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Abstract

Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small
molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science
offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and
enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a
better understanding of environmental functions and their application to biotechnology. Here we present ECOMICS, a suite
of web-based tools for ECosystem trans-OMICS investigation that target metagenomic, metatranscriptomic, and meta-
metabolomic systems, including biomacromolecular mixtures derived from biomass. ECOMICS is made of four integrated
webtools. E-class allows for the sequence-based taxonomic classification of eukaryotic and prokaryotic ribosomal data and
the functional classification of selected enzymes. FT2B allows for the digital processing of NMR spectra for downstream
metabolic or chemical phenotyping. Bm-Char allows for statistical assignment of specific compounds found in
lignocellulose-based biomass, and HetMap is a data matrix generator and correlation calculator that can be applied to
trans-omics datasets as analyzed by these and other web tools. This web suite is unique in that it allows for the monitoring
of biomass metabolism in a particular environment, i.e., from macromolecular complexes (FT2DB and Bm-Char) to microbial
composition and degradation (E-class), and makes possible the understanding of relationships between molecular and
microbial elements (HetMap). This website is available to the public domain at: https://database.riken.jp/ecomics/.
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Introduction

Natural ecosystems can be conceptually thought of as

interconnected environmental and metabolic systems. Humans

and their activities affect and are a part of these ecosystems. For

example, excessive nitrogen fertilizer may result in an alteration of

soil, freshwater and marine ecosystems because of nitrate

accumulation [1,2]. In addition, other chemical changes due to

anthropogenic activities like ocean acidification can alter microbial

activity and composition [3]. Considering a more applied

perspective of human activities within ecosystems, it is important

to gain an understanding of natural ecology and its metabolic

processes in various environments. From this perspective, biomass

production is at the forefront of current research.

Biomass, which is produced by a diversity of living organisms

and metabolic systems, has been harnessed by traditional human

activities including agriculture, forestry, and fisheries. There

currently however is considerable effort to transition from

petrochemical-based raw materials, energy and manufacturing to

a bio-based model; i.e. from oil-refineries to bio-refineries using

newly applied biological methods [4,5]. Similarly, identification of

renewable enzymes to be used as reactive catalysts for chemical

reactions leading to biomass production is a major focus [6,7,8,9].

For example, it is important to monitor reactions and yields of

intermediates as raw materials are converted to biomass products

such as lignocelluloses in a quantitative manner in the chemical

engineering field [10,11,12,13,14,15,16,17].

Omics approaches have recently begun to be applied to

investigations of ecosystem and biomass research. With this new

field emerging, computer-aided technologies related to omics

approaches are necessary for accumulating and processing

experimental data. Further, handling tools are needed

[18,19,20]. Based on the R platform, there are freely available

tools to analyze omics datasets, such as the ‘‘ape’’ R package to
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visualize phylogenetic trees using genomic sequences. However, to

our knowledge, there is no centralized group of freely available

webtools that can accept and analyze heterogeneous omics

datasets, including metagenomic and metabolomic data, and that

quickly can produce output data both in numeric and visual

format. We have reported on methodologies for analyzing

metabolic dynamics in plant and bacterial systems [21,22,23,24,

25,26,27], annotating metabolites [28,29,30], and revealing

enzymatic networks [31,32,33]. Our results have shown how

various combinations of genomic, proteomic, and metabolomic

(including macromolecule for biomass) data can advance both

ecosystem and applied research. Such a combination of multiple

omics levels, here called ‘‘trans-omics’’, can be applied to a wide

range of biological systems from engineered to natural ecosystems.

In this paper, we introduce the ECOMICS web site as a source of

information and tools useful for trans-omics approaches in

ecosystem and biomass research (Figure 1). ECOMICS is made

of the web tools including E-class for classification of ribosomal and

enzyme sequence data, FT2B for the digital processing of NMR

spectra for downstream analyses, Bm-Char for statistical assignment

of specific compounds found in lignocellulose-based biomass, and

HetMap for creating and visualizing data and correlation matrices

derived from multi-omics datasets. These tools were designed as a

unique web suite for analyzing elements included in environmental

samples, e.g., sequential elements of metagenome and enzymes (E-

class) and structural elements and compositions of metabolites and

macromolecules (FT2DB and Bm-Char), and then associating these

elements to reconstruct ecological relationships (HetMap). Namely,

analysis of macromolecular complexity is a challenging field, but the

ECOMICS web suite can uniquely calculate correlation coefficients

(HetMap) not only within lignin-lignin or hemicellulose-acetyl

signals, but also between lignocellulose components (Bm-Char) and

the abundance and identity of degradation enzymes (E-class). The

web site accepts heterogeneous omics datasets such as the

combination of metagenome and metabolome data in common

formats (FASTA format and NMR chemical shift data, respectively)

and allows for the visualization of results through the internet. We

believe that such simplicity leads to user-friendliness. This website is

open to the public domain: https://database.riken.jp/ecomics/.

Methods

Web tools development
A common PC equipped with two CPUs (Quad Core Xeon

2.93 GHz), 24 GB memory and 2 HDs (146 GB) is used as a server

machine for the ECOMICS web tools. Scripts and documents on

the site were written using Java, Perl/CGI, JavaScript, and HTML.

The operation of these tools was checked using Microsoft Windows

(XP2, Vista, and 7), Macintosh (OS X), and Linux (Fedora 12) as

operating systems and Microsoft Internet Explorer (version 8.0),

FireFox (version 3.5.7), Google Chrome (version 8.0), Safari (version

5.0.3), and Opera (version 11.0) as Internet browsers.

Example experimental data sets from an aquatic
microcosm

To validate the utility of the E-class, FT2DB and HetMap tools,

we prepared a small microcosm experiment to survey if any

metabolite – community relationships could be revealed in an

Figure 1. The ECOMICS schematic concept for analysis of relationships between the environment and omics datasets. Since the
global ecosystem is composed of biodiversity in plant, animal and bacterial systems, our research target is not focused to single species, but accepts
matrix datasets measured from complex systems. Experimental data should be comprised of a mixture of molecules from DNA to biomass. We
developed four kinds of web tools and databases; the E-class web tool for taxonomic (metagenomic) classification based on prokaryotic and
eukaryotic ribosomal sequences and for functional (enzymatic) classification based on sequential domains, FT2DB for the digitization of NMR spectra
for downstream chemical (from metabolic to macromolecular) phenotyping, Bm-Char for the chemical (macromolecular biomass) assignment of
lignocellulose components, and HetMap for identifying and viewing correlations between heterogeneous trans-omics data sets that are produced by
such web tools.
doi:10.1371/journal.pone.0030263.g001
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unbiased manner using the ECOMICS tools. Specifically, we

expected community changes along the time course and were

interested to see if we could also track concomitant changes in

community metabolites. Several 1 L marine plankton microcosms

were established using raw seawater from the mouth of the Nakarai

River on Iriomote Island, Okinawa, Japan. At irregular intervals,

100 ml of microcosm samples were aseptically replaced with artificial

seawater and nutrients (Daigo’s SP and IMK, Nihon Seiyaku), and

25 ml of the removed water was filtered onto sterile 24 mm 0.22 mM

Durapore filters (Millipore) in duplicate. Filters were vortexed in TE

and nucleic acids were extracted from this solution as described in

[21]. For PCR-DGGE the methods follow those of [34]. Methods for

NMR spectroscopy [22,26,28,35] have been previously described.

Selected DGGE bands were excised from the gels, PCR reamplified

using original primers without the GC-clamp, and purified PCR

products were directly sequenced ABI 3130xl Genetic Analyzer with

the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied

Biosystems, USA). The resulting edited sequences were submitted

to ‘‘E-class’’. For statistical analysis of DGGE - NMR data, a DGGE

band-by-sample matrix was created for peak heights using Quantity

One software (Bio-Rad laboratories Inc., Japan). NMR data was

processed using ‘‘FT2DB’’. A two-dimensional correlation map was

calculated with ‘‘HetMap’’ as a symmetric matrix using Pearson’s

product-moment correlation coefficient in which an element at

position (i, j) is defined as a correlation coefficient between the ith and

jth positions in a set of 2D spectra of assigned metabolites and DGGE

gel bands of identified bacteria.

An example dataset obtained from a public database for
detecting and classifying enzymes with the CBM domain

To check the performance of enzymatic function analysis for a

large-scale query dataset using E-class, we obtained a dataset from

the NCBI database (‘microbial46.protein.gpff’), composed of

84 402 peptide sequences.

Example datasets for checking the performance of E-class
To compare the performance of E-class using different sequence

databases, we set example datasets in which 100 sequences of 16S

rRNA, 18S rRNA, and CBM were randomly selected from the

complete database of 16S rRNA or the peptide sequences

described above. These datasets were used for example queries

against the different E-class databases to compare the speed of job

completion for each reference database.

Results

E-class for taxonomic classification
E-class is a database and web tool for taxonomic classification of

prokaryotic and eukaryotic DNA sequences and for the functional

classification of enzymes using sequence domains found in

environmental samples (Figure 2A; https://database.riken.jp/

ecomics/eclass/). To classify query sequences, E-class utilizes a

Basic Local Alignment Search Tool (BLAST) search of rRNA

gene sequence databases obtained from public databases such as

DDBJ (http://www.ddbj.nig.ac.jp/), NCBI (http://www.ncbi.

nlm.nih.gov/), and Silva (http://www.arb-silva.de/) [36] and

carbohydrate-binding module (CBM) sequences extracted from

the RefSeq protein database (http://www.ncbi.nlm.nih.gov/

RefSeq/).

This version of E-class provides a pie chart output of taxonomic

and enzymatic classification. The freely available SVG viewer is

required to depict a pie chart using Internet Explorer (http://

www.adobe.com/svg/viewer/install/mainframed.html). Unlike

other public databases which provide tools to search nucleotide

Figure 2. The E-class web tool to classify ribosomal and enzymatic sequences from environmental samples. (A) To query the E-class
database, a several step process is used (see the Implementation section). (B) Network-based association between sequences of the E-class databases.
A network module or group is composed of sequences and links between sequences representing sequence similarity. To reduce sizes of the
‘original’ databases, we selected one representative sequence from each identified module and set these as ‘modularized’ databases. (C) Our
experimental example for a denaturing gradient gel electrophoreses (DGGE) analysis of a time series investigation of an Okinawa seawater
microcosm experiment. Top numbers indicate sampling days for the microcosm experiments, and colored yellows are six DNA bands used for
following E-class classification. (D) An example of this classification using our DGGE dataset as mentioned in Design and Implementation. (E) An
example of a huge number of data, including 84 402 sequences, to the CBM sequence database, as mentioned in Design and Implementation.
doi:10.1371/journal.pone.0030263.g002
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or amino acid sequences, the BLAST searches implemented by E-

class theoretically have no limitation in the number of input

sequences. We show examples of taxonomic and enzymatic

classification of query sequence datasets using E-class (Figure 2).

Figure 2D represents a pie chart composed of taxonomic names at

the phylum level that were assigned for six sequences obtained

from a denaturing gradient gel electrophoreses [37] (DGGE)

analysis of 16S rRNA gene fragments amplified from a time series

investigation of an Okinawa seawater microcosm experiment

(Figure 2C).

The steps for implementing a search are as follows (Figure 2A):

1) Enter query nucleotide sequences as FASTA-formatted text

into the textbox of this step (to input sample data, click

‘‘Click here to input a sample sequence’’) or select a file

composed of such formatted text.

2) Select a database, i.e., 16S rRNA, 18S rRNA, and small

subunit rRNA for prokaryotes, eukaryotes, and both

taxonomical kingdoms, or CBM for enzymatic domains,

respectively, (for the sample sequence, select 16S rRNA or

small subunit rRNA) and enter the E-value (e.g., 1e-50) as a

threshold for the BLAST search.

3) Select an output format (currently, only the pie chart

function is available).

4) Select a level for taxonomic classification (phylum, class,

order, or family; for the sample case, select ‘‘phylum’’). If

selecting a CBM database, this selection is ignored and

query sequences are classified on the basis of the CBM

category of Cazy (http://www.cazy.org/).

5) Click the ‘‘Submit’’ button to perform the analysis.

The BLAST search then starts. Once the search is completed, a

pie chart of taxonomic or enzymatic classification is displayed

along with a legend (Figure 2D and 2E). In Figure 2D, three of the

six example sequences were assigned to the Proteobacteria, one

was assigned to Cyanobacteria, one to Planctomycetes, and one to

Bacteroidetes. Figure 2E shows the result of domain classification

of CBM using an example dataset (‘microbial46.protein.gpff’),

obtained from the NCBI FTP site. This query dataset is composed

of 84 402 peptide sequences; 145 of which were detected as

possessing a CBM domain: 56 sequences were classified as CBM2,

26 as CBM6, 13 as CBM51, 11 as CBM32, 10 as CBM16, 10 as

CBM35, 5 as CBM20, 5 as CBM3, 3 as CBM47, 2 as CBM4, and

single sequences as CBM10, CBM11, CBM23, and CBM25,

respectively. The dataset has 143 sequences that include one or

more CBM domains on the basis of their metadata, indicating that

E-class detected two sequences with CBM domains but without

the description of CBM in their metadata.

When a user queries thousands of sequences for classification,

tens of hours may be required for the data to be processed using

the common BLAST+ search. Thus we have added characteristics

to the current version of E-class to improve the efficiency of the

taxonomic and enzymatic classification. Users can select from the

‘original’ dataset and several subsets derived from the original

dataset to query against. These subsets include one lacking partial

sequences; these can be excluded from the BLAST search by

selecting the ‘assignable’ or ‘curated’ database option. To reduce

redundancy and execute a more rapid search, we also adopted a

network module analysis [32], which assembles similar sequences

into modules or groups (Figure 2B). We detected 5778, 4728,

23 998, and 134 local modules (including singletons), unconnected

to other modules, for 16S rRNA, 18S rRNA, small subunit rRNA,

and CBM, respectively. From each unique module, we selected

the sequence that was connected to the most module members as

the module representative in a ‘modularized’ database. Conse-

quently, the size of each database was reduced to the above

numbers from 222 054, 175 643, 262 092, and 4549 original

sequences, respectively. These ‘modularized’ databases allow for

much higher-throughput BLAST searches. These features are

available for both 16S and 18S loci and CBM domains.

We executed several benchmarks to verify the performance of

E-class. When an example dataset including 100 rRNA sequences

was submitted, ‘assignable’, ‘curated’, and ‘modularized’ 16S

rRNA databases required approximately 13, 10, and 1 minutes,

respectively, indicating that the smaller-sized database enables

more prompt retrieval. Second, the size of the query CBM dataset

discussed above is comparable to that of a contig dataset obtained

from a giga-sequencer and the output here shows the ability of E-

class to handle such large datasets normally.

FT2DB for chemical phenotyping
The package we offer is FT2DB (https://database.riken.jp/

ecomics/chika/index2.html). This tool can digitize NMR spectra

in a batch manner enabling users to easily edit spectra for

construction of a bin database (Figure 3A). FT2DB is either a

web-based service or a downloadable suite of programs that runs

on MS Windows or Linux. FT2DB generates a tab-delimited

text that contains all of the queried NMR spectra. The web-

based service can handle both 1D and 2D queries. The

standalone version of FT2DB contains the nmrbinDB1d

program for 1D NMR spectra and the nmrbinDB2d program

for 2D NMR spectra. These queries require ‘‘nmrPipe’’-

formatted NMR spectra as input files [38]. User can specify a

region of interest and the number of bins for binning by each

query. Pushing the ‘‘submit’’ button will generate binned spectra

for the query. Additionally, for web-based queries, FT2DB will

output a pie-chart representation of the overall distribution of

user defined chemical shift regions. These regions are visualized

by a red (upfield) to green (downfield) gradation for quick

observation of differences between samples (Figure 3B). The

standalone version of FT2DB package requires the Java Runtime

Environment version 1.6 (Java 6) or later. The download file is

uncompressed and stored locally to a user defined directory. The

user should set a path to this directory, and the same path is set

to the environmental variable FT2DB. For example,

nmrbindb1d can convert ten nmrPipe-1D-formatted files to a

text database file that contains one tab-delimited 1D NMR bin

spectrum per line. In the nmrbinDB2d standalone package, the

user will see a GUI window, which enables the use to view all

converted bin spectra on 2D planes with positive bins as red and

negative as blue. The data generated from a 2D query has a

similar format as 1D results in both the web and standalone

versions. To determine the position on the 2D plane, the header

line should be consulted.

We have prepared a sample 1D 1H-NMR dataset (Figure 3C)

from the same Okinawa microcosm time series used for the E-class

example. Each pie-chart represents overall differences of distribu-

tion of 20 defined chemical shift regions described above. In this

example, the day 42 sample exhibits a relatively large sugar

signature (4–3.5 ppm) based on spectral intensities compared with

the other samples. DGGE DNA bands (Figure 2C) revealed the

simplest microbial community structure in this sample. This new

method of pie-chart visualization quickly allows us to see overall

metabolomic (NMR) changes concomitant with ecosystem

(DGGE) changes. Such rapid observations based on the visualized

output as presented here can then be used to inform more rigorous

analytical approaches, in this case as detailed in section 4 (below).

ECOMICS: Web-Based Toolkit for Ecosystems Research
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A sample 2D 1H-13C dataset from two spectra of solubilized

lignocelluloses from two grass species (family Poaceae) is also

available at the FT2DB website.

Bm-Char for biomass component assignment
The Bm-Char webtool (Figure 4C; https://database.riken.jp/

ecomics/biomass/) allows a user to retrieve biomass-related

chemical components such as lignin and hemicelluloses from the

chemical shift database we previously developed on the basis of 2D

NMR spectral signals detected (Figure 4B) [39]. As of July 2011,

the database is composed of 42 and 17 signals for aromatic and

aliphatic sites of lignin, respectively, and, 26 signals for

hemicellulosic-sites and three uncategorized sites. Figure 4A shows

a table composed of these chemical signals (rows) of lignin and

hemicellulose and 11 plant samples (columns); i.e., grasses:

Erianthus, Napiergrass, Guineagrass (green and dry samples),

Brachypodium, rice, and wheat, herbs: Arabidopsis, and trees:

sudajii, Japanese cedar, and poplar. This table is available in the

Bm-Char website. In the table, values represent intensities of

individual signals in each plant sample. The rows are colorized

according to the color chart to which we assigned chemical signals

as described in the help page on the site; e.g., brown and red

represent lignin signals and green, blue, and purple represent

hemicellulose signals. These datasets can be used to retrieve query

chemical shift data. Bm-Char accepts query datasets of 1H- and
13C-chemical shifts and if available, corresponding signal intensity

values. These data are then output as a pie-chart showing matches

to the database. Additionally output text files detailing the pie-

chart composition and chemical shift assignments are available. In

the example data, the pie-chart result is categorized according to

items of ‘Detailed category’ described in the table on the Bm-Char

website, including ‘Syringyl’, ‘Syringyl (oxidized alpha-ketone)’,

‘Guaiacyl’, ‘Guaiacyl (oxidized alpha-ketone), ‘p-Hydroxyphenyl’,

‘Ferulate’, ‘p-Coumarates’, ‘Cinnamyl alcohol end group’, and ‘p-

Hydroxybenzoates’ for aromatic sites of lignin, ‘b-O-4’, ‘b-O-4-S’,

‘b-O-4-H/G’, ‘b-5’, ‘b-b’, and ‘5-5/4-O-b’ for aliphatic sites of

lignin, ‘Acetylated xylopyranoside’, ‘Xylopyranoside’, ‘Xylopyr-

anoside+glucopyranoside’, ‘Glucopyranoside’, ‘Galactopyrano-

side’, ‘Arabinofuranoside’, ‘Mannopyranoside’, ‘Fucopyranoside’,

and ‘Methyl-glucuronic acid’ for hemicellulosic sites, and ‘Others’.

The steps for making a query (Figure 4C) are as follows.

1) Input a query dataset formatted to include three successive

columns without row or column labels; i.e., 1H chemical

shift, 13C chemical shift, and signal intensity (if any). Bm-

Char accepts a tab-, or comma-delimited text directly

uploaded as input.

2) Input the tolerance of differences in 1H and 13C chemical

shifts: the default values are 0.03 and 0.53, respectively.

3) Select the value type for the output pie chart. ‘Intensity’ or

‘Region of interest (ROI) assignment’ options are available.

These represent the sum of ROI intensity values and the hit

count of ROIs, respectively. If a query dataset contains only

chemical shift data without intensity values, ‘ROI assign-

ment’ is automatically selected.

4) Click the ‘Submit’ button.

Figure 3. FT2DB for processing NMR spectra. (A) Screenshot of the FT2DB interface. This program allows for the simultaneous submission of
several 1D or 2D NMR spectra and the user can specify the chemical shift range and the resolution of binning. (B) Representative output data from
FT2DB. These data include pie charts for easy visualization and text data suitable for copying into a text editor for downstream analyses, such as with
HetMap. (C) Resulting pie charts for the time series of 1D 1H NMR spectra of marine plankton. Chemical shifts are graded from red (21 ppm) to green
(9 ppm) and the fractions in spectrum intensity are shown in the pie charts. Spectra are labeled to the right with the sampling day. The raw NMR
spectra are also shown. These examples are available at the website as are example 2D NMR spectra.
doi:10.1371/journal.pone.0030263.g003
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A result page will load and display the output pie-chart, a chart

legend, and a links to the downloadable text result files. In the near

future, we will add information on chemical shifts of other biomass

compounds that are or will become available from public

databases or reports.

HetMap correlation exploration for trans-omics data
For revealing relationships between different omics levels (i.e

genome, transcriptome, proteome, and metabolome data), many

bioinformatics approaches have focused on the integration of

multiple omics datasets [40,41,42]. HetMap (https://database.

riken.jp/ecomics/chika/) is a convenient tool for easily generating

a 2D heat map of correlations between heterogeneous types of

data, such as metagenomic, metatranscriptomic, metabolomic,

and biomass data. It simultaneously accepts up to four different

types of omics or similar data. The principles of HetMap can be

understood by first considering a standard correlation heat map. A

correlation heat map is generated from a data matrix in which the

correlation coefficient is calculated between two rows of data; then

all pairwise comparisons between rows are calculated. A graphical

representation of these coefficients is then produced showing either

all, statistically significant or arbitrary cutoff values as different

colors for positive and negative correlations. HetMap performs

these functions, and allows users to query multiple data matrices

simultaneously. Users can easily check combinations of their data

samples without the need to build concatenated data files. To use

HetMap, all input files should be tab-delimited text format. Data

values are in rows, with the first column reserved as an ID column

Figure 4. The Bm-Char diagrams. (A) A table of the Bm-Char main page, comprised of a data table displaying relationships between 88 chemical
groups in 11 plant samples, 2D NMR signals for lignin and hemicellulose, and structures for components of lignocellulose. (B) Overlay of lignin
aromatic region of 2D 1H-13C HSQC spectra of poplar (brown), Japanese cedar (light brown) and Erianthus sp. (green). Lignin signal assignments and
their chemical structures are highlighted along with corresponding cross peaks. (C) The query form. See the main text for detail.
doi:10.1371/journal.pone.0030263.g004
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(e.g., for gene names) followed by the multiple data columns (e.g.,

for daily changes of the amount of transcripts). The number of

columns must be the same for all of the input files. HetMap will

output a correlation coefficient matrix that includes each pairwise

combination for the input datasets, and generate a heatmap image

for a quick visualization of the data. For example, when a

metagenomic, a metatranscriptomic, a metabolomic and a

biomass data file are input, HetMap generates a 2D heat map

containing all the pairwise correlation coefficients between all

sample IDs found in the four data files (Figure 5). The output

image file uses red to indicate a positive correlation and blue to

indicate a negative correlation. With HetMap it is possible to

calculate correlation coefficients using Pearson, Spearman or

cosine methods by either selecting the appropriate choice from the

web-based drop-down menu or by specifying a string in a

command line for the standalone software. In addition to the

hetmap imager, a color key for correlation coefficients and a

distribution of correlation coefficient r-values in pie-chart format

are presented to help visualize the data. HetMap can be

downloaded for Linux or MS Windows. The Java Runtime

Environment version 1.6 (Java 6) or later is required.

In our example, the HetMap hetero-correlation output is shown

(Figure 5B) correlating DGGE band intensity from Figure 2 with
1H-NMR spectra for each time point as processed by FT2DB.

Based on the number of samples in our example, and selecting a

cutoff of p,0.05 to mean significance, an |r|.0.75 equals to

significant correlations among metabolites with DGGE bands

(Figure 5E). Such correlations can then be investigated further as

desired; in our case we identified the top 8 correlation pairs

(including DGGE band – DGGE band and DGGE band –

chemical shift correlations) and SpinAssign was utilized to

putatively identify metabolites from NMR spectral bins of interest

[28]. The top 8 correlation pairs that were 100% detected among

49 proton chemical shifts and that were assigned SpinAssign p-

values.1.0e-10 (for correlations with metabolites) are provided in

Table 1. A few observations are the clear positive relationship

between a cyanobacteria (photoautotroph) and bacteroidetes

(heterotroph), and the positive relationship between the cyano-

bacteria and a hydroxybutanoic acid. Relationships between

Bacteroidetes and phytoplankton have been observed in natural

systems [43], and this phylum is thought to play an important role

in cycling organic carbon and other materials in aquatic

ecosystems [44]. Cyanobacteria are also known to produce

hydroxybutyrates; a group of compounds closely related to

hydroxybutanoic acids and polyhydroxyalkanoates (PHAs) known

for bioactive and biopolymer potential, respectively [45,46].

Observations of patterns such as this using the tools provided

here are a good validation of the potential for the ECOMICS web

service, both in identifying relationships between taxa and in

identifying compounds of interest.

Although this HetMap tool is designed for analysis of trans-

omics data, matrix correlations calculation can also be applied to

self-correlation analysis. For example, a similar approach has been

widely used in metabolite NMR data as Statistical Total

Correlation SpectroscopY (STOCSY: [47]). Next we will

demonstrate such application using our biomass NMR data sets.

Application of HetMap tool to STOCSY-type analysis of
biomass NMR data sets

By adding twelve additional biomass NMR data sets (for a total

of 23 HSQC spectra of lignocellulose components), we obtained a

STOCSY-type self-correlation heatmap using HetMap (Figure 6).

This heatmap shows showing ROI data matrices aligning lignin

aromatics, lignin aliphatics, hemicellulose sugars and methyl

groups (Figure 6A). Positive correlations indicate similar tenden-

Figure 5. HetMap, a tool for performing a trans-omics analysis for multiple input data. Four input data files: meta-genomic, meta-
transcriptomic, meta-metabolomic, and biomass data (A) from the same series of experiments for environmental samples are displayed in this figure.
A user can obtain an image file that shows positive (red) and negative (blue) correlations among all the heterogeneous data that a user inputs (B).
Example of r-value investigation using three kinds of correlation calculation (C, from left to right: Pearson, Spearman and cosine). Distribution of the
correlation coefficient r is visualized in pie-chart with red (positive) to blue (negative) color gradation. Expanded region of 2D heat map image (|r|.0)
derived from inputting DNA sequence (blue) and metabolites (green) data matrices of aquatic microcosm experiments (n = 7, Day 1, 7, 19, 42, 68, 75,
and 83). From the number of samples included at a cutoff of p,0.05, we have chosen |r|.0.75 for visualizing significant correlation between DGGE
and NMR data (E).
doi:10.1371/journal.pone.0030263.g005

ECOMICS: Web-Based Toolkit for Ecosystems Research

PLoS ONE | www.plosone.org 7 February 2012 | Volume 7 | Issue 2 | e30263



cies for functional groups to increase/decrease within the

lignocellulose mixtures. Chemical groups within the same

molecule or associated molecules can be expected to exhibit

positive correlations. For example, the lignin aliphatics b-O-4-H/

G exhibited high positive correlation with the guaiacyl region,

whereas no correlation with the syringyl region was observed

(Figure 6B). Methyl signals also showed reasonable correlations,

such as methoxyl with guaiacyl (Figure 6C) and acetyl with

xylopyranose. These ‘‘reasonable’’ correlations were calculated by

HetMap tool using an arbitrary r cut off value = 0.75 with Pearson

product-moment correlation coefficient.

Discussion

ECOMICS has focused on the improvement of the techniques

of omics analysis. First, to estimate the composition and dynamics

of terrestrial and marine microorganisms, a metagenomic

approach is useful. It is, however, difficult to grasp the extent of

Table 1. Top correlations (|r|.0.75) between DGGE bands and chemical shifts during time-course experiments (n = 7).

Band E-Class ID Band or chemical shift (ppm) Correlation R (n = 7) Annotated metabolites (SpinAssin p-value)

Cyanobacteria Bacteroidetes 1 -

Proteobacteria 3.22 0.893 Tyramine(0.73), b-Alanyl-N9-Histidine (0.057)

Unknown Cyanobacteria 0.857 -

Unknown Bacteroidetes 0.857 -

Cyanobacteria 1.02 0.857 Valine (2.1e-08)

Bacteroidetes 1.02 0.857 Valine (2.1e-08)

Cyanobacteria 1.34 0.821 2-Hydroxybutanoic acid (1.3e-09)

Proteobacteria 3.18 0.821 Tyrosine (0.96), b-Alanine (0.96), Choline (1.3e-09)

doi:10.1371/journal.pone.0030263.t001

Figure 6. STOCSY-type analysis of biomass NMR spectra. (A) Self-correlation heatmap calculated by inputting 23 lignocellulose HSQC spectra
into HetMap. A Pearson product-moment correlation coefficient with cut of |r|.0.75 was employed in this study. This heatmap shows ROI data
matrices aligning from lignin aromatics, lignin, aliphatics to hemicelluloses sugars and methyl groups, and each molecules exhibited different colors
along with vertical and horizontal bars. Expansion of lignin aromatics (guaiacyl, syringyl) versus aliphatics (b-O-4 hydroxyphenyl/guaiacyl) heatmap
with showing calculated correlations in these chemical structures (B), as well as methoxy versus guaiacyl (C) and acetyl versus xylopyranose (D),
respectively.
doi:10.1371/journal.pone.0030263.g006
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diversity of eukaryotes, including fungi and algae, which are

abundant as biomass. Further, the extent of bacterial diversity is

still largely uncharacterized and bacteria, even in low abundances,

can drive essential biogeochemical cycles such as the global carbon

cycle [48,49]. Moreover, the composition and fluctuation of

sequential domains in an environmental sample can show the

functionality and its dynamics of enzymes in the sample. There are

some stand-alone tools, e.g., the ‘‘ape’’ R package that performs

taxonomic classification and depicts the results in the form of a

phylogenic tree. However, there is, to our knowledge, no web-tool

that can perform taxonomic and enzymatic classification of an

environmental sample and quickly depict the result maps in forms

of pie charts on a screen. Thus, we developed the E-class database

for taxonomic classification of eukaryotes and bacteria using small

subunits of ribosomal RNA (rRNA) gene fragments and for

functional classification of enzymes using sequential domains in an

environmental sample.

Next, to assess ecosystem processes on the basis of the chemical

composition of organisms identified in the environment, we

focused on the environmental metabolome using 1H-NMR. This

has been the focus of an international consortium [50].

Physicochemical information obtained from NMR spectra shows

high uniformity independent of device and compatibility of data

through the standardization of conditions for individual organisms

[51]. The NMR spectral approach is appropriate for chemical

phenotyping, for quantitative analysis of phenotypes in a chemical

composition, and for analysis of environmental fluctuations

[52,53,54]. This compatibility originates from the COMET

consortium of pharmaceutical companies, as well as the INTER-

MAP project [55,56]. As an example of clear categorization of

chemical phenotypes in habitats, NMR spectral data from fruit

and vegetable juices were used to successfully identify their

production locations [57]. As the switch to using biomass resources

for bio-refinery applications occurs, an NMR spectrum of a cell

wall provides a wealth of information on all wall components

including high-resolution composition and structural ‘‘fingerprint’’

data [58]. Furthermore, NMR has remarkable potential for

accurate quantification of individual chemical groups, even in

complex metabolite mixtures [59,60,61]. Chemical phenotyping

has been employed in various applications such as accurate

quantitative determination of the intramolecular distribution of
12C and 13C in C3 and C4 plants [62]; quantification of 1H and 2H

isotopomers of tree-ring cellulose [63]; characterization of

dissolved organic nitrogen in the ocean, or water-soluble organic

carbon in urban atmospheric aerosols [64,65,66]; and analysis of

inorganic and organic complex molecular structures of plant

biomass-derived black carbon in biomineralization [67]. FT2DB is

a part of the ECOMICS system and thus designed to be in

accordance with the other ECOMICS functions such as HetMap.

FT2DB can generate a data matrix and this can immediately be

copied and pasted to the input for HetMap. FT2DB generates pie

charts for quick visualization. By digitizing the data using FT2DB

and storing the data extracted from the environment, one can

continuously collect and inspect environmental conditions.

Replacement of petrochemicals with bio-based compounds has

made the focus of metabolite research in environmental samples

[6,17,68,69,70]. The chemical structure of biomass products can

affect differences in their degradability. However, information on

the composition of biomass products such as lignocelluloses is

limited in particular plant species and for particular chemical

components, due to the difficulty of separation of lignin-

carbohydrate complexes into each component (such as monosac-

charides). Recently, advances in NMR spectral analysis revealed

the composition of lignocellulosic products using a ball-milled

sample without troublesome separation [39,71,72,73,74,75].

Furthermore, NMR has the potential to monitor structural

organization of supramolecular assembly of lignocellulose compo-

nents by conventional 1D [76,77,78], as well as 2D and 3D magic

angle spinning measurements [10]. Kim and Ralph [39] assigned

chemical signals to lignocellulosic components including lignin

aliphatic and aromatic sites and hemicellulosic sites. The

BioMagResBank (BMRB) database [79] provides the important

spectral and quantitative data derived from NMR spectroscopic

investigations of biological macromolecules and metabolites, such

as the lignocellulosic components mentioned above. It is useful for

a lignocellulose researcher to retrieve query chemical signals

obtained using NMR spectrometry and visualize the lignocellulosic

composition of the signals. However, to our knowledge there is no

web-tool allowing visualization of the output result. In order to

provide a user-friendly approach for such visualization, we

developed the Bm-Char web tool to characterize the composition

of lignocellulosic components in an environmental sample on the

basis of previous work [39].

HetMap is a simple correlation generator. It is very useful to

quickly obtain an overview of the correlation as both text and

image data, e.g., between enzymes and organisms associated with

chemical reactions and products in a complex reaction field of

environmental organisms. HetMap generates pie charts similarly

to the other ECOMICS tools. General stand-alone tools such as

MS-Excel or the R platform can also generate correlation matrices

but typically require more time for data input, calculation, and

generation of output visualizations. Thus HetMap is a convenient

and rapid tool and is especially useful for depicting a heat map of

correlations between or within omics datasets such as the

transcriptome and the metabolome [80,81].

Although many efforts have been made to develop omics

approaches using various model organisms, recent advances in

omics measurement methods and information technology allows

for the development of more complex research approaches such as

population omics [82]. This includes the systematic evaluation of

biological interactions in natural environments. In particular, as

research continues to advance the potential for bio-based

manufacturing and energy over petro-based alternatives, we can

expect a revolution in chemical engineering. The industrial

revolution provided most human beings with access to a

remarkable standard of living, yet this economic power has come

at a cost to ecosystem function and viability. Conversely, pre-

industrial economies did not allow for the general well-being of

human populations, yet were more ecologically sustainable. By

making tools available to the public domain that promote research

on complicated biological information we hope to contribute to

the next revolution in human economics; effective and sustainable

human industry that draws upon the unused biomass, biodiversity

and biochemistry found in natural ecosystems. We propose that

omics research activity should be directed toward advancing a

sustainable society that uses renewable bio-resources and promotes

economic development but also maintains ecological health, hence

the term ‘ECOMICS’; or ECOsystem OMICS.

The ECOMICS system is a useful web suite to reveal

relationships between environmental samples across multiple

omics levels. It is freely available and is open to the public

domain: https://database.riken.jp/ecomics/. ECOMICS can

accommodate trans-omics datasets such as biomolecular sequences

(DNA, RNA, and amino acid) and metabolites (NMR chemical

shift data). E-class can annotate extensive sequence datasets in a

batch manner from several (e.g., DGGE bands) to more than

1 000 000 sequences (e.g., environmental metagenomic data).

FT2DB digitizes NMR spectral data for correlation analysis
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between trans-omics datasets. Bm-Char identifies chemical signals

of biomass-related compounds such as lignocellulose using a

dataset derived from annotated NMR spectra. HetMap performs

correlation analysis between datasets of sequences and metabolites

annotated by E-class and Bm-Char and those obtained from

FT2DB. All the ECOMICS tools quickly present easily visualized

output information as pie charts.

Through the use of the web suite, a user can obtain information

on the relationships between sequences (organisms and proteins)

and chemical signals (metabolites) included in the user’s

environmental sample. For example, to evaluate the ability of an

environment for degrading macromolecules, it is important to

collect a various levels of omics data such as metagenome,

metatranscriptome, and metabolome and to reconstruct their

association network. Preliminarily, we pursued a process of

cellulose degradation in a sludge environment in which cellulose

was added. Selection of microorganisms related to the degradation

and functional analyses of cellulose-degrading enzymes was

performed using a next-generation sequencer and E-class.

Metabolites derived from the cellulose were detected using solid-

state NMR and FT2DB. We then attempted correlation analysis

between these data using HetMap to reveal their direct

associations. For systematic understanding of such complex

environmental events, ECOMICS offers a single user-friendly

platform that enables researchers to perform trans-omics ap-

proaches.
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