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Abstract

The role of rare genetic variation in the etiology of complex disease remains unclear. However, the development of next-
generation sequencing technologies offers the experimental opportunity to address this question. Several novel statistical
methodologies have been recently proposed to assess the contribution of rare variation to complex disease etiology.
Nevertheless, no empirical estimates comparing their relative power are available. We therefore assessed the parameters
that influence their statistical power in 1,998 individuals Sanger-sequenced at seven genes by modeling different
distributions of effect, proportions of causal variants, and direction of the associations (deleterious, protective, or both) in
simulated continuous trait and case/control phenotypes. Our results demonstrate that the power of recently proposed
statistical methods depend strongly on the underlying hypotheses concerning the relationship of phenotypes with each of
these three factors. No method demonstrates consistently acceptable power despite this large sample size, and the
performance of each method depends upon the underlying assumption of the relationship between rare variants and
complex traits. Sensitivity analyses are therefore recommended to compare the stability of the results arising from different
methods, and promising results should be replicated using the same method in an independent sample. These findings
provide guidance in the analysis and interpretation of the role of rare base-pair variation in the etiology of complex traits
and diseases.
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Introduction

There is growing evidence that rare variants contribute to the

etiology of complex diseases [1,2,3,4]. A striking difference in the

distributions of the odds ratios (ORs) for common and rare

variants has been illustrated in a wide range of recent publications,

favoring higher ORs for some rare variants (reviewed elsewhere

[5,6,7]). As well, it has been demonstrated that rare coding

variants associated with complex traits are sometimes causal

through amino acid substitution [3,8,9]. For these reasons, rare

variants hold promise as a source of heritability which is not

explained by common base-pair variants.

Identifying rare variants associated with disease requires large

sample sizes since few individuals harbor such polymorphisms. In

addition, for rare variants, the power of single-marker tests, such as

those performed by genome-wide association studies (GWAS), is

poor. Development of alternative methods is thus essential. Over the

past two years, a growing body of methods [2,10,11,12,13,14,15,16,

17,18,19,20] seeking to overcome this limitation has emerged. These

methods generally employ three main strategies: collapsing markers

across a region, weighting and/or prioritizing markers, and

distribution-based approaches.

Li and Leal [20], for example, proposed a method to collapse

rare variants across a region. This and other collapsing methods

are based upon the hypothesis that low-frequency variants are

rare, but in aggregate, they may be common enough to account

for variation in common traits. Under such models, it is assumed

that the probability of being diseased increases with the number of

rare minor alleles. However, this might not always be the case

[21]. Weighting methods assign more importance to alleles based

on many possible criteria, such as minor allele frequency (MAF) in

the control population [17], or possible alterations in protein

function, including measures produced by SIFT and Polyphen2

[11,22]. More recently, methods examining changes in distribu-

tions associated with rare variants [2,23] have been proposed. Liu

and Leal [2] based their novel method on multi-locus genotypic

configurations, where each unique pattern of genotypes is

tabulated, and the associated risk of disease for each configuration
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is modeled using a mixture distribution. Liu and Leal refer to their

method as a kernel-based approach (KBAC), since part of the

mixture distribution is modeled by nonparametric kernel density

estimation. Neale et al. [23] showed that a test of association can

be based on binomial over-dispersion of variance, conditional on

the number of rare variants present in a region. Another

innovative and flexible method has been developed by Wu et al

[24]. These authors proposed the sequence kernel association test

(SKAT), a supervised, flexible, and computationally efficient

regression model (with the possibility of adjusting for covariates),

to test the association between rare and common variants and

traits or disease status. SKAT is similar to a classical mixed model,

and is based on a score test for non-zero variance associated with

the effects of all the rare variants under consideration.

These recently proposed models have often relied upon

unverifiable (and sometimes unnecessary) hypotheses in order to

simulate sequence data. Certainly, simulation of large sets of

sequence data is a complex task and depends on hypotheses

concerning the evolution of human genomic regions. The validity

of any particular set of evolutionary hypotheses is unlikely to be

consistently true across the [4] genome, as each gene demonstrates

a large variance in these parameters [25,26].

The performance of these newly proposed models using real

sequence data in a large sample has not been independently

evaluated. We therefore tested the power of commonly-used

statistical methods designed to assess the impact of rare variants on

continuous and dichotomous traits in 1,998 individuals Sanger-

sequenced at seven genes. We employed a variety of possible

relationships between genotype and phenotype in order to fully

investigate the performance of such models under different

realistic scenarios.

We selectively chose some of the recently proposed statistical

methods for rare variant association. These included: collapsing

methods (with and without a variable minor allele frequency

[MAF] threshold for defining rare variants), a weighting method

(which assigns weights variants inversely proportional to their

MAF), a variance-based approach [2,11,17], as well as a regression

method using the Kernel association test (SKAT) [24]. We used

the software provided by [11] to implement the collapsing and

weighting methods. Four models were first investigated: a

collapsing method using a threshold of 1% (T1) and 5% (T5), a

weighted approach (WE), and a variable-threshold approach (VT)

(see http://genetics.bwh.harvard.edu/rare_variants). (Note that

while the WE method was implemented by [11], the model was

proposed by Madsen and Browning [17]). In addition, we

developed an approach for detection of rare-variant association

with continuous traits that was inspired by KBAC [2], that we call

‘‘weighted outlier detection’’ (WOD). Two different MAF

thresholds were applied to this new WOD method at 1%

(WOD1) and 5% (WOD5) (see Text S1 for details). The last

method we tested is the regression model (SKAT) developed by

[24]. The relative power of each of these methods was then

compared assuming different possible relationships between rare

variants and continuous traits or disease status.

Results

We evaluated the comparative power of recently proposed rare

variant association methods using Sanger sequencing data from

1,998 individuals.

Control simulations
The first set of simulations, which are designed to act as positive

and negative controls for each of the methods tested, assesses

potential relationships between rare variants and continuous traits

under the relevant hypotheses made in several models. Scenario 1

is a ‘‘null model’’, which serves as a negative control. Scenario 2

acts as a positive control for all collapsing models. Scenario 3

depicts a mixture of rare and common variants. Scenario 4 is a

positive control for SKAT and WOD, which are designed to

perform well under a mixture of protective and deleterious

variants. Scenarios 5 and 6 are positive controls for WE. Details

for these six different scenarios are found in Table 1. (See Text S1

for additional information).

Figure 1 shows the average power of each method based on this

control set of simulations from all seven genes (Table 2 and

Table 3). The power is around 5% in the null scenario, as

expected, where no associations were assumed between the

variants and continuous trait. On the other hand, Scenario 2,

referred to as a positive control for the collapsing design,

demonstrates power of 100%. It was expected that this latter

scenario would lead to very high power, since the simulation

assumed that the phenotypes were always altered if the individual

carried at least one rare allele, such as would be expected with a

highly penetrant allele.

In the remaining scenarios, it is striking that all methods have

relatively poor power under most hypotheses, even though our

simulation design included large shifts in the mean phenotype in a

large number of individuals. Almost all of these scenarios show

power less than 50% in the majority of the methods. In scenario 3,

the addition of common causal variants to the presence of rare

causal variants did not improve the power, except for the SKAT

method which demonstrates its advantage when combining

common and rare variants. In Scenario 4, where bidirectional

causal variants are present, only WOD1 and SKAT have power

above 50%.

Scenarios 5 and 6 test performance when rarer variants have

stronger effects. While the VT method marginally outperforms the

WE method in these scenarios, the WE method improves

considerably when compared to the other scenarios where no

relationship was assumed between MAF and effect.

These results demonstrate that all methods perform well under

their intended hypothesized relationship between rare variants and

Author Summary

There is now evidence that rare variants can contribute to
the etiology of complex disease. Next generation sequenc-
ing technologies have enabled their detection in large
cohorts, and new statistical methods have been proposed
to ascertain their association with complex diseases and
traits in order to improve power over single-marker
analysis. Each of these new methods assumes a particular
nature of the relationship between rare variants and
complex disease, yet these hypotheses have been largely
unverified. Therefore we sought to compare the power of
commonly used and novel statistical methods for rare
variants using Sanger sequencing data from 1,998
individuals sequenced at 7 genes by simulating several
phenotypes under models spanning a spectrum of the
common hypotheses concerning such associations. While
all methods perform reasonably well under their own
model-specific hypotheses, no single method gives
consistently acceptable power when these hypotheses
are violated. Unlike GWAS, wherein all variants can often
be tested using the same method across the entire
genome, the analysis and interpretation of sequencing
studies will therefore be considerably more challenging.

Power of Rare Variant Methods
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phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies
deleterious

at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:
Mixture of protective and deleterious
SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting
with sampling 1/MAF

No restriction Causal SNPs are deleterious,
sampling with probability 1/MAF

10% of rare SNPs Largest effect: 22.5
Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with
uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that
in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.
doi:10.1371/journal.pgen.1002496.g001

Power of Rare Variant Methods

PLoS Genetics | www.plosgenetics.org 3 February 2012 | Volume 8 | Issue 2 | e1002496



Systematic set of simulations (second set)
The combination of seven effects, four proportions of causal

variants associated with the trait, and seven genes, leads to 196

scenarios. In these scenarios, we first analyzed the results of each

scenario using single-marker tests, and then next applied the seven

rare variant methods (T1, T5, VT, WE, WOD1, WOD5, and

SKAT) for gene-level analysis. Next, we applied all seven methods

to dichotomous traits, created by selecting from the extreme

quarters of the continuous trait distribution.

Single-marker tests for rare variants
Results here are restricted to analysis only of the assigned causal

variants, and we report the proportion of these causal variants that

reach statistical significance, after adjustment for multiple-testing,

using a Bonferroni correction. Figure 2 shows the relationship

between the proportion of causal variants assigned and their effect,

averaged across all seven genes. Notably, but as expected, single-

marker tests cannot identify more than 20% of the causal variants,

even when effects are as large as 1.5 standard deviations. Power is

particularly poor when the effect is 0.5 or 0.75 standard deviations.

Systematic simulations for continuous traits
Figure 3 shows the relationship between power, effect size, and

proportion of causal variants associated with a continuous trait,

averaged across all seven genes. Each dot represents the power of a

given method ordered by average effect (ranging from 0.5 to 2.5

standard deviations) within each bin. Each bin represents the

proportion of causal variants (ranging from 10 to 30%). Each of

these 28 scenarios (7 different effect times 4 proportions of causal

variants) can also be expressed in terms of proportion of variance

explained, as seen in Table 4. These values indicate how much

variability in the trait each simulated model explains. It is clear

that none of the proposed methods have strong power to detect

any gene when rare causal variants have small-to-moderate effects

(less than 1.25 standard deviations). For most methods, effects of

1.5 standard deviations are needed to have reasonable power to

detect an association. The power for most methods was less than

60%. Furthermore, our WOD method is not well powered for

small-to-moderate effects, but is comparable to other methods

when the effects are larger. Power tends to increase as the

proportion of causal variant increases, mainly because there are

more causal variants that can possibly influence phenotype. Note

also that WOD does not accommodate covariates but that it

remains possible to incorporate covariates into the phenotype by

using residuals.

Collapsing methods do not perform well when effects are small

or moderate (,1.5 standard deviations). The only situation where

the power was greater than 75% is when between 15% and 30%

of the rare variants are causal, and effects are moderate-to-large

(Figure 3). The SKAT method seemed to perform as well as most

methods for smaller proportion of causal variants, but underper-

forms as the proportion of causal variants increases.

We also evaluated the power of the rare variant methods when

rare variants are assigned to have either deleterious or protective

effects (Figure 4). In this set, we permitted half the causal variants

to be deleterious and half to be protective. Again, the assigned

absolute effects ranged from 0.5 to 2.5 standard deviations and the

proportion of causal variants ranged from 10–30%. Figure 4

clearly shows the substantial advantage of SKAT and our

distribution-based approach (WOD) to detect effects in this

context. In the case of WOD, however, this advantage is limited

to effects of more than 1.5 standard deviations. SKAT does

perform better than WOD when the mean effect is small, but this

advantage tends to disappear for larger effects, e.g., over 2.0 SD.

When individuals carrying causal alleles have phenotypes shifted

by less than 1.25 standard deviation, all methods, except SKAT

performed equally poorly. In these situations SKAT provides

clearly improved power, but absolute power remains relatively

low. These results clearly show the important contribution of

methods that can account for mixture of protective and deleterious

variants within a gene.

Systematic simulations for dichotomous traits
In order to assess the performance of these methods for

dichotomous traits, we selected 500 cases and 500 controls from

the extreme 25th percentiles of the continuous trait distributions.

Table 2. Description of the seven genes.

Total number of
variants in the gene

Number of rare
variants (MAF,1%) Median MAF

Mean percentage of missing
genotype per variant

Coding length (Base
pairs)

Gene 1 49 42 2.50E-04 4.9 2002

Gene 2 103 90 2.54E-04 3.9 4094

Gene 3 29 27 2.52E-04 11.2 1239

Gene 4 64 54 5.08E-04 3.9 1638

Gene 5 68 62 2.54E-04 2.9 1963

Gene 6 67 54 5.08E-04 4.1 2901

Gene 7 128 105 5.01E-04 7.2 1500

doi:10.1371/journal.pgen.1002496.t002

Table 3. Description of the count of rare variants per gene.

Number of individuals with different counts of rare
variants

0 1 2 3 4 5

Gene 1 1882 112 4 0 0 0

Gene 2 1707 223 34 4 1 0

Gene 3 1905 74 2 0 0 0

Gene 4 1719 240 9 0 0 0

Gene 5 1771 176 20 2 0 0

Gene 6 1735 223 10 0 1 0

Gene 7 1709 262 24 2 0 1

doi:10.1371/journal.pgen.1002496.t003
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This design therefore tests power of rare variant methods for

sampling designs targeting more extremes of the distribution.

Figure 5 shows the relationship between power, effects, and

proportion of causal variants associated with a dichotomous trait,

when causal rare variants only increase risk of disease, averaged

across all seven genes. Note that WOD was not designed for

dichotomous traits, so results from this model are not presented in

this section.

Again, power increases as the proportion of causal variants

increases, and power remains low for smaller effects. In this

particular case-control design, VT appears to have the lowest

power compared to all other methods. The remaining methods,

T1, T5, WE, and SKAT have power estimates that are in a similar

range, but power from T1, T5, and WE seemed to outperform

SKAT as the proportion of causal variants increases. Interestingly,

power does not seem to be as strongly influenced by the magnitude

of the effect, as is it for continuous trait results. This can be explain

by the fact that when the effect is one SD away from the mean, on

average, over 90% of the individuals that are carrying a causal

allele will have their phenotype shifted and be classified as cases. In

other words, between effects of 1 to 2.5 SD, there is not a large

difference in the number of shifted individuals that are correctly

classified as cases.

The power was low for almost all methods when causal variants

could be either deleterious or protective––as was observed for

continuous traits. Figure 6 shows the relationship between power,

effects, and proportion of causal variants associated with a

dichotomous trait, when causal variants are deleterious, or

protective, averaged across all seven genes. Power increases as

the proportion of causal variants increases, and we also observe the

‘‘plateau’’ pattern described in the previous paragraph. Methods

such as T1, T5, and WE that are not designed for a mixture of

deleterious and protective effects have poor power to detect any

association between genes and dichotomous traits. SKAT clearly

outperforms the other methods under these circumstances.

Discussion

While many large-scale sequencing studies are now underway to

identify rare variants associated with complex diseases and traits,

our results demonstrate that assessing the association between rare

variants and complex disease is a challenging task. Standard

single-marker association methods exhibit low power and the

power of the statistical methods tailored for rare variants varies

tremendously depending on the true nature of the relationship

between the rare genetic variants and the phenotype. These

findings provide guidance in the design, analysis and interpretation

of sequencing studies for complex disease.

As it is still unknown how rare variants influence complex

disease, we have simulated several phenotypes under models

spanning a spectrum of the common hypotheses concerning such

associations. It is likely that the nature of the relationship between

rare variants and a phenotype varies from gene-to-gene. Our

findings suggest that no single method gives consistently acceptable

Figure 2. Proportion of causal variants reaching significance as a function of the average effect and proportion of causal variants
on average in a gene, employing a SNP-by-SNP analysis.
doi:10.1371/journal.pgen.1002496.g002
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power across the range of these relationships, even in a large

sample size. Analysis using different methods clearly imposes an

additional multiple testing burden, which cannot be easily

addressed. One, though somewhat cumbersome, way to solve this

problem would be by derivation of empirical P-values taking into

account the variety of methods tested. Another, more straightfor-

ward, approach would be to undertake replication in an

independent sample, using the method which demonstrated best

results at the discovery stage.

In this paper, we have also developed a new method

conceptually based on Liu and Leal’s KBAC method [2] to detect

the association between rare variants and quantitative traits. Our

extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to

compare all major novel statistical methods to identify the

contribution of rare variants to continuous phenotypes under

identical conditions. Our new approach performs poorly if all rare

variants act in the same direction, but performs well when variants

can either increase or decrease phenotype and have large effect.

We note that the presence of randomly assigned rare variants of

smaller effect in size, all tests have a distribution of test statistics

that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the

trait varies with an increasing number of rare alleles. However,

examples exist where protective and deleterious rare alleles are

present in a gene [21], and in such situations, collapsing methods

do not perform well. On the other hand, SKAT and WOD

performed extremely well compared to other methods in the

continuous traits scenarios, and dichotomous traits (SKAT only)

scenarios, respectively. SKAT in particular, was the only method

that performed well for dichotomous traits when variants could be

protective or deleterious. Methods like WE that assign more

weight to rarer alleles are promising, but only if the gene harbors

several causal variants whose effects are each inversely propor-

tional to their MAF. However, we note that the VT method still

outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of

dichotomizing a continuous trait and sequencing only its extremes.

While our design included the extreme quarters of the distribution,

thereby eliminating the need to sequence half the study population

and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004

Power of Rare Variant Methods
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that power was similar to that derived from the entire distribution

particularly only when the proportion of causal variants was high

and the effect sizes moderate. Nonetheless, sampling of the

extremes remains an attractive study design, particularly if the

sampled population is large and a more extreme sub-population is

selected.

Methods have been proposed to weight the relative importance

of rare variants based on various parameters including their

estimated deleterious effect on protein function [17,27]. For

example, the incorporation of estimated functional information,

such as the potential effect of an amino acid change as estimated

by Polyphen or SIFT, might improve power. However, these

scores have been criticized for their high level of misclassification

[22]. Moreover, functional prediction is more challenging when

the variants are non-coding.

The spectrum and frequencies of rare genetic variants are

known to depend on ancestry and age of the population studied

[28]. In this work, we have assumed that our sample consists of a

homogeneous population without stratification into population

subgroups. All the methods that we have examined could find false

associations if population sub-strata existed and were associated

with the phenotype, therefore particular attention must be paid to

population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger

sequencing data, rather than simulated genotyping data. We have

been able to avoid the simulation of such data by using fully

Sanger-sequenced data on nearly 2,000 individuals at seven

genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size

employed is among the largest sequenced datasets in the world

at present. Despite the fact that gene 3 had more missing data

and fewer variants, we note that the power results derived from

this gene are similar to all other genes.

We note that our simulations assumed no additive effects when

an individual carries multiple rare variants. However, we note that

very few individuals carry 2 or more rare variants (Table 3). In

addition, we assumed that rare variant effects take precedence

over common variant effects.

In light of our results, we recommend that single-marker tests

should not be used alone when rare variants are present and are

assumed to have small-to-moderate effects on the trait of interest.

On the other hand, as power across all novel rare variants methods

is generally low, the potential for identifying rare variant

associations using gene-based analysis strategies requires improve-

ment. Ideally, the true underlying nature of the association

between the gene and the phenotype should determine the choice

of statistical method, however, this relationship is almost always

unknown. Therefore, performing sensitivity analyses, i.e., assessing

different methods that perform differently under various condi-

tions might be a helpful option in order to interpret the results.

Furthermore we suggest that if one method identifies a gene of

interest that replication of this result should be performed in an

independent sample using the same statistical method. All methods

seemed to perform adequately under their specific model

hypotheses, but do not perform as well when these hypotheses

are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004

Power of Rare Variant Methods
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In the next few years, advances in sequencing technology will

enable the production of large quantities of sequence data on large

numbers of individuals, allowing for the cost-effective identification of

rare variants. These data will enable researchers to investigate the role

that rare variants play in disease etiology, in addition to uncovering

functional variants. Our results may provide guidance in the

planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No

additional IRB approvals were sought for this specific portion of

the work. The Committee on Ethics in Clinical Research, CHUV,

Lausanne University, Lausanne, Switzerland approved the

original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to

75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were

provided by GlaxoSmithKline (GSK). Methods for performing

the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was

not disclosed for proprietary reasons. Sanger sequencing has a low

error rate and is considered a gold-standard for comparison to

high-throughput sequencing studies [31,32]. For simplicity, and

since rare variants are not expected to be in high linkage

disequilibrium (LD) with surrounding variants, we imputed the

missing values of each rare variant independently from others

based on the computed MAF. The percentage of missing

genotypes per variant in a gene ranged from 3% to 11%, with

an average of 5.5% individual missing genotype information per

variant, across all genes (Table 2). All non-polymorphic base-pair

markers were removed from the sequence data.

All seven genes contained both rare and common variants: the

number of polymorphic variants ranged from 29 to 128, and the

proportion of variants with a MAF#1% ranged from 81% to

93%. The majority of these variants were extremely rare, with an

average of 55% of all variants across all genes being singletons.

Table 2 and Table 3 describe the allelic frequencies, and rare

variant distribution of all seven genes. We used these known

genotypes combined with phenotype simulations to compare

several commonly-used and novel statistical methods developed

for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a

variety of commonly-held hypotheses about the possible effects of

rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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and weighting designs and a range of general concepts about the

potential role of rare variants, whereas in the second set, we varied

the effect and the proportion of causal variants in across a grid of

values.

Control simulation sets
We proposed different phenotype simulation scenarios to

explore popular hypotheses regarding the mechanism by which

rare variants could influence complex disorders, namely (a) the

assumption that risk of disease increases with more rare alleles

(collapsing design), (b) the assumption that the magnitude of the

effect depends on MAF (such as equation (1) in [17] for the

weighting design), and (c) performance when a mixture of

deleterious and protective causal rare variants influences pheno-

types (Table 1). Here we describe the motivation behind our

choice of scenarios. Scenario 1, the null model, contains no causal

variants. Scenario 2 assumes that any rare variant increases the

risk of disease, which reflects the hypothesis underlying many of

the proposed statistical methods. Scenario 3 investigates a mixture

of common and rare causal variants, Scenario 4 investigates a

mixture of deleterious and protective effects, and Scenarios 5 and

6 explore the assumption that variants with lower MAF have

larger effect. In these cases, the effects were derived from equation

1 in [17].

In our simulation of phenotypes, the following rules were

applied in all scenarios. We assumed that all non-carriers of a

causal allele (deleterious or protective) variant have a normally

distributed trait with mean zero and variance of one, using a

standard normal random variable. When one or more common

variant(s) is/are assumed to have a deleterious effect, and an

individual is carrying at least one of these causal alleles, we

randomly drew a phenotypic value from a normal distribution

having a mean of 20.07 and a standard deviation of 1.01, which

allows for an effect typically identified in GWAS studies of

continuous traits [33,34,35]. When a rare variant is assumed to be

deleterious, carriers of at least one rare causal allele had a

phenotypic value randomly sampled from a normal distribution

with mean at 21.64, and standard deviation of 0.2. Relative to the

phenotype distribution of individuals with no causal variants, these

means correspond to the bottom 5% of the distribution. Similarly,

to model protective effects of a rare variant, the assigned effect was

normal with mean +1.64 and a standard deviation of 0.2. Such

effects for rare variants have been observed in the lipid literature

[36,37].

Deleterious variants were randomly sampled from the pool of

variants for each simulation. Rare variants were defined as those

having a MAF 1%, and common variants were defined as .1%.

While other thresholds can be used, GWAS have often used a 1%

threshold to define rare variants [35]. We allowed all rare variants

to be possibly causal, including singletons. Table 1 summarizes the

parameters investigated.

By varying hypotheses about the sampling of causal variants and

their effect, we created these 6 simulation scenarios. We randomly

generated a set of 250 phenotypes per individual, per scenario, per

gene. In each case, we randomly selected causal variants

associated with the traits, and then randomly generated a set of

Figure 6. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are
a mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g006
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phenotypes based on the corresponding parameters for each

iteration.

Systematic simulation sets
In our second series of simulations, we varied the proportion of

causal rare variants and their average effect on the phenotype

across a grid of values, i.e., where proportions (10, 15, 20, and

30%) of causal rare (MAF#1%) variants were combined with

values (0.5, 0.75, 1, 1.25, 1.5, 2, and 2.5 standard deviations) for

the mean effects. We also report in Table 4 the proportion of

variance explained by rare variants for each combination of

proportion of causal rare variants and their effect. An individual

carrying at least one rare causal allele has their phenotype value

chosen randomly from a normal distribution with one of these

seven means and with a standard deviation of 0.2. All 28

combinations between the proportion of causal (four values) and

effect (seven values) were simulated for the seven genes. Two

hundred and fifty sets of phenotypes were generated.

Multiple-testing was taken into account for single-marker test

analyses, using a conservative approach with Bonferroni correc-

tion for the number of single-nucleotide polymorphisms (SNPs)

tested. As for other rare variant methods, permutation was used to

control for type-I error in all statistical methods. Alpha level was

set to 0.05.

We also simulated dichotomous phenotypes by assuming

selection from the extremes of a quantitative distribution. In each

of the 196 scenarios presented above for continuous traits, we have

defined cases as being the 500 individuals with the lowest

continuous phenotypes, and the controls as being the 500

individuals with the highest continuous phenotypes. This study

design allows direct comparison of the relative utility of sequencing

only the extremes of a distribution, as compared to the entire

distribution, which has considerable financial ramifications

Supporting Information

Text S1 Details on the WOD method, additional details on how

the phenotypes were simulated for each scenario, and QQ plots

under the null hypothesis for all methods, and for genes 6 and 7.
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