led to the
development of novel computational methods that derive the
relevant features of natural stimuli that sensory neurons en-
code in their spiking output (Theunissen et al., 2001; Machens
et al., 2004; Sharpee et al., 2004; Touryan et al., 2005; David et
al., 2007), little is known about the actual computation sen-
sory neurons are using to create their selectivity for particular
features of natural stimuli, and specifically stimuli used for
social communication.

Previous studies have shown that response selectivity for
natural communication signals can be observed as early as the
inferior colliculus (IC) in the auditory midbrain (Klug et al,,
2002; Portfors, 2004; Xie et al., 2005; Andoni et al., 2007;
Holmstrom et al., 2007). Although it has been shown that
blocking inhibition greatly reduced response selectivity to nat-
ural signals in the IC (Klug et al., 2002; Xie et al., 2005), it is
still unclear which spectral and temporal features of conspe-
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cific vocalizations are encoded by an IC neuron and what
computation IC cells are using to produce a feature selective
output.

In most previous studies, the receptive field of an IC neu-
ron was characterized as a single linear filter, which was de-
rived as the spike-triggered average (STA). While this was
effective in describing the stimulus—response relationship of a
minority of neurons in the IC (Escabi and Schreiner, 2002;
Andoni et al., 2007; Versnel et al., 2009), the majority of au-
ditory neurons had significant nonlinear response properties
and thus the predictions of the STA were relatively poor (Sa-
hani and Linden, 2003; Machens et al., 2004; Andoni et al.,
2007). In this study, we extracted the set of linear spectrotem-
poral filters that maximized the information between natural
stimuli presented and their evoked response in the IC. We
refer to each linear filter as a stimulus feature to which an IC
neuron is tuned.

The most informative stimulus features of the majority of
IC neurons in this study revealed their selectivity for the di-
rection and velocity of frequency-modulated (FM) signals,
sounds that contain a movement of sound energy across fre-
quency. We refer to this movement as spectral motion, which
is a prominent feature of animal vocalizations and the formant
transitions that provide important cues for the perception of
human speech (Liberman and Mattingly, 1989). Our analysis
shows that, by having selectivity for spectral motion cues pres-
ent in their conspecific vocalizations, IC neurons are able to
encode specific features of these communication signals. This
close agreement between neural tuning and features of natural
conspecific signals shows that auditory neurons have evolved
to specifically encode features of signals that are vital for the
survival of the animal.
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Materials and Methods

Surgical procedures

Experiments were conducted on Mexican free-tailed bats, Tadarida brasilen-
sis mexicana, captured from local sources in Austin, Texas. Bats were of either
sex. Surgical procedures were as described in a previous report (Xie et al.,
2007). In brief, bats were sedated with isoflurane (inhalation) and then anes-
thetized with an intraperitoneal injection of ketamine/xylazine (75-100
mg/kg ketamine, 11-15 mg/kg xylazine; Henry Schein). Recordings began
after recovery from the anesthetic, and thus all data were obtained from
awake animals. Water was presented periodically with an eyedropper. Bats
typically lay quietly during the experiments. If they showed signs of discom-
fort, data collection was stopped and doses of the neuroleptic ketamine hy-
drochloride (1:40 dilution; 0.01 ml injection) were administered. All
experimental procedures were in accordance with a protocol approved by
the University of Texas Institutional Animal Care Committee.

Electrophysiology

Single units were recorded with a single micropipette filled with buffered 1 m
NaCl and 2% Fast Green, pH 7.4, to enhance the visibility of the electrode.
The electrode was positioned over the IC and was subsequently advanced
from outside of the experimental chamber with a hydraulic micropositioner
(2650; Kopf). Recordings were made at depths ranging from ~300 to 1600
um, which covered most of the dorsoventral extent of the central nucleus of
the IC. The electrode was connected via a silver wire to the headstage of a
Dagan BVC 700A amplifier with its output digitized by a National Instru-
ments DAQ board (PCI-6259), which was also used for stimulus generation.
Data acquisition and stimulus generation were synchronously run using
custom-built software written in Labview (National Instruments) and
MATLAB (MathWorks). Sound was presented in free field from a 3 inch
ribbon tweeter (Fountek JP3.0; Madisound Speakers) positioned 40-50° on
the side contralateral to the IC from which recordings were made. The
speaker was flat 6 dB from 3 to 80 kHz. Speakers were calibrated with 0.25
inch Briiel and Kjeer microphones.

Acoustic stimuli

Acoustic signals were pure tones, logarithmic FM sweeps, as well as
species-specific social communication signals. All stimuli had a 0.5 ms
rise and fall time constructed using a cosine-squared function.

FM sweeps. FM sweeps were centered around the best frequency (BF)
of each neuron and swept with different FM velocities either upward or
downward on the logarithmic frequency axis. To construct a logarithmic
sweep, we defined FM velocity as follows:

1 2\J1/J0
. og(Aft/f)) i

where f, and f; are expressed in hertz as the start and end frequencies, respec-
tively, and At is sweep duration. Velocity, v, is expressed in octaves/second,
where a positive value defines an upward moving sweep, whereas a negative
value indicates a downward sweep. Thus, we can express the instantaneous
frequency of the sweep as f{t) = f,2". To write the FM sweep as sin(¢(7)), we
have to integrate over time for the instantaneous phase as follows:

o(t) = 2’n'ff(*r)8‘r. (2)

Assuming an initial phase of 0° the logarithmic FM sweep can be de-
scribed as follows:

. 27fy2"
s(t) = Sm(vln(z))'

Natural calls. We used 25 bat social communication calls in this study.
The calls were selected from a larger repertoire and were chosen because
their acoustic features represent a range of spectrotemporal patterns that
are used in a variety of important behavioral contexts (Bohn et al., 2008).
Each call varied in length from 0.5 to 4 s with a sampling rate of 300 kHz.

(3)
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Most calls had their spectrum between 10 and 80 kHz, although some had
energy as low as 6 kHz while others had harmonics that went up to 100
kHz. All calls were presented at a mean intensity of 50-70 dB SPL.

Dimensionality reduction

To derive the relevant features of natural communication signals that
drive the response of an auditory neuron, we used dimensionality reduc-
tion methods that model the functional relationship between the audi-
tory stimulus and neural response as a cascade of a set of linear filters and
a static nonlinearity (Bialek and de Ruyter van Steveninck, 2005). This
was done using the LNP (linear—nonlinear—Poisson) model (Simoncelli
et al., 2004), modified to work with natural stimuli as described by
Theunissen et al. (2001) and Touryan et al. (2005), and optimized using
information theoretic methods (Pillow and Simoncelli, 2006). In this
model, the spiking response of a neuron, r, to a given stimulus, s, is
modeled as a set of linear filters, k,, . . ., k,,,, with their convolution output
run through a static nonlinear function, g, as follows:

r(t) = glky * s, ky *s, ..ok, *s), (4)
where m is the number of relevant dimensions that span the feature subspace
needed to capture the stimulus-response relationship of the neuron. Here,
the asterisk (*) denotes convolution over time such that the following:

t

k*s = fk(ﬂ')s(t - 7)o, (5)

and g is a static nonlinear function that maps m-dimensions onto a
spiking rate output, .

Natural stimulus correlations

Each natural sound was converted from a sound pressure waveform to a
spectrogram form using a windowed discrete-time Fourier transform with
zero mean and log amplitude. The resulting spectrogram for each stimulus
segment had 7 bins in time with a bin size of ~1 ms and m bins in log
frequency with each bin spanning one-quarter of an octave. Each stimulus
preceding a given time, f, was thus written as a single vector, s,, with n X m
dimensions. All natural stimuli presented can then be written as follows:

S = [sIsT... sk, (6)

where N is the total number of time samples in the overall spectrogram,
and T denotes the vector transpose. Writing each linear filter, k, from
Equation 4 in vector form as well enables us to write the convolution
operator as a projection across each filter such that k * § = k.

To use spike-triggered averaging and covariance methods with natural
stimuli, the stimulus had to be corrected for its second-order spectrotempo-
ral correlations (Theunissen et al., 2001; Touryan et al., 2005). First, the
stimulus autocorrelation matrix was computed as A = ST'S, which was then
decomposed into its eigenvectors, U, and eigenvalues A, A,,. .., A, using
singular value decomposition. Then, the stimuli was “whitened” or “nor-
malized” by correcting for the stimulus correlations as follows:

1
— 0
™
Sy = SU , (7)
1
0

A

where ¢ < n such that only a subset of the eigenvectors are used for
normalization since using very small eigenvalues will result in the ampli-
fication of high-frequency noise (Touryan et al., 2005; David et al., 2007;
Lesica and Grothe, 2008). The percentage of eigenvectors used for whit-
ening the stimulus, often referred to as the cutoff value, was treated as a
free parameter and its value was chosen for each neuron such that it
maximized the prediction accuracy of the test stimulus. For most neu-
rons, the cutoff value was between 30 and 50%.
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Most informative subspace

After correcting for stimulus correlations, the STA and spike-triggered cova-
riance (STC) were computed for each neuron. The STA is simply the
following:

1N
uzﬁgsi, (8)

where s, is the stimulus vector preceding the ith spike and N is the total
number of spikes evoked by all stimuli. The STC is then derived as follows:

1 N
C = ﬁE (s = ms — w" ©)

While the STA and/or the significant eigenvectors of the STC could pro-
vide us with the relevant directions in stimulus space that span the feature
subspace of the neuron, as described in Equation 4, they are restricted to
orthogonal directions and it is difficult to know which axes of the sub-
space are most informative. Instead, we used an information-theoretic
approach in which both the STA and STC are used to find the most
informative subspace that maximizes the information between the raw
stimuli and the stimuli that evoked a neural response. This was done
using the iSTAC (“information-theoretic spike-triggered average and
covariance”) analysis as described by Pillow and Simoncelli (2006). This
method uses the Kullback—Leibler (KL) divergence, an information-
theoretic measure of the difference between two probability distributions
(Cover and Thomas, 2006), specifically, the difference between the prob-
ability distribution of the raw stimuli, P(s), and the stimuli that evoked a
spiking response, P(s | spike), such that the following:

. ) P(s | spike)
Dy [P(s | spike) | P(s)] = [ P(s]| splke)log<T>85

(10)

Assuming both distributions are well approximated by a Gaussian, in
which the raw stimulus distribution was whitened to have zero mean and
unit covariance, as shown above, and the spike-triggered stimulus has a
mean and covariance described in the STA and STC, respectively, then
the KL divergence within a given subspace, B, can be reduced to the
following (Pillow and Simoncelli, 2006):

1
Dy [B] = E(tr[BT(C + uuh)B] + log| B'CB| — m),

(11)

where #r(.) and |.| indicate the matrix trace and determinant, respectively.
The matrix B that maximizes the above equation gives us the most infor-
mative subspace, with its m-columns representing the set of linear filters
that span this subspace. Therefore, the KL divergence is optimized as an
objective function. First for a one-dimensional (1D) subspace, where
m = 1, and then grown incrementally by adding columns to B such that
KL divergence is maximized for each dimensionality. At each step, several
initialization points are selected from the significant eigenvectors of the
STC to ensure the optimization converges to a global maximum. To
determine the number of significant subspace dimensions, a nested boot-
strap test was used to examine whether the information gained by in-
creasing the dimensionality is significantly above that expected from
random sampling.

After finding the most informative subspace for the whitened stimu-
lus, the columns of B, which represent the most informative dimensions

(by, ... b,,), are projected back to the unwhitened space as follows:
! 0
o
ki, = bl U, (12)
1
0

A
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Static nonlinearity

After finding the most informative set of linear filters that span the fea-
ture subspace of each neuron, as described above, an m-dimensional
static nonlinearity has to be found that maps the stimulus projection
across the most informative subspace onto an actual spiking rate re-
sponse. When the maximally informative subspace is low dimensional,
m = 2, the nonlinearity can be easily estimated by first projecting the
stimulus across the subspace, s' = BT, then the nonlinearity can be
estimated as follows:

Pspike | ) P(s* | spike) 3
spike | s*) = a——F

p P (13)
where « is proportional to the mean spike rate, P(spike). This is often
termed the histogram method, where the nonlinearity is derived by tak-
ing the ratio of the spike-triggered stimulus to the raw stimulus distribu-
tions, both projected across the most informative subspace. For higher
dimensions, estimating the full nonlinearity is a lot more involved, but
one can still use the histogram method across each informative dimen-
sion individually.

Predictions

To evaluate the performance of the most informative subspace and the
static nonlinearity in predicting the neural response of each neuron, we
first projected a test stimulus not used in deriving the most informative
dimensions onto the subspace, s* = st, where x designates the dimen-
sion corresponding to the first, second, or both most informative dimen-
sions. We then computed mutual information between the projection
and the response of each neuron as follows:

P(s* | splke))as*' (14)

MI, = f P(s* | spike) logz< )
We also evaluated the degree of synergy achieved by projecting the
test stimulus onto both informative dimensions together compared
with the sum of information calculated from each dimension sepa-
rately, as follows:

MI, ,

MI, + ML’ (15)

syn =

Inseparability and directional selectivity

To assess the motion selective properties of each informative feature, we
first calculated its inseparability by decomposing each feature into its
singular values as follows:

k = E/\iu,-v,r. (16)

The inseparability index (Ins) measured the dominance of the first sin-
gular value, A, compared with the other singular values as follows:

)\2
Ins = 1 — z—;z ) (17)

The direction selectivity index (DSI) was computed by computing the
Fourier transform of each feature and comparing the total power in the
first quadrant, P}, to the total power in the second quadrant, P,, as
follows:

(Pz - Pl)

DSI = ——~.
(P, + P,)

(18)

The DSI for synthetic FM sweeps was calculated with the same equation,
where P, refers to the total spike count to downward moving sweeps,
whereas P, is the total spike count for upward sweeps.
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Different levels of neural selectivity in the IC. The top row shows the spectrogram of two example communication calls used by Mexican free-tailed bats. The bottom rows (a- ¢) display

the raster plots of the extracellular response to each call from three IC neurons with their spike waveforms (black) and its average (blue) shown to the right of each row. Each IC neuron displayed a
different level of neural selectivity to these calls. Whereas some neurons responded to most syllables in each call, as in a, others showed a higher degree of selectivity and only a subset of these
syllables evoked a neural response (b). Other neurons were even more selective, responding strongly to only a single syllable from these two calls, as in c. This shows that each IC neuron is encoding

a different set of spectrotemporal features present in these natural social communication signals.

Results

This study was based on 136 IC neurons recorded extracellularly
from the IC of awake Mexican free-tailed bats in response to
natural conspecific communication signals, FM sweeps, and
tones. The communication calls were selected from a larger rep-
ertoire recorded from a local colony of Mexican free-tailed bats
while the animals were engaged in a particular behavioral context
(Bohn et al., 2008). The selected calls were chosen because their
acoustic features represented most of the spectrotemporal pat-
terns found in the larger set.

Neural selectivity to natural calls

Spectrograms of two example calls and their responses recorded
from three IC neurons are shown in Figure 1. As can be seen in the
figure, IC neurons showed varying degrees of response selectivity
to these natural signals. While some neurons responded vigor-
ously to most vocalizations with very little selectivity (Fig. 1a),
others were more selective as they showed strong responses to a
particular subset of the syllables that compose each call with little
or no response to the other syllables (Fig. 1b). A third group
showed a higher level of selectivity and was only responsive to one
or few syllables of these calls (Fig. 1¢). In some neurons, their
selectivity to a given syllable was similar since each neuron would
respond to the same syllable of a call, as in the responses to the
second syllable of the first call in Figure 1a—c. These neurons with
similar selectivity could thus be tuned for the same stimulus fea-
ture that is similar to the syllable that evoked a shared response.
Most neurons in the IC, however, rarely showed a homogeneous
response to all vocalizations presented, and even though their re-
sponses could be similar to one syllable in a given call, they re-
sponded differently to other syllables and to other calls (Klug et

al., 2002; Andoni et al., 2007; Portfors et al., 2009; Schneider and
Woolley, 2010). For example, while the neurons in Figure 1, band
¢, both responded strongly to the second syllable in the first call,
the first and third syllables of the same call evoked responses in
the neuron in Figure 1b but not in Figure 1c. Moreover, every
syllable in the second call elicited strong responses in the neuron
in Figure 1b, whereas the same call did not produce any responses
in Figure 1c. This heterogeneity in selectivity shows that each IC
neuron is tuned for different spectrotemporal features of natural
calls. Therefore, deriving the relevant features each neuron is
encoding by its spiking output could reveal the computation in-
volved in creating neural selectivity to natural communication
signals in the auditory midbrain.

Most informative features and their static nonlinearity

To characterize the spectrotemporal tuning of an auditory neu-
ron, most previous studies relied on the STA, the average stimu-
lus preceding each spike. It was usually assumed that an auditory
neuron is tuned for a single spectrotemporal feature character-
ized by the STA such that the stimulus that is most similar to the
STA would predict the largest response, and the more the stimu-
lus differs from the STA, the weaker is the predicted response.
Here, we assumed that the response of each IC neuron depended
on multiple spectrotemporal features of the stimulus, including
the STA, and that their nonlinear combination defines the overall
receptive field of the neuron. To derive these features, we used the
LN (linear—nonlinear) cascade model often used in describing
the receptive fields of visual neurons (Simoncelli et al., 2004;
Bialek and de Ruyter van Steveninck, 2005; Rust et al., 2005).
These features together could then be treated as a set of linear
filters with their outputs run through a multidimensional static
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Figure2. Extracting the most informative features and their static nonlinearity. To extract the relevant features an ICneuronis ~ tures considered is increased. In other

encoding in its spiking output, each stimulus segment that preceded a spiking response is collected in the STE shown in a. Taking
the average of the STE after correcting for spectrotemporal correlations, or “whitening” the stimuli, resulted in the STA displayed
inb. Using both the STA and the STC, we searched for the set of spectrotemporal features that maximized the amount of informa-
tion they preserved between the stimulus and the spiking response. The plot in ¢ shows the amount of information gained as the
number of features considered is increased. The dashed line in cindicates the level of significant information gain determined by
nested bootstrap resampling (see Materials and Methods). The three most informative features are shown in the second row
(d—f), in which the feature ranked as third resembled the STA. The static nonlinearity associated with each feature is displayed in
the last row (g—i). Each nonlinearity shows how the spiking probability changes when the similarity between the stimulus and that

feature varies.

nonlinearity. The nonlinearity describes the probability of spike
generation as the similarity of the stimulus and each of the fea-
tures varies (see Materials and Methods).

The process of deriving the relevant features of an IC neuron
and their nonlinearity is illustrated in Figure 2. The set of stimuli
that preceded each spike is referred to as the spike-triggered en-
semble (STE). Only a subset of the STE for that IC neuron is
shown in Figure 24. Since natural communication signals typi-
cally contain strong spectrotemporal correlations that could bias
our estimate, the stimuli were first normalized or “whitened”
using their second-order correlations as described in Materials
and Methods. Taking the corrected average of the STE resulted in
the STA that is displayed in Figure 2b. While the STA could
provide significant information regarding the feature selectivity
of this neuron, there might be other features this IC cell is tuned
for that were not revealed through averaging. To find the com-
plete set of relevant features that resulted in the spiking response
of this neuron, two separate methods could be used (Sharpee,
2007). The first method involves searching the stimulus space for
additional features that, when combined together, would maxi-
mize a quantitative metric such as the predictability of the model
(Theunissen et al., 2000; Machens et al., 2004) or the mutual
information between the natural stimulus and the spiking re-

words, it plots the increase in information
(AKL) that resulted from projecting the
stimulus across an additional feature.
Note that using more than three features
for this neuron does not increase the gain
in information above the amount expected
from noise or undersampling (dashed line).
While the most informative features
showed similar spectral and temporal
tuning, they were uncorrelated and selec-
tive for spectrotemporal phases that were usually in quadrature as
discussed below. It is important to note that the STA was not the
most informative feature for this neuron but instead was very
similar to the feature that was ranked as third. This shows that the
STA does not always capture the most significant feature that
defines the neural selectivity of an auditory neuron.

The nonlinearity associated with each feature is displayed
in the last row (Fig. 2¢—i). Each nonlinearity maps the projection
of the stimulus across a feature to the spiking rate of the neuron.
A feature projection is generally equivalent to convolving the
stimulus with that feature, where a high positive value indicates
that the stimulus is very similar in its spectrotemporal shape to
the given feature, and a low negative value indicates that the
stimulus has spectrotemporal energy that is in opposite form
from that of the feature. Therefore, each nonlinearity shows how
the spiking rate of the neuron changes depending on the similar-
ity of the stimulus to its associated feature. To compute the non-
linearity for each feature, both the raw stimuli as well as the STE
were projected onto that feature and the ratio of the two distri-
butions resulted in its static nonlinearity. Both symmetric (Fig.
2¢,h), and nonsymmetric (Fig. 27) nonlinearities were found in
the IC. A nonsymmetric nonlinearity indicates that the spiking
probability increases only when the stimulus becomes more sim-
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Predictions are improved when multiple stimulus features are considered. The two most informative features for an IC neuron are shown on the left, each withiits 1D nonlinearity as well

as their combined 2D nonlinearity. The 2D nonlinearity shows how the spiking probability varies when the similarity of the stimulus to both features changes. A spectrogram of a bat courtship song
not used in deriving the features is displayed on the right with its evoked response (blue) and predicted response (red) shown in the bottom rows. Mutual information between the response of this
neuron and projecting the vocalization through the first and second feature independently was 1.1and 0.6 bits, respectively. The joint information using both features together increased to 2.2 bits.
Therefore, information gain using both features together is greater than the sum of information calculated independently from each feature, resulting in a synergy index of 1.3. The middle row shows
the predicted response using only the most informative feature, and its 1D nonlinearity, resulting in a CC of 0.4. Using both features and their combined 2D nonlinearity resulted in the most accurate
prediction with a CC of 0.6. This shows that this IC neuron is tuned for multiple spectrotemporal features of natural signals.

ilar to the feature. A symmetric nonlinearity, in contrast, indi-
cates that the spiking probability of the neuron increases both
when the stimulus is similar to the feature or when it is its com-
plete opposite. Symmetric nonlinearities proved to be important
in creating selectivity for spectral motion as discussed below.
While each plot in the last row of Figure 2 shows how each feature
affects the spiking response of the neuron individually, it does not
show the effect of combining the features together. The full non-
linearity is derived separately and has as many dimensions as the
number of relevant features. It defines the spiking probability as
the similarity between the stimulus and each of the features
changes.

Predicting neural response

Since the above method allowed us to derive the most informa-
tive features that an IC neuron is tuned to, here we investigated
how many of these features each cell is encoding and whether
using more than one feature could improve our predictability of
the spiking response of the neuron. To verify the validity of the
derived features, and their associated nonlinearity, they were
used to predict the response of each neuron to natural stimuli not
used in their derivation. We first used each informative feature
alone and then studied how combining the features together
would improve these predictions. In this study, we restricted our
analysis to two features since most neurons in our sample were
tuned for two significant features (see below), and deriving the
full nonlinearity for more than two dimensions proved to be both
computationally involved and sometimes not attainable for the
amount of data we had collected.

To measure the performance of the derived features and their
nonlinearity in predicting the neural responses evoked by novel
natural stimuli not used in their derivation, we computed the
amount of mutual information between the projection of the test
stimulus onto the features and its evoked neural response (see
Materials and Methods). Since the test stimuli were not used in
estimating the features and their nonlinearity, mutual informa-
tion provides an accurate measure of the predictive power of the
model (Sharpee, 2007). We first calculated the information ac-
counted for by each individual feature independently, and then
compared it with the joint information captured by projecting

the test stimulus across two features combined. The ratio of the
joint information to the sum of information calculated separately
from each feature defines the amount of synergy achieved by
combining the features together (Atencio et al., 2008). A synergy
value >1 indicates that the most accurate prediction can only be
achieved by using the combination of the features and their
nonlinearities.

Figure 3 shows the effect of combining the two most informa-
tive features in predicting the neural response of an example IC
neuron to a courtship vocalization not used in their derivation.
The middle row shows the predicted response calculated by pro-
jecting the call onto the first feature alone. This projection was
translated into a spiking rate using the 1D nonlinearity shown
below the first feature. The bottom row plots the predictions
when the call was projected across both features and mapped into
a firing rate using the combined 2D nonlinearity. The amount of
mutual information captured by the first and second features
individually was 1.1 and 0.6 bits, respectively. When the test vo-
calization was projected across both features, the information
increased to 2.2 bits. The resulting synergy index was 1.3, indicat-
ing superior predictions for the two-feature model. To further
verify that using the combination of both features resulted in the
most accurate prediction for this neuron, we computed a corre-
lation coefficient (CC) between our predictions and the actual
firing rate evoked by the bat call. Similarly, the CC increased from
0.4, when the first feature was used, to 0.6, when the response was
predicted using both features and their 2D nonlinearity. It is
evident that this neuron was tuned for multiple spectrotemporal
features of the stimulus and using a single feature alone was not
enough to produce the most accurate prediction.

The enhancement of predictability by using multiple features
was generally the case for the population of 136 neurons sampled
in the IC. In a subset of these neurons (49; ~36%), the natural
vocalizations presented did not evoke enough spiking responses
to derive a meaningful set of features that had significant infor-
mation gain, and their predictions were relatively poor (CC <
0.3). Therefore, these neurons were not used for further analysis.
For the remaining 87 neurons, 81 cells were significantly tuned
for multiple features as discussed below. In these neurons, the
information captured by the first feature alone relative to the
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to sweeps had an even stronger bias for the downward direction with a mean of —0.3.

information in the two-feature model had a mean of ~45%,
whereas the second feature on average accounted for ~31% of
the joint information. The amount of synergy gained by using the
two features together had a mean of 1.31 across these neurons,
which was significantly greater than one (p < 0.01, Wilcoxon’s
rank sum test). Furthermore, the CC using the first feature alone
compared with using the two-feature model increased signifi-
cantly from a mean of 0.46 to 0.61 (p < 0.01, Fisher’s r-to-z
transformation). This suggests that neurons in the IC are tuned
for multiple features of natural communication signals, which
might explain the poor predictions observed for most neurons in
our previous study that relied solely on the STA (Andoni et al.,
2007).

To evaluate the number of spectrotemporal features each neu-
ron is encoding, we calculated the number of features that pro-
duced a significant information gain above that of noise or
undersampling. As was shown in Figure 2¢, that IC neuron had
three features that carried a significant amount of information
that were above noise level, and therefore, these three features
and their nonlinearity should fully characterize the receptive field
of that neuron and its spectrotemporal tuning. Figure 4a shows
the number of significant features needed to characterize each
neuron in our population of 87 cells with significantly derived
features. It is evident that the majority of IC cells are tuned for
multiple features and only ~7% (6 of 87) could be fully described
by a single spectrotemporal feature that was usually equivalent to
the STA.

We qualitatively evaluated the shape of the static nonlinearity
associated with each feature across the neural population sam-
pled. In a minority of neurons (13%; 11 of 87), the nonlinearity

Second Feature

0.5 10 0.5 1

FM Sweeps

Properties of feature selectivity in the IC. @, The number of significant features each neuron s encoding shows that the
majority of IC neurons in our sample were tuned for two or more spectrotemporal features of the stimulus, and only a minority of
them (7%; 6 of 87) were tuned for a single feature that was equivalent to the STA. The remaining 81 neurons were significantly
tuned for multiple features and their first feature was compared with the second in the subsequent panels. b, Most of these
features showed strong inseparability since they were usually tilted either upward or downward indicating a preference for the
direction of FM sweeps. The mean inseparability index for the first and second most informative features were both ~0.6 (n = 81).
¢, d, Direction selectivity index for the first and second feature shows that they have different directional tuning. While the first
feature is biased toward downward (negative) motion with a mean of —0.2, the second feature showed a bimodal distribution
with amean around zero. e, Comparing direction selectivity extracted from features of communication signals to selectivity for the
direction of synthetic FM sweeps showed similarity to the selectivity observed in the first feature but not the second. Yet selectivity
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associated with the most informative fea-
ture was asymmetric. In these neurons,
the most informative feature was equiva-
lent to the STA and the subsequent fea-
tures had symmetric nonlinearities. The
example neuron in Figure 3 belonged in
that group. However, the majority of
these cells (87%; 76 of 87) had symmetric
nonlinearities at least for the two most in-
formative features such as the neuron dis-
played in Figure 2. Additionally, this
group of 76 neurons showed strong selec-
tivity for the direction and velocity of
spectral motion as discussed below.

Selectivity for spectral motion

At first glance, it could be noted that most
of the features encoded by the spiking out-
put of neurons in the bat IC are tilted in
0 1 shape and are usually spectrotemporally
inseparable. Figure 4b shows the distribu-
tion of inseparability we observed in both
the first and second most informative fea-
tures in the 81 neurons tuned for multiple
features. Since inseparability is generally a
prerequisite for direction selectivity in a
linear system, we computed a DSI for each
feature by taking its Fourier transform
and comparing the overall power between
the two quadrants (Depireux et al., 2001).
A negative DSI indicates selectivity for
downward motion, whereas a positive
value indicates tuning for the upward di-
rection. It was not surprising to see that both features across most
neurons were also directionally selective as shown in Figure 4, ¢
and d.

To compare the spectral motion selectivity observed in re-
sponse to natural stimuli to that in response to synthetic stimuli,
and to further verify the validity of the extracted features, elec-
tronically generated FM sweeps were presented, which varied in
both direction and velocity. The FM sweeps were centered
around the BF of each neuron, the frequency to which the neuron
was most sensitive. All FM sweeps had equal duration but varied
in spectral range resulting in different FM velocities in both the
upward and downward directions, as illustrated in Figure 5a. The
DSI computed from responses to FM sweeps across the popula-
tion of neurons is shown in Figure 4e. Note that the distribution
of DSI in response to sweeps is similar to the DSI computed from
the first informative feature, as both distributions show a clear
bias for the downward direction. Nevertheless, the DSI calculated
from responses to sweeps had an even stronger bias to the down-
ward direction than the first feature, suggesting that the second
feature might be playing a role in shaping the spectral motion
selectivity of IC neurons. However, the selectivity extracted from
the second informative feature was completely different from
that of sweeps and showed both downward and upward selectiv-
ity across different neurons.

To look closer at motion selectivity for sweeping FM signals in
individual neurons, Figure 5a shows a raster plot of the responses
of an IC neuron to FM sweeps with varying velocities and direc-
tion. Note that the neuron only responded to a single FM velocity
of —150 octaves/s, where the negative sign denotes the downward
direction. The most informative features of this neuron that were
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extracted from its responses to natural g
communication signals are displayed in
Figure 5, c and f. Both features were simi-

lar to oriented Gabor functions (i.e., a si-
nusoid with a Gaussian envelope) that :
were tilted to produce velocity selectivity o
for the same velocity that evoked the larg-

est response to FM sweeps. The best veloc-

ity (BV) of each feature was computed by b
taking the ratio of the temporal to spectral 20
modulation rates that had a peak magni-
tude in the Fourier domain (Andoni et al.,
2007). The BV for both features was also
around —150 octaves/s in agreement with
the responses to synthetic FM sweeps.
Taking a cross-section of each feature per-
pendicular to its BV shows that each fea-
ture is phase shifted from the other by 87°,
suggesting that both features are forming
a quadrature pair (Fig. 5¢). Each feature
also had a symmetric 1D nonlinearity
with their combined 2D nonlinearity cor-
responding to their sum (Fig. 5d). A sym-
metric nonlinearity increases the spiking
probability when the stimulus is either
very similar in energy and shape to each
feature or that it forms its complete opposite. In this manner, the
spiking probability is increased only when the stimulus has the
corresponding orientation in the spectrotemporal plane. Since
both features in this neuron are tuned for the same direction and
velocity, their cooperative nonlinear interaction produces strong
selectivity for FM sweeping signals. Furthermore, the property of
having a quadrature phase shift together with a symmetric non-
linearity suggests that selectivity for spectral motion in this IC
neuron could be explained by a functional model analogous to
the energy model previously described in vision (Adelson and
Bergen, 1985). In this model, the output of two oriented filters,
which are phase shifted to form a quadrature pair, is squared and
summed to produce a motion-selective output. Figure 5b shows
the prediction of the model to FM sweep responses and shows
that it was able to accurately predict the high degree of selectivity
of this neuron to a single FM velocity.

As mentioned previously, not all neurons had their two most
informative features tuned for the same direction of motion. In
fact, approximately one-half of the neurons sampled had the sec-
ond feature tuned for the nonpreferred direction. An example
neuron that is selective for features with opposing directions is
shown in Figure 6, cand f. Although the second feature was tuned
to the nonpreferred direction, its velocity tuning was very close to
the BV of the first feature but in the opposite direction. The BV of
both features was 93 octaves/s in opposing directions. When we
examine the nonlinearity associated with each feature (Fig. 6d),
we find that they are both symmetric but the nonlinearity of the
second feature is actually suppressive since the spiking probabil-
ity is decreased when the stimulus is either similar or opposite in
shape to that feature. This indicates that the second feature sup-
pressed the response to the nonpreferred direction at a velocity
close to the BV to which the neuron is tuned in the preferred
direction. Figure 6e plots the decomposition of both features into
their spectral and temporal modulation rates (ripples), via a Fou-
rier transform, which shows that each feature is similar to the
mirror image of the other across quadrants, and both showing
strong quadrant inseparability a necessary condition for velocity
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Cooperative features for spectral motion selectivity. a, A set of downward and upward FM sweeps with varying
velocities was presented to an IC neuron with its spiking response displayed below each sweep. b, Using the most informative
features and their nonlinearity extracted from responses to natural stimuli we were able to predict the response of the neuron to
only a single sweep velocity of around —150 octaves/s (oct/s) in the downward direction. , f, Both features were tilted in the
downward direction and had a BV of ~150 oct/s. d, Both features also had a 1D symmetric nonlinearity and their combined 2D
nonlinearity suggests their summation. e, Fitting a Gabor function to a smoothed cross-section perpendicular to the BV of the first
(black) and second (blue) features revealed that they are offset in phase by 87°. This shows that spectral motion selectivity in this
ICneuron could be described by a functional model similar to the energy model previously described in the processing of visual

tuning. Using both features and their excitatory and suppressive
nonlinearity, we were able to predict the response of the neuron
to FM sweeps, indicating that our functional model captured the
complex velocity tuning of this IC neuron. It is important to note
that having an excitatory and suppressive filters tuned in opposite
directions is similar to the Reichardt correlation model (Reich-
ardt, 1961), in which two opponent directional subunits produce
visual motion selectivity as described in the visual system of the
fly (Borst, 2000; Bialek and de Ruyter van Steveninck, 2005).
Examining the population of 76 IC neurons that had symmet-
ric nonlinearities in our sample showed that approximately one-
half of these cells had both of their most informative features
tuned for the same direction and for the same velocity as illus-
trated by Figure 7a (black dots). These same features were also
phase shifted by a mean of 92° (Fig. 7b), indicating a correspon-
dence with the energy model for motion selectivity. The other
one-half of the neurons had features that were tuned to opposing
directions with the second feature providing suppression. While
their features were tuned for opposite directions, their velocity
tuning was very similar (Fig. 7a, gray dots). The significance of
this similarity in velocity tuning in both excitatory and suppres-
sive features suggests an important role for the spectrotemporal
asymmetry in these features and is considered in Discussion.

Motion in bat vocalizations

Our analysis of the spectrotemporal features that IC neurons
are encoding has revealed a strong selectivity for the direction
and velocity of spectral motion. To understand how this mo-
tion selectivity might be playing a role in creating selectivity
for the natural communication calls themselves, we analyzed
the motion cues present in these signals and compared their
modulations over time and frequency to the modulation tun-
ing of IC neurons.

It is apparent from simple visual inspection that most of the
communication signals bats emit during different behaviors are
mostly composed of frequency modulations that sweep down-
ward or upward at various velocities (for example calls, see Figs.
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Figure 6.  Opponent features for spectral motion selectivity. aand b are as described in Figure 5. ¢, f, The most informative features extracted from responses to natural stimuli showed selectivity
for opposing FM directions. d, While both features had a symmetric nonlinearity, the nonlinearity of the second feature was actually suppressive, reducing the response to the upward (nonpreferred)
direction as shown in the full 2D nonlinearity. e, Decomposing each feature into its ripple components via a Fourier transform shows that each feature has power within a similar range of spectral
and temporal modulations but in opposing quadrants. Furthermore, both features were tuned to the same velocity of 93 oct/s in opposing directions as indicated by the dashed lines.
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Figure7.  Spectral motion selectivity in the population of IC neurons. a, Two populations of
IC neurons with symmetric nonlinearities were observed in this study. One with cooperative
features tuned for the same direction (black dots; n = 39) and the other with opponent features
tuned for opposite directions (gray dots; n = 37). The BV of the first feature is plotted against
the BV of the second and shows that both the cooperative as well as the opponent features were
tuned for velocities that were highly correlated. This indicates the importance of spectrotem-
poral asymmetry in two distinct computations of motion selectivity in the IC. b, Neurons that
were tuned for cooperative features had a phase shift between them with a mean of 92°and a
SD of 22°.

1, 3). As described previously in the study by Andoni et al. (2007),
each bat call could be decomposed into its Fourier (ripple) com-
ponents showing the spectral and temporal modulation rates
present in that call (Fig. 8a,b). This allowed us to measure both
the FM direction of the call by comparing the power between the
two quadrants, and its FM velocity by the alignment of energy
around a line with a constant ratio of temporal to spectral mod-
ulation rates. Additionally, we could estimate the overall modu-
lation spectrum across all the vocalizations recorded, which gives
us an overall representation of the modulations in time and fre-
quency that are present across all vocalizations (Singh and
Theunissen, 2003). The same analysis could also be applied to the
informative features we extracted from neural responses to com-
pare neural tuning in the IC to the acoustic properties of conspe-
cific vocalizations.

Figure 8¢ shows the modulation spectrum of all bat vocaliza-
tions. It plots the distribution of spectral and temporal modula-
tions present in the complete repertoire of bat calls. Overlaid on
top of the modulation spectrum are the peak modulations of the
most informative features IC neurons are tuned to. One observa-
tion that could be made from this plot is that the peak modula-
tion tuning of IC neurons is avoiding the dense areas of the
contour plot, which indicates that they are avoiding modulations
that are most common or redundant across the calls and are
tuned instead to modulations that are present in some calls but
not others. One can also note that the peak modulation tuning of
IC neurons covers a wide range of FM velocities indicated by the
dotted lines in the plot.

To further examine the modulation tuning of IC neurons, a
contour plot of the average modulations found in the first and
second most informative features are displayed in Figure 8, d and
1, respectively. As was observed from their peak tuning, it is evi-
dent that tuning in the IC is aligned to detect modulations that
deviate from the common modulations found across calls, allow-
ing each neuron to be selective for the modulations that represent
a given direction and velocity of spectral motion. In this manner,
each IC neuron responds only to the calls that contain the FM
sweeping direction and velocity the neuron is tuned for while
failing to respond or only responding weakly to calls with mod-
ulations outside of its tuning.

Comparing the FM velocities present in the calls with the
velocities IC neurons are tuned for, as represented by the best
velocity in the most informative feature, shows a very close agree-
ment (Fig. 8e). This correspondence between neural tuning and
acoustic properties of conspecific communication signals shows
that IC neurons are specifically encoding features of these signals
through the neural computation of spectral motion selectivity.
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Discussion a
Synthetic versus natural stimuli
Our main motivation for this study was to
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understand the neural computation in- g
volved in creating selectivity for specific ‘0;40
features of natural communication sig- g2
nals. This required us to derive receptive g "

fields of IC neurons that we were not able
to characterize previously with broad-
band synthetic stimuli such as noise and
moving ripples (auditory gratings). In our
previous study, we presented a large set of
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stimuli, specifically the conspecific vocal-
izations these animals use for social com-
munication. This allowed us to extract the
relevant spectrotemporal features each
neuron is encoding directly from the
communication calls themselves without
relying on synthetic stimuli. This strategy
was in agreement with recent studies in
birds (Woolley et al., 2006) and ferrets
(David et al., 2009), in which it was shown
that characterizing the receptive fields of
auditory neurons had significant differ-
ences depending on whether synthetic or
natural stimuli had been used. However,
we presented synthetic FM sweeps in this study to verify the va-
lidity of the features extracted from natural calls and showed that
the selectivity observed with natural stimuli is in agreement with
responses to simpler synthetic stimuli.

Figure 8.

Tuning for multiple spectrotemporal features of natural calls

One of our main findings in this study is that IC neurons are
usually tuned for multiple spectrotemporal features of the stim-
ulus. This was evident in our analysis of the number of features
required to maximize the amount of information gained between
the stimulus and response. It was further verified when the accu-
racy of the predictions increased when both informative features
were combined, exhibiting a synergistic relationship. Since the IC
receives a convergence of excitatory and inhibitory projections
from various nuclei in the brainstem, it is not surprising to find
that most neurons in the IC are actually tuned for multiple spec-
trotemporal features of sound. This property was studied previ-
ously in the processing of binaural cues, which showed that each
IC neuron is encoding multiple cues regarding the level and tim-

\\

Time (ms)

Temporal Modulation (Hz)

Velocity (oct/s)

Andoni and Pollak e Spectral-Motion Selectivity Encoding Natural Calls

b

w

g -196 oct/s

N

|
|
|

Spectral Modulation (cyc/oct)

10

-200 0
Temporal Modulation (Hz)

200 400

o

1st Feature

Spectral Modulation (cyc/oct)

200 0 200 400
Temporal Modulation (Hz)

0 400

0 100 200 300

—

2nd Feature

Il 1st Feature
M cCalls

Spectral Modulation (cyc/oct)

200 400

400
Temporal Modulation (Hz)

-200 0 200

Comparing spectrotemporal modulations of conspecific signals to neural tuning. a, A spectrogram of a single syllable
taken from a courtship call. b, The Fourier transform of the syllable shows that most of the energy is concentrated around the origin
with atail thatis oriented along a line that indicates the sweeping velocity of the syllable. ¢, The contour plot shows the modulation
spectrum of all bat calls in our repertoire showing 1/fdistribution that is typical of natural signals. The black and red dots designate
the peak modulations present in the first and second most informative features of IC neurons, respectively. Note that peak tuning
in the ICiis organized to detect various FM velocities (dashed lines) while avoiding redundant energy found in most calls. d, f,
Modulation spectrum of the most informative features shows that IC tuning is specifically aligned around the common modula-
tions in the calls to be selective for modulations that represent motion cues found in their conspecific signals such as the extended
tail in the modulation spectrum of the above syllable. e, Distribution of FM velocities found in the calls match the velocities of the
most informative feature representing the velocity tuning of IC neurons. This suggests that IC neurons are tuned to detect spectral
motion cues present in their conspecific social communication signals.

ing differences between the two ears as well as notch detection
(Chase and Young, 2006).

While tuning for multiple features was also present in the audi-
tory cortex (Atencio et al., 2008), most cortical neurons showed an
asymmetric nonlinearity for the most informative feature, which
was also similar to the STA. This might suggest that the cortex and IC
process the temporal envelope of an acoustic signal in a different
manner. By having a symmetric nonlinearity for the most informa-
tive feature, the response of the majority of neurons in the bat IC
were mostly affected by the direction and velocity of a spectrally
moving sound, and were least sensitive to the phase of the temporal
envelope of the signal. This might explain the difficulty in driving
these neurons with moving ripple stimuli. In contrast, neurons in the
auditory cortex were mostly sensitive to the phase of the envelope
but were additionally tuned to phase-invariant features of the stim-
ulus as indicated by the symmetric nonlinearity of their second in-
formative feature (Atencio et al., 2008).

The result of having multiple features encoded in the spiking
output of IC neurons might explain why previous studies had
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been unsuccessful in producing accurate predictions for a large
population of auditory neurons (Sahani and Linden, 2003; Ma-
chens et al., 2004; Andoni et al., 2007). These studies solely relied
on the STA to make these predictions, and as shown above the
STA is not always the most informative feature auditory neurons
are selective for. Furthermore, neurons in the IC in which a sig-
nificant STA could not be derived have been reported in many
previous studies (Escabi and Schreiner, 2002; Qiu et al., 2003;
Andoni et al., 2007; Versnel et al., 2009).

Correspondence with visual motion

The majority of IC neurons in our population showed high de-
grees of selectivity to the direction and velocity of acoustic mo-
tion across the spectral axis. Our analysis of the most informative
features extracted from these neurons revealed two distinct func-
tional computations that enabled these cells to be selective for
both the direction and velocity of spectral motion. The first
motion-selective computation found in the IC was analogous to
the energy model described in vision (Adelson and Bergen, 1985).
In this model, motion selectivity is computed using two linear
filters that are tilted in the spectrotemporal plane with a quadra-
ture phase shift. Their output was then squared and summed to
produce direction selectivity. By also having filters that were
quadrant inseparable, as was shown in Figure 6e, they were also
selective for the velocity of spectral motion. The energy model for
EM selectivity described above agrees with recent intracellular
studies in the bat IC, in which it was shown that, in some neurons,
excitation and inhibition are balanced and exhibit similar tuning
for the preferred direction (Gittelman et al., 2009).

While the energy model was consistent with approximately
one-half of the neurons that showed strong selectivity for motion,
the other one-half showed correspondence with a simplified op-
ponent energy model (Adelson and Bergen, 1985) as well as the
Reichardt correlation model (Reichardt, 1961). In these models,
motion is computed by subunits that are tuned for opposing
directions, in which one increases the neural response, whereas
the other suppresses it. In IC neurons that corresponded with
these models, motion selectivity was obtained by having two lin-
ear filters with opposite orientations and a spiking response
equivalent to the difference between their squared output. While
this could enhance responses to the preferred direction and sup-
press responses to sweeps moving in the nonpreferred direction,
it was surprising to see that each filter in these neurons was tuned
for the same velocity but in the opposite direction. This might
indicate that excitatory and inhibitory inputs innervating these
IC neurons have the opposite temporal asymmetry across the
frequency axis. In other words, excitatory inputs from different
frequency channels might have varying delays to produce coinci-
dence for a particular velocity in the preferred direction, while
inhibitory inputs have the opposite delays on the frequency axis,
thereby suppressing the response for the same velocity but in the
nonpreferred direction. This scenario would correspond with ex-
perimental evidence for the Reichardt model observed in the
processing of visual motion in the fly (Borst, 2000).

The latter functional model of spectral motion selectivity
through opponent filters could be the result of the interaction of
excitatory projections from the cochlear nucleus with inhibitory
innervations coming from the ventral nucleus of the lateral lem-
niscus and the superior paraolivary nucleus (Pollak et al., 2011).
The model is also consistent with recent studies conducted in the
auditory cortex of bats in which facilitatory excitation was ob-
served for tones with different frequencies and a delay consistent
with the best velocity of the neuron (Razak and Fuzessery, 2008),
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and it is also in agreement with intracellular recordings of FM-
selective neurons in the cortex of rats in which excitation and
inhibition were shown to have different temporal asymmetries
(Ye et al., 2010).

Neural tuning and features of conspecific vocalizations
Comparing the general spectrotemporal features of conspecific
communication sounds with those IC neurons are selective for
revealed that IC cells are tuned to respond to spectral motion cues
present in these signals. This was evident in the correspondence
between FM velocities found in the calls and those IC neurons are
tuned to. This agreed with our previous study in which we
showed that the receptive fields of IC neurons mapped with mov-
ing ripples showed tuning for the FM direction and velocities that
match those in the vocalizations (Andoni et al., 2007).

Furthermore, modulation tuning in the IC seemed to be
avoiding redundant spectral and temporal modulations that are
common among all vocalizations and neurons are instead tuned
for modulations that differ from one call to another. This prop-
erty of IC neurons was previously shown in the midbrain of birds
(Woolley etal., 2005). Looking closer at the modulation tuning of
IC neurons in the bat showed that they are aligned across various
spectral and temporal modulations, allowing them to be tuned
for the direction and velocity of spectral motion that distinguish
each syllable of a call from another. Therefore, selectivity for
spectral motion could be the neural computation through which
IC neurons of the bat are encoding features of natural commu-
nication signals.
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