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Abstract

Clinical evidence suggests an association between galactosaemia and premature ovarian insufficiency (POI); however, the
mechanism still remains unresolved. Experimental galactose toxicity in rats produces an array of ovarian dysfunction
including ovarian development with deficient follicular reserve and follicular resistance to gonadotrophins that characterize
the basic tenets of human POI. The present investigation explores if galactose toxicity in rats attenuates the bioactivity of
gonadotrophins or interferes with their receptor competency, and accelerates the rate of follicular atresia. Pregnant rats
were fed isocaloric food-pellets supplemented with or without 35% D-galactose from day-3 of gestation and continuing
through weaning of the litters. The 35-day old female litters were autopsied. Serum galactose-binding capacity,
galactosyltransferase (GalTase) activity, and bioactivity of FSH and LH together with their receptor competency were
assessed. Ovarian follicular atresia was evaluated in situ by TUNEL. The in vitro effects of galactose were studied in isolated
whole follicles in respect of generation of reactive oxygen species (ROS) and expression of caspase 3, and in isolated
granulosa cells in respect of mitochondrial membrane potential, expression of p53, and apoptosis. The rats prenatally
exposed to galactose exhibited significantly decreased serum GalTase activity and greater degree of galactose-
incorporation capacity of sera proteins. LH biopotency and LH-FSH receptor competency were comparable between the
control and study population, but the latter group showed significantly attenuated FSH bioactivity and increased rate of
follicular atresia. In culture, galactose increased follicular generation of ROS and expression of caspase 3. In isolated
granulosa cells, galactose disrupted mitochondrial membrane potential, stimulated p53 expression, and induced apoptosis
in vitro; however co-treatment with either FSH or estradiol significantly prevented galactose-induced granulosa cell p53
expression. We conclude that the ovotoxic effects of galactose involves attenuation of FSH bioactivity that renders the ovary
resistant to gonadotrophins leading to increased granulosa cell expression of p53 and follicular atresia.
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Introduction

Premature ovarian failure, currently referred to as premature

ovarian insufficiency (POI), is a frequent finding in women with

galactosaemia [1–3]. Galactosaemia, an inherited inborn error of

the major galactose assimilation pathway caused by galactose-1-

phosphate uridyltransferase (GALT) deficiency, produces wide

phenotypes of ovarian dysfunction [4]. The prevalence of POI in

galactosaemic population is 1 in 10,000 for women between 15

and 29 years of age, and 7.6 in 10,000 for women aging between

30 to 39 [5]. In some women ovarian failure is a consequence of

premature depletion of follicular reserve (afollicular or follicle

depletion type of POI), while the other galactosaemic women do

exhibit the presence of follicles that are refractory to gonadotro-

phin stimulation and therefore suffer from arrested growth and

maturation (follicle dysfunction type of POI or resistant ovary

syndrome) [6]. Despite more than four decades of intense

research, the cause and effect relationships between galactosaemia

and POI, and the molecular mechanisms of galactose toxicity

remain elusive; however, the general consensus is that the ovarian

pathology is the aftermath of toxic effects of galactose and its

metabolites both at the ovarian and extra-ovarian levels [7–9].

Rodents placed on high galactose diet provide an excellent model

for galactose toxicity [10–12]. We have earlier demonstrated that

experimental galactose toxicity in rats produced an array of

ovarian dysfunctions that characterize the basic tenets of diverse

phenotypes of POI [13]. Embryos exposed to high galactose in

utero suffer from significant attenuation of germ cell migration and

develop ovaries with deficient follicular reserve [14]. Liu et al. [15]

reported that high galactose diet down regulated the oocyte-

specific growth factor, GDF-9, which is obligatory for folliculogen-

esis, and inhibition of follicular development was a secondary
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consequence. Lai et al. [16] demonstrated that immature rats fed

with high galactose diet exhibited higher expression of Fas and

Fas-ligand but lower expression of Xiap and Riap, suggestive of

increased apoptotic damage of the ovary. These mechanisms,

however, could not explain the full spectrum of ovarian

dysfunction since normal adult mice with optimum follicular

reserve also exhibited ovarian failure in the form of follicular

resistance to gonadotrophins following exposure to high galactose

[17]. Thus the precise mechanisms underlying ovotoxic effects of

galactose is still far from clear.

We have demonstrated that galactose toxicity renders the ovary

refractory to gonadotrophins; but suppression of endogenous

gonadotrophins by GnRH receptor down regulation improves

ovarian response to exogenous gonadotrophins [13]. This

observation questions if the gonadotrophins produced under

galactose toxicity do possess normal bioactivity.

Reports indicate that galactosaemia interferes with the galacto-

sylation process. An abnormal glycosylation pattern has been

documented in some galactosaemic females with partial absence of

terminal disaccharides leading to synthesis of the neutral isoform

of FSH [18]. In vitro and in vivo experiments have shown that

deglycosylated FSH has a higher binding affinity to its receptor

than the glycosylated form, but is unable to activate the second

messenger system [19]. Despite a growing body of evidence

holding glycosylation defect and consequent loss of gonadotrophin

biopotency as the major causes of ovarian resistance to

gonadotrophins, the production of aberrant FSH isoform with

reduced bioactivity has been recently contradicted [20–21]. In

sheep, high doses of galactose inhibited FSH-induced differenti-

ation of granulosa cells cultured in vitro [7]. Fraser et al. [22]

suggested that an acquired anomaly of gonadotrophin receptors

perhaps attributes to the process. However, no direct evidence in

support of anomaly of gonadotrophin receptors is available so far.

Thus, the mechanism underlying the ovotoxic effects of galactose

remains unresolved.

The present investigation explores the possibility of galactosyla-

tion defect of gonadotrophins and seeks evidence if galactose

toxicity impairs bioactivity of gonadotrophins or their receptor

competency. It also addresses the effect of galactose on follicular

atresia and granulosa cell apoptosis.

Results

Effects of galactose in vivo
Serum capacity to bind galactose. In the presence of

purified GalTase, serum proteins of the galactose-exposed rats

exhibited significantly higher (P = 0.007) incorporation of

radiolabeled galactose (fmol/mg serum protein) as compared to

the serum proteins from controls (galactose-exposed: 1.3260.02 vs.

control: 1.0960.07).

Serum galactosyltransferase (GalTase) activity. Serum

GalTase activity was assessed in respect of the capacity of serum to

catalyse the transfer of radiolabeled galactose from UDP-galactose

to ovalbumin (endogenous serum protein that also served as

galactose acceptor was not taken into account). The overall

catalytic transfer of radiolabeled galactose (fmol/mg protein) from

UDP-galactose to ovalbumin was significantly lower (P = 0.0003)

in the presence of study sera (4.5260.32) as compared to that

under the influence of control sera (6.4960.30).

Serum gonadotrophic activity. Production of estradiol (E2)

by the cultured control granulosa cells under the influence of sera

from control and study population has been presented in

Figure 1A. E2 production, a measure of serum FSH-like activity,

increased significantly (P,0.0001) over the basal level almost in a

linear fashion in response to an increase in the volume of control

sera between 0.025–0.200 ml. By contrast, addition of same

volumes of study sera was not rewarded by any increase in E2

production over the basal level, suggesting attenuated serum FSH-

like activity of the galactose-exposed rats.

Figure 1B presents theca cell production of androstenedione in

response to different volumes of control and experimental sera that

served as the source of LH. Androstenedione production under the

influence of both control and study sera gradually increased over

the basal level, that were comparable between the groups. The

steroidogenic response under the influence of the highest volume

of study sera was marginally higher than that of the corresponding

volume of control sera; however, statistically the difference was not

quite significant (P = 0.051).

Granulosa/theca cell competency to respond to FSH/

LH. Figures 2A and 2B present the comparative degree of FSH-

stimulated E2 and LH-stimulated androstenedione production,

respectively by granulosa and theca cells collected from both

control and study groups. In both groups, there was gradual rise in

granulosa cell production of E2 or theca cell production of

androstenedione in response to increments in the FSH and LH

doses, respectively; and the rates of increase were statistically

comparable between the groups. Thus granulosa and theca cell

competencies to respond respectively to FSH and LH are not

altered in galactose-treated rats.

Ovarian follicular atresia. Immunohistochemical detection

of follicular apoptosis by TUNEL demonstrated that the rate of

follicular atresia in the galactose-exposed rat ovaries (Fig. 3C)

increased as compared to the control group (Fig. 3B), which

showed significantly lower TUNEL labeling. Negative control

sections (exclusion of terminal TdT) demonstrated no TUNEL

reaction (Fig. 3A).

Effects of galactose in vitro
Follicular histoarchitecture. As compared to PBS-treated

control ones (Fig. 4A), follicles exposed to galactose at 50 nM

(Fig. 4B) and 100 nM (Fig. 4C) concentrations exhibited large

number of pyknotic granulosa cells arranged in asymmetric rings

that mark follicular degeneration [23].

Follicular ROS. Galactose treatment at 50 nM (Fig. 4E) and

100 nM (Fig. 4F) concentrations led to graded increase in ROS

generation over that of the untreated cultured follicles (Fig. 4D).

Follicular caspase 3. Immunoblot data showed dose-

dependent increase in the expression of the apoptosis-executor

protein, caspase 3, following treatment with galactose (Fig. 5A).

The level of caspase 3 protein relative to b-actin increased

significantly following treatment with galactose at 50 nM

(p = 0.010) and 100 nM (p,0.0001) concentrations over that of

PBS-exposed controls (Fig. 5B).

Granulosa cell mitochondrial membrane potential. The

granulosa cells exposed to PBS or galactose at concentrations up to

25 nM concentration exhibited high mitochondrial polarization as

indicated by greenish orange fluorescence that marked JC-1

aggregation [only the PBS-exposed control picture (Fig. 6A) is

shown]. But at concentrations 50 nM (Fig. 6B) and 100 nM

(Fig. 6C), galactose gradually increased depolarization of

mitochondrial membrane as evidenced by change from greenish

orange fluorescence of JC-1 aggregates to green fluorescence of

JC-1 monomers.

Granulosa cell annexin V-affinity assay. Figures 6 D–F

present the merged images of annexin V and propidium iodide

(PI) fluorescence of granulosa cells cultured in the presence of PBS

(control) or galactose. Following exposure to galactose up to

25 nM concentration, the treated granulosa cells (not shown in the

Galactose Toxicity and Ovarian Dysfunction
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figure), like the controls (Fig. 6D), showed no annexin V binding.

At 50 nM concentration of galactose (Fig. 6E), however, the cells

showed characteristic annexin V binding without PI staining,

indicating the intactness of plasma membrane. But at 100 nM

galactose concentration (Fig. 6E) the granulosa cells exhibited both

annexin V and PI fluorescence.

Granulosa cell p53 expression. Immunoblot analysis of

total p53 showed that the protein ran as a doublet and there were

relatively increased expressions in the galactose-treated granulosa

cells (Figure. 7A). Compared with PBS-exposed controls, the p53

protein expression relative to b-actin increased significantly

following treatment with galactose at 50 nM (p = 0.015) and

100 nM (p,0.0001) concentrations (Fig. 7B).

Preventive effects of E2 and FSH on granulosa cell

expression of p53. Immunofluroscence detection of granulosa

cell p53 expression by confocal microscopy revealed that the

treatment of granulosa cells with 50 nM galactose (Fig. 8B) for

24 h increased the expression of p53 over that of untreated

controls (Fig. 8A). Co-treatments with either E2 at 100 pg/ml

(Fig. 8C) and 1 ng/ml (Fig. 8D) concentrations, or FSH at 25 ng/

ml (Fig. 8E) and 100 ng/ml (Fig. 8F) concentrations prevented

galactose-stimulated p53 expressions in a dose-dependent manner.

Figure 1. Follicular cell steroidogenic response to serum gonadotrophins. Granulosa and theca cells retrieved from ovaries of control rat
were cultured in the presence of both control and galactose-exposed rat sera. Serum FSH-like activity was evaluated with respect to granulosa cell
production of E2 (Fig. 1A), while theca cell production of androstenedione (Fig. 1B) was the measure of serum LH-like activity. Values are expressed as
mean 6 SEM of 4 determinations in each datum point. In Fig. 1A, the data points with different letters (a, b, c, d) differ significantly (P,0.0001). In
Fig. 1B, androstenedione production under the influence of 200 ml study serum was comparatively higher than that of control sera but the difference
does not reach the significance level.
doi:10.1371/journal.pone.0030709.g001

Figure 2. Granulosa and theca cell steroidogenic response to standard gonadotrophins. Granulosa and theca cells retrieved from both
control and galactose-exposed rats were cultured in the presence of standard gonadotrophins. Steroidogenic response was evaluated with respect to
FSH-induced granulosa cell production of E2 (Fig. 2A) and LH-induced theca cell production of androstenedione (Fig. 2B). Data points represent the
mean 6 SEM of 4 similar cultures. The figures show gradual increase in the production of E2 as well as androstenedione in the control and study
groups in response to increase in the levels of FSH and LH, respectively, and the rate of increase does not differ significantly between the groups.
doi:10.1371/journal.pone.0030709.g002
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Discussion

The precise mechanisms underlying impairment of ovarian

function in classical galactosaemia are not known; nevertheless

galactose and its metabolites are thought to play contributory roles

at the ovarian level. The present study demonstrates that galactose

toxicity attenuates FSH bioactivity and exerts direct ovotoxic

effects.

In order to address the ovotoxic effects of Galactose, we adopted

both in vivo and in vitro approaches. The in vivo effects of galactose

toxicity were investigated in a previously described rat model that

exhibited elevated blood levels of galactose and galactose-1-

phosphate accompanied by characteristic phenotypes of POI

including elevated serum gonadotrophins, resistance to gonado-

trophins and delayed onset of puberty [13]. In our rat colony the

mean age at onset of puberty is post-natal day (PND) 37. The

present evaluations were therefore performed on PND 35, when

the execution of the toxic effects of galactose is expected to be fully

operational.

Since in vivo studies do not allow us to judge whether the ovarian

effects of galactose are executed directly at the ovarian level or

through systemic route, we performed some investigations in vitro.

This was done in agreement with the animal ethics guidelines that

recommended the use of minimal number of rats to the possible

extent. Because of deficient follicular reserve, retrieval of necessary

number of follicles/follicular cells from rats treated with galactose

in vivo would have required large number of experimental rats,

while for in vitro studies we could retrieve follicles/granulosa cells

from 35-day old control rats that had good follicular yield because

of optimum follicular reserve.

Our first approach was to evaluate the possibility of galactosyla-

tion defect under galactose toxicity. We followed the method

adopted by Prestoz et al. [18] that determined the extent of

galactose-acceptance capacity of serum glycoproteins in vitro in the

presence of GalTase and sufficient UDP-galactose, which served

as the galactose donor. Normally galactose is linked to N-acetyl

glucosamine (GlcNAc) in the carbohydrate moieties of glycopro-

teins. The rationale for this approach was that any interference

with the process of galactosylation would result in a greater

number of glycoprotein oligosaccharides being terminated in

GlcNAc. This would have increased capacity to accept galactose

from radiolabeled UDP-galactose in the presence of purified

GalTase. We observed a greater magnitude of galactose

incorporation in the study sera, which is suggestive of a greater

Figure 3. Immuno-histochemical detection of ovarian apoptosis by TUNEL. Ovarian apoptosis was evaluated by TDT-mediated dUTP nick-
end labeling in representative sections from control (Fig. 3B) and galactose-exposed rats (Fig. 3C). The galactose-exposed rat ovaries show higher
population of TUNEL sensitive cells as compared to controls. Negative control section (exclusion of terminal TdT) demonstrates no TUNEL reaction
(Fig. 3A).
doi:10.1371/journal.pone.0030709.g003

Figure 4. Histological assessment of follicular architecture and evaluation of follicular ROS generation. Histological pictures
demonstrate that the follicles treated with galactose at 50 nM (Fig. 4B) and 100 nM (Fig. 4C) concentrations exhibit large number of atretic cells as
compared to the untreated one (Fig. 4A). Follicles exposed to galactose at 50 nM (Fig. 4E) and 100 nM (Fig. 4F) concentrations show dose-dependent
increase in intracellular ROS generation over that of the untreated control (Fig. 4D), as evaluated by fluorescence microscopy.
doi:10.1371/journal.pone.0030709.g004
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number of unoccupied galactose acceptor sites in the sera proteins

produced under galactose toxicity. It may however be mentioned

that although the culture was conducted in the presence of 1 mg of

purified GalTase, the catalyzing reaction might have also been

influenced by the endogenous serum GalTase activity. But it is

significant to note that the increased serum binding of galactose in

the study group occurred despite then having lower endogenous

GalTase activity than control sera (described in subsequent

section).

The enzyme GalTase catalyzes transfer of galactose from UDP-

galactose to the terminal GlcNAc residues on the oligosaccharide

complex in the process of galactosylation. Galactosaemia is

associated with accumulation of galactose-1-phosphate and

deficient production of UDP-galactose [24]. By measuring liver

epimerase activity, we have earlier provided evidence for deficient

UDP-galactose synthesis in rats under experimental galactose

toxicity [13]. There is a report that accumulated galactose-1-

phosphate may have inhibitory impact on GalTase activity [25].

To address the issue if galactose toxicity interferes with GalTase

activity, we evaluated serum GalTase activity with respect to its

capacity to catalyze the transfer of labeled galactose from UDP-

galactose to ovalbumin. Reports indicate that irrespective of tissue

origin, any significant alteration in GalTase activity is reflected in

serum GalTase levels [26]. This remains the basis of assessing

GalTase level in serum, instead of pituitary, which is the site of

glycoprotein hormone (FSH/LH) synthesis. The present investi-

gation demonstrated that the sera from galactose-exposed group

had comparatively decreased capacity to catalyze the transfer of

galactose from labeled UDP-galactose to the accessible GlcNAc

terminal of ovalbumin under optimized culture condition. Taking

the earlier report [13] and present findings together, a consensus

can be made that restricted availability of UDP-galactose and

attenuated GalTase activity perhaps rate-limit the process of

galactosylation under galactose toxicity.

Gonadotrophins are members of the glycoprotein family of

hormones. Carbohydrates attached to the protein core of these

hormones influence a number of intracellular and extracellular

processes including activation of the respective receptors and

efficient triggering of signal transduction. It therefore appears

logical to envisage a critical impact of galactose toxicity and

consequent attenuation of galactosylation process on the biological

activity of gonadotrophins.

Galactose toxicity increases serum levels of FSH and LH as

measured by immunoassay [13]. As a measure of FSH-LH

bioactivity, we evaluated serum gonadotrophic activity in vitro,

which was based on the capacity of serum to stimulate

steroidogenesis by granulosa and theca cells of control origin.

The volumes of sera were selected in such a manner that they

represented gonadotrophins at levels not exceeding the physiolog-

ical range but were capable of stimulating E2/androstenedione

production at concentrations within the detectable range of our

assay system. The selection of sera volumes was therefore based on

the pre-optimized doses of reference gonadotrophins that were

shown to elicit measurable steroidogenic response in our culture

set-up and the physiological range of serum gonadotrophins in rats

[13]. The culture studies clearly demonstrated that sera from both

control and galactose-exposed rats were almost equipotent in

stimulating theca cell production of androstenedione (Figure 1B).

Marginally increased rate of androstenedione production by the

sera of galactose-exposed rats over that of respective volume of

control sera might be attributed to elevated serum LH levels under

galactose toxicity [13]. By contrast, despite having elevated levels

of FSH [13], the study sera hardly exhibited any FSH-like

bioactivity (Figure 1A). Galactose represents an important

constituent of the carbohydrate side chain of FSH but not of

LH [27]. So the observations taken together suggest that galactose-

deficient variant(s) of FSH that lack bioactivity are perhaps

produced under galactose toxicity.

Glycosylation defect in galactosaemia was first suggested by

Haberland et al. [28] and further attested by many investigations

[18,29–35]. The loss of bioactivity following deglycosylation of

FSH (27) and weaker FSH bioactivity in galactosaemic women

[18] are in good agreement with each other. The present findings

are therefore reminiscent of the earlier studies [18,28–35] linking

deficient galactosylation and attenuated biopotency of FSH. But

reports that demonstrate no significant differences in either FSH

isoforms [20] or FSH bioactivity [21] in the galactosaemia patients

are contrary to these observations. By using Chinese hamster cells

transfected to express human FSH receptors that produce cAMP

in response to activation by FSH, Sanders et al. [21] demonstrated

no loss of FSH bioactivity in galactosaemic women. No definite

explanation can be put forward to explain this discrepant finding

on FSH bioactivity in human galactosaemia and experimental

galactose toxicity. However, it may be important to note that in

normal women circulating FSH bioactivity is associated with

isoforms with different oligosaccharide structures [36], and

changes in gonadotrophin isoform occur through the different

phases of menstrual cycle [37]. Thus FSH bioactivity significantly

differs between the different phases of the same cycle, with highest

bioactivity at mid-cycle [37]. Sanders and co-workers [21] were

not particular about the phase of the menstrual cycle of the control

subjects, when the blood was drawn for the assessment of FSH

bioactivity. The finding of comparable FSH bioactivity between

the control and galactosaemia women might not be highly unlikely

Figure 5. Immunoblot and densitometric analysis of caspase 3.
Representative immunoblots of caspase 3 protein expressions in
follicles cultured in the absence (control) and presence of galactose
show dose-dependent increase in the expressions of cleaved form of
caspase 3 protein in comparison to the untreated one (Fig. 5A). Both
bands of caspase 3 were used for quantification. Compared with
controls, the level of caspase 3 protein relative to b-actin increased
significantly following treatment with galactose at 50 nM (p = 0.010)
and 100 nM (p,0.0001) concentrations (Fig. 5B).
doi:10.1371/journal.pone.0030709.g005
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if the control samples were collected during the luteal phase, when

FSH bioactivity was the lowest [38]. However, further studies are

needed to delineate the precise factors that account for the

disparity in FSH bioactivities between the investigations.

It may be relevant to note in this context that unlike POI,

testicular dysfunction is not a very frequent finding in human

galactosaemia. Also, in a rat model for galactosaemia, Chen et al.

demonstrated no corresponding testicular toxicity [39]. Differen-

tial ovarian and testicular resistance to galactosaemia is perhaps

due to the facts that expression of GALT is lowest in testis [39]

that makes this organ less vulnerable to galactose toxicity, and that

FSH does not play an obligatory role in the maintenance of

spermatogenesis [40] unlike in folliculogenesis.

Fraser et al. [22] suggested that perhaps an acquired anomaly of

gonadotrophin receptors also attributes to the process of follicular

resistance to gonadotrophins. We addressed the issue by evaluating

steroidogenic response of the target follicular cells to reference

gonadotrophin preparations. The results clearly demonstrate that

both granulosa and theca cells from galactose-exposed ovary

responded as effectively as the control follicular cells responded to

FSH and LH to produce E2 and androstenedione, respectively

(Figure 2 A & B). This observation refutes the proposition of

receptor anomaly as the cause of follicular gonadotrophin

resistance inducted by galactose toxicity.

It is indeed appropriate in this context to refer to our

observation that the galactose-exposed rat ovaries that were

normally refractory to gonadotrophin stimulation, responded well

when endogenous gonadotrophins were suppressed by GnRH

receptor down-regulation [13]. Earlier workers have demonstrated

that deglycosylated FSH has higher binding affinity to its receptor

than the glycosylated form, but is unable to activate second

messenger system and thereby exert antagonistic effects at the

receptor levels [19]. This very characteristic feature of deglyco-

sylated forms of FSH explains why the ovary could respond

favourably to exogenous gonadotrophins only after endogenous

gonadotrophins were suppressed by pituitary desensitization [13].

Apoptotic death of follicles is an essential phenomenon in

ovarian physiology occurring at all periods of life. That elevated

galactose levels favour the activation of rat ovarian apoptosis has

been substantiated earlier by the increased expression of

apoptosis–mediating proteins and down-regulation of anti-apo-

ptotic proteins [16]. The present observation on ovarian TUNEL

reaction provides direct evidence in support of increased follicular

apoptosis under experimental galactosaemic state.

Classical galactosaemia is characterized by deficiency of GALT

and consequent intracellular accumulation of galactose, galactose-

1-phosphate and galactitol. Two metabolites are potentially toxic:

galactitol is responsible for the cataracts, while galactose-1-

phosphate causes the rest of the pathology [41]. Ovary is the

second richest organ for the expression and activity of GALT, and

is therefore one of the most likely organs to accumulate galactose

and galactose-1-phosphate in galactosaemia and get affected by

their direct ovotoxic effects, if any [4]. We, therefore, examined

the effects of galactose on isolated whole-follicle and granulosa

cells in vitro.

To the best of our knowledge, there are no reports on the

ovarian concentrations of galactose in human or experimental

galactosaemia. To optimize the galactose doses for in vitro studies,

Figure 6. Potential-dependent mitochondrial JC1 staining and evaluation of apoptosis with annexin V. Images of mitochondrial JC-1
fluorescence in granulosa cells are presented in Figs. 6 A–C. The granulosa cells were cultured for 24 h in the presence of PBS (control) or galactose
followed by incubation with JC-1 for 30 min at 37uC in dark. Cells were washed, fixed, and analyzed by confocal microscopy. The PBS-treated control
group (Fig. 6A) shows greenish orange florescence in most of the cells due to strong JC-1 aggregation that marks high mitochondrial membrane
potential. The cells treated with galactose at 50 nM (Fig. 6B) and 100 nM (Fig. 6C) concentrations show gradual shifting from greenish orange to
green fluorescence indicating disruption of mitochondrial membrane potential. Merged images of annexin V and propidium iodide (PI) fluorescence
in granulosa cells are presented in Figs. 6 D–F. The granulosa cells were cultured on poly L-lysine coated coverslips for 24 h in the presence of PBS
(control) or galactose, followed by incubation with Annexin V-FITC and propidium iodide for 15 min at room temperature in dark. Cells were washed,
fixed and visualized under confocal microscope. The PBS-treated control cells (Fig. 6D) show no annexin V binding. The cells treated with 50 nM
galactose (Fig. 6E) show annexin V binding but no PI fluorescence, which mark the exposure of phosphadidylserine at the outer leaflet with intact
membrane integrity. That the cells are apoptotic but not dead is indicated by the absence of red fluorescence of PI. The cells exposed to 100 nM
galactose (Fig. 6F), by contrast, are clearly positive for both annexin V and PI fluorescence, which is indicative of loss of membrane integrity
characterizing apoptotic death.
doi:10.1371/journal.pone.0030709.g006

Galactose Toxicity and Ovarian Dysfunction

PLoS ONE | www.plosone.org 6 February 2012 | Volume 7 | Issue 2 | e30709



initially we screened the effects of galactose on granulosa cell

mitochondrial membrane potential and annexin-V affinity assays

at concentrations ranging between 10–100 nM. Since no effects

could be appreciated up to 25 nM concentration, we performed

all culture studies in the presence of 50 nM and 100 nM galactose

that are well below the blood galactose level (,350 nM) under the

present experimental situation [13].

In the whole-follicle culture, galactose dose-dependently in-

creases follicular generation of ROS and caspase 3. This clearly

suggests the direct atretic effects of galactose because ROS is the

initiator of apoptotic cascade in granulosa cells [42], while caspase

3 is the key executor of all apoptotic processes [43]. A complex

interactive network between the three follicular compartments -

the oocyte, granulosa cells and theca cells - is operative in

determining the fate of a follicle [44]. Reports indicate that

follicular atresia is driven by the apoptosis of granulosa cells that

secondarily leads to oocyte death. A number of intracellular

molecules are possibly directly involved in the regulation of this

process. GDF-9 is an oocyte-specific factor that plays a pivotal role

in maintaining oocyte-granulosa-theca cell communications to

promote follicular differentiation and maturation [45]. There is an

earlier report that galactose significantly down regulates ovarian

GDF-9 [15]; increased follicular atresia was considered a

secondary consequence. We, however, observed that galactose

can directly trigger granulosa cell apoptosis in vitro.

Viable cells maintain a strictly asymmetric lipid bilayer

composition between the inner and outer leaflets of the plasma

membrane, with phosphatadylserine (PS) residues at the cyto-

plasmic face [46]. Apoptotic cell death is accompanied by loss of

phospholipid asymmetry in membrane structure by surface

exposure of PS molecules at the outer membrane leaflet, while

the membrane integrity remains unchallenged. Annexin V

cannot penetrate viable cell membrane and therefore cannot

bind PS, but it can bind with high affinity to the exposed PS in

the presence of calcium [47]. Our confocal microscopic pictures

of annexin V-affinity binding assay clearly demonstrate that

following exposure to galactose at 50 nM concentration, the

granulosa cell surfaces are annexin V-positive, but negative for

staining by the membrane impermeable DNA stain PI. This

indicates that galactose induces granulosa cell apoptosis. How-

ever, at 100 nM doses some cells showed PI fluorescence, which

is indicative of cell death.

Reports suggest that early during apoptosis, cells undergo

disruption of the mitochondrial transmembrane potential prior to

PS exposure at the outer membrane leaflet [48]. JC-1 is a

lipophilic cationic fluorescent dye that can enter selectively into

mitochondria and act as a dual emission probe. As the membrane

potential increases, JC-1 aggregates and changes its colour from

green to orange, while it maintains the green colour of its

monomeric form as the mitochondrial membrane potential

depolarizes [49]. The confocal microscopic picture following JC-

1 staining shows that galactose at 50 nM and higher concentra-

tions disrupted the mitochondrial transmembrane potential. This

finding also supplements the findings of annexin V binding.

Apoptosis can be activated either by endogenous intrinsic

pathways resulting from an imbalance between pro-apoptotic and

anti-apoptotic factors, or by exogenous extracellular mechanism

[43]. Recent study documents that p53-mediated intrinsic death

pathways is central in the induction of follicular atresia [50]. Our

western blot and immunofluorescence analyses also showed that

galactose dose-dependently up-regulated granulosa cell expres-

sion of p53 and disrupted mitochondrial membrane potential in

vitro. FSH and E2 belong to the anti-apoptotic factors that

significantly impact follicular survival [43]. The anti-apoptotic

effect of FSH is mediated in part by suppression of ROS [42].

Since galactose toxicity attenuates FSH bioactivity and sets back

granulosa cell production of E2, the resultant follicular microen-

vironment perhaps suffers from deficiency of two major anti-

apoptotic factors. We hypothesize that in our experimental

galactosaemia rat model, galactose can directly induce follicular

oxidative stress, which is not taken care of by FSH because of its

attenuated bioactivity. Consistent with this proposition are our

findings that co-treatment with FSH or E2 effectively prevented

galactose-induced granulosa cell expression of p53. This finding is

important with respect to its therapeutic implications. It is

pertinent in this respect to refer that several patients with classical

galactosaemia and ovarian dysfunction responded to exogenous

gonadotrophin administration, either by ovulating or by docu-

mented estrogen production [51], and pregnancy has been

reported in galactosaemia patient after down-regulation of

endogenous gonadotrophins followed by stimulation with recom-

binant FSH [52]. However, treatment with exogenous gonado-

trophins is practically difficult to generalize since this can be a

rational treatment option only for the subgroup of women with

residual follicle reserve.

In conclusion, galactose exerts its ovotoxic effects perhaps at

multiple levels. Ovarian accumulation of galactose and galactose-

1-phosphate may exert direct apoptotic effects, while the extra-

ovarian effect of galactose may involve attenuation of FSH

bioactivity followed by withdrawal of protection from ROS insult

and activation of p53-mediated granulosa cell apoptosis.

Figure 7. Immunoblot and densitometric analysis of p53. A
representative immunoblot of p53 protein expression in cultured
granulosa cells shows dose-dependent increase in its expression of p53
in the galactose-treated (50 nM; 100 nM) cells over that of the control
(Fig. 7A). The histogram represents the relative intensity of the bands
normalized to loading control. Quantification of p53 Western blots was
done by the ratio of p53 to b-actin. Both bands of p53 doublet were
used for quantification. Compared with controls, the expression of p53
protein relative to b-actin increased significantly following treatment
with galactose at 50 nM (p = 0.015) and 100 nM (p,0.0001) concentra-
tions (Fig. 7B).
doi:10.1371/journal.pone.0030709.g007
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Figure 8. Reversal of galactose-induced granulosa cell p53 expression by co-treatment with E2 and FSH. Figure 8 demonstrates
galactose effects on the granulosa cell expressions of p53 in the presence or absence of E2 and FSH. The granulosa cells were cultured for 24 h with
PBS (control) or 50 nM galactose in the presence or absence of E2 and FSH, followed by overnight incubation with p53 antibody at 4uC. Cells were
washed, incubated with secondary antibody, fixed, and analyzed by confocal microscopy. Galactose exposure (Fig. 8B) up-regulates granulosa cell
p53 expression over that of untreated control (Fig. 8A). Co-treatment with 100 pg/ml E2 (Fig. 8C) or 25 ng/ml FSH (Fig. 8E) partially reversed the
galactose-induced expression of p53, while co-treatment with E2 at 1 ng/ml concentration (Fig. 8D) or FSH at 100 ng/ml concentration (Fig. 8F)
reversed the p53 expression back to control level (Fig. 8A).
doi:10.1371/journal.pone.0030709.g008
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Materials and Methods

Chemicals and reagents
Most of the chemicals including D-galactose, bovine serum

albumin (BSA), MnCl2, GalTase (from bovine milk), UDP-

galactose, Adenosine 5/-monophosphate (5/ AMP), MES (2-[N-

Morpholino] ethanesulphonic acid), trichloroacetic acid (TCA),

ovalbumin, diethylstilbestrol (DES), McCoy’s 5a medium (modi-

fied), Medium 199 (M 199) (with Earle’s salts, L-glutamine and

25 mM HEPES), 5,59,6,69 tetrachloro-1,19,3,39-tetraethylbenzi-

midazolcarbocyanine iodide (JC-1), human chorionic gonadotro-

phin (hCG), haematoxylin, insulin, transferrin, linoleic acid,

selenium, 2_, 7_-dichlorofluorescein diacetate, goat serum, and

pregnant mare serum gonadotrophin were purchased from Sigma

Chemical Co., St. Louis, MO, USA. Nutrient mixture HAM’S F-

10 with L-glutamine (1.0 mM) and sodium bicarbonate (1.2 g/l)

(Hyclone, Logan, Utah), Modified eagle’s medium (GibcoTM

Invitrogen corporation), Uridine diphospho-D-[6-3H]galactose,

ammonium salt (Amersham Pharmacia Biotech UK Limited,

Buckinghamshire, England), mounting medium for fluorescence

(Vector laboratories Inc. Burlingame), TdT-FragELTM DNA

fragmentation kit (Oncogene Research Products, Cambridge,

MA), RPMI 1640 media (Gibco, Grand Island, NY), eosin (s.d.

fine-chem. Ltd, Mumbai, India), Poly-L-Lysine coated slides and

four chambered slides (BD biosciences, Bedford, MA), Immobo-

lin–P membranes (Millipore Crop, Billerica, MA), Annexin V-

FITC apoptosis detection kit (BioVision, Mountain View, CA),

immuno reagents for western blot analysis of p53 and b-actin

(Santacruz Biotechnology, Santacruz, CA), secondary antibody

Alexa 633 (Invitrogen Corporation, Carlsbad, CA) and super

signal west pico chemiluminescent substrate (Thermo Scientific,

Rockford, USA) were procured from the respective commercial

sources. Rat FSH and LH reference preparations (rFSH-RP2 and

rLH-RP3) were procured from National Hormone and Pituitary

Programme, NIDDK, USA. Isocaloric food pellets (carbohydrate:

65.5%, protein: 21%, fat: 5.5%, mineral mixture: 7% and vitamin

mixture: 1%), supplemented with or without 35% galactose, were

prepared in the institute’s animal house.

Animals
The experiments were performed in accordance with the

guidelines formulated by the Committee for the Purpose of

Control and Supervision of Experiments on Animals, Ministry of

Culture, India, with approval from the Animal Ethics Committee

of Indian Institute of Chemical Biology (ID: 147/1999/CPCSEA/

SNK-P8/08-08-2005). Pregnant Sprague-Dawley rats, procured

from the random bred colony of the animal house of our institute,

were maintained under good husbandry conditions supported by

diurnal cycles of 12 h light and 12 h darkness with lights on at

0600 h daily. They were fed standard food pellet supplemented

with or without 35% D-galactose from day 3 of conception

continuing through weaning of the litters on postnatal day (PND)

21. On PND 35, few female pups from both control and treated

groups were sacrificed, blood was collected by direct cardiac

puncture and ovaries were dissected out. Sera were separated and

evaluated for galactose incorporation capacity, GalTase activity,

and gonadotrophin bioactivity, while ovaries were fixed and

processed for the assessment of follicular atresia by TUNEL

reaction. Other female litters from both groups received

subcutaneous (sc) injection of DES (2 mg/rat/day) for 4 days

and were sacrificed. Granulosa and theca cells were collected from

the ovaries and cultured for the assessment of gonadotrophin

receptor competency. The in vitro effects of galactose were assessed

in whole follicles or isolated granulosa cells obtained from 35-day

old control rats injected sc with DES (2 mg/rat/day) for 4 days, or

PMSG (25 mIU/rat/day) for 2 days. The procedures are

described in details under the heading of individual studies.

In vivo studies
Incorporation of UDP-(3H) galactose into sera pro-

teins. Sera from 35-day old rats from the galactose-exposed

(n = 12) and control (n = 10) ones were tested for their capacity to

incorporate galactose in the presence of radiolabeled UDP-

[3H]galactose and commercially available GalTase, following the

method of Ornstein et al. [33] with little modification. Each assay

mixture (final volume 35 ml) contained 225 mg of serum protein (as

determined by the method of Lowry et al. [53] using BSA as

control), 50 mM/L MnCl2, 1 mg GalTase, 50 mmol/L MES and

15 mmol/L 5/ AMP at pH 6.5. The mixture was incubated at

37uC for 3 h. Enzyme activity was stopped thereafter and protein

was precipitated by the addition of 10% TCA followed by

centrifugation at 12006g for 15 min. The pellet was washed twice

in 0.1 N NaOH and finally counted in a Beckman LS-500 TD

Liquid Scintillation Counter.

Assay of serum galactosyltransferase activity. Sera from

control (n = 10) and galactose-exposed (n = 12) rats were evaluated

for their relative GalTase activity by following the principle

adopted for the galactose incorporation study; however, instead of

using serum protein as the galactose acceptor and commercial

GalTase as the catalytic enzyme, this assay utilized 235 mg of

ovalbumin (150 mM) as the galactose acceptor [54] and serum as

the source of GalTase.

Collection and culture of granulosa cells. The in vitro assays

for FSH activity and its receptor competency were performed using an

in vitro granulosa cell culture method developed by Jia and Hsueh [55]

with modification [56] that uses aromatase activity in rat granulosa

cells as an index of FSH bioactivity. The rats were treated with

subcutaneous injection of DES (2 mg/rat/day) for 4 days [57].

Granulosa cells were released from their ovaries by puncturing follicles

and cultured for 24 h at 37uC in a 5% CO2 incubator. Each well

contained approximately 16106 viable cells in 0.5 ml of Ham’s F10

medium, supplemented with L-glutamine (2 mM), BSA (100 mg/l),

penicillin (100 IU/ml), streptomycin sulphate (100 mg/ml), 1-(3-

isobutyl)-1-methylxanthine (0.125 mM), DES (1024 M), insulin

(1 mg/ml), hCG (100 mg/ml), and androstenedione (1026 M) as the

substrate for aromatase. The culture was conducted in the presence of

FSH reference preparation and/or serum, as the situation demanded.

The selected concentrations of FSH corresponded to the normal

physiological range in the same age group [13]. On completion of

incubation, the medium was aspirated and centrifuged. The resultant

supernatants were stored frozen at 240uC until E2 was measured by

fully automated chemiluminescence assay using specific E2 assay kit

(ACS 180, Chiron Diagnostics Corp., East Walpole, MA, USA). The

assay sensitivity was 10 pg/ml; both intra- and inter-assay coefficients

of variation (COV) were ,8%.

Examination of serum FSH activity. Granulosa cells

(,16106) of control ovarian origin were incubated in the

presence of sera from control (n = 8) and galactose-exposed

(n = 13) rats at four different volumes between 25 and 200 ml in

a total incubation volume of 0.5 ml. Serum FSH activity was

assessed with respect to its capacity to stimulate granulosa cell

production of E2, expressed as picogram per ml culture medium,

and plotted against each volume of serum to construct dose-

response curves.

Examination of granulosa cell competency to respond to

FSH. Granulosa cells were collected from ovaries of PND 35

control (n = 10) and galactose-exposed (n = 33) rats. Because of

poor yield of cells in the study group, the granulosa cells were
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pooled from 3 rats for each determination. The cells were

incubated in the presence of rat FSH reference preparation in the

range between 0.25 and 2 ng per tube. The production of E2 in

respect of each concentration of FSH was measured and a dose-

response curve was plotted.

Collection, purification and culture of theca cells. The in

vitro bioassays for LH and its receptor competency relied on

androstenedione production by purified rat theca cells, prepared

using the procedure described by Magoffin and Erickson [58].

Briefly, ovaries from DES-treated immature female rats were

punctured gently in ice cold M199 medium, and theca cells were

purified by an optimized discontinuous percoll density gradient

centrifugation procedure, as described by Magoffin and Erickson

[59]. Approximately ,105 purified rat theca cells were cultured in

500 ml of McCoy’s 5a medium supplemented with L-glutamine

(2 mM), penicillin (100 IU/ml) and streptomycin sulphate

(100 mg/ml) for 48 h at 37uC in 5% CO2 in the presence of

standard LH and/or serum samples. After incubation, the

medium was collected and stored frozen at 240uC for

subsequent analysis of androstenedione by an automated

chemiluminescence assay system (Immulite 2000: Diagnostic

Products Corp., USA). The assay sensitivity was 0.3 ng/ml, and

intra-and inter-assay COV were 5.2% and 8%, respectively.

Examination of serum LH activity. Theca cells of control

ovarian origin were incubated in the presence of sera from control

(n = 8) and galactose-exposed (n = 13) rats at 3 different volumes

between 50–200 ml. Androstenedione production rates were

expressed as nanogram per ml.

Examination of theca cell competency to respond to

LH. Theca cells collected from control (n = 9) and galactose-

exposed (n = 42) rats were incubated in the presence of rat LH

reference preparation in the range between 0.5–5.0 ng that

corresponded to the normal physiological range of serum LH in

the same age group [13]. Because of poor yield of cells in the study

group, they were pooled from 3/4 rats. The production of

androstenedione in respect of each concentration of LH was

measured and a dose-response curve was plotted.

Effects of galactose on follicular atresia. Immunohis-

tochemical detection of follicular apoptosis was done by in situ 3/-

end labelling of DNA fragments in ovarian sections using the TdT-

mediated dUTP nick-end labeling (TUNEL) assay according to

the instructions given in the kit manual. Briefly, ovaries from

control (n = 9) and galactose-exposed rats (n = 11) were immerse-

fixed in 10% neutral buffered formalin at 4uC, dehydrated,

embedded in paraffin, and serially sectioned at 5 mm thickness.

Deparaffinized tissue sections were incubated with proteinase K

(20 mg/ml) in a humidified chamber for 15 min and endogenous

peroxidase activity was removed by treatment with 3% H2O2 for

10 min. Sections were then incubated with TdT labeling buffer at

37uC for 1 hr in a moist chamber. They were stained with

diaminobenzidine as a peroxidase substrate and counterstained

with methyl green. For control experiments, the enzyme

incubation step was omitted. Reaction was documented by

digital photography.

In vitro Studies
Follicle culture. The immature female rats were injected

subcutaneously with 10 IU of PMSG in 0.1 ml sterile 0.9% saline

[42]. After 24 h the animals were euthanized, ovaries were

removed, and the follicles at early antral stage of maturity and

measuring 150–200 mm in diameter were dissected out. Without

any assessment of oocyte maturity, the follicles were cultured by

the method previously described by McGee et al. [60]. Briefly, the

culture was continued for 24 h in Modified Eagle’s Medium

supplemented with ITS1 (insulin, 10 mg/L; transferrin, 5.5 mg/L;

linoleic acid, 4.7 mg/L; selenium, 5 mg/L) and Pen/Strep

(penicillin, 100 U/ml; streptomycin, 100 mg/ml) in the presence

of PBS or galactose (50 nM and 100 nM) and overlaid with sterile

mineral oil at 37uC in a moist atmosphere of 5% CO2 and 95%

air. On completion of incubation the follicles were collected for the

following analyses.

Histological analysis of follicles. Follicles were fixed in 4%

paraformaldehyde solution, embedded in paraffin and sectioned

(5 mm). Sections were stained with haematoxylin and eosin and

examined under light microscope. Eight to ten follicles from each

treatment group were analyzed, and 1 representative follicle from

each group was photographed.

Detection of follicular ROS generation in situ. Follicular

generation of ROS was evaluated according to Turton et al [42]

with little modifications. Briefly, the control and galactose-treated

follicles were washed with PBS and incubated with 100 mm 2_, 7_-

dichlorofluorescein diacetate (H2DCFDA) in MEM media for

30 min. ROS-mediated oxidative transformation of H2DCFDA to

fluorescent dichlorofluorescein was evaluated by fluorescence

microscopy as the measure of ROS.

Western blot analysis of follicular caspase 3. Twenty

follicles from the control and each treatment groups (50 nM and

100 nM) were collected in Eppendorf tubes in lysis buffer (50 mM

Tris-HCl, 150 mM NaCl, 1% SDS, 5 mM EGTA, 0.5 mM MgCl2,

0.5 mM MnCl2 and 0.2 mM phenylmethylsulfonylfluoride supple-

mented with protease inhibitor). These were homogenized with a

glass rod and centrifuged at 7500 rpm for 10 min at 4uC. The

supernatant was collected and estimated for protein concentration.

Fifty microgram of total protein from each sample was resolved on a

10% sodium dodecyl sulfate polyacrylamide gel and transferred onto

immobilon-P membranes. The membrane was incubated with 5%

blocking solution (Tris-buffered saline [TBS] containing 0.1%

Tween-20, 5% non-fat dried milk) for 2 h, washed with TBS

containing 0.1% Tween-20, and incubated overnight with rabbit

polyclonal anti-caspase 3 antibody (1:800) and anti-b-actin-antibody

(1:1000). HRP-conjugated secondary mouse anti-rabbit antibody

(1:2000) was added and peroxide activity was visualized by enhanced

chemiluminescence and exposed to X-Ray film. Densitometric

quantification of signals was done by Image-J software. The data

were expressed as caspase 3 to b-actin ratio.

Granulosa cell isolation and preparation. The ovarian

granulosa cells from DES-treated control immature rats were

collected in ice-cold PBS, centrifuged, washed, and re-suspended

in RPMI medium. The cells were cultured on poly L-lysine-coated

microscopic glass slides in the presence of PBS or galactose at

concentrations ranging from 10 nM to 100 nM in humidified

atmosphere containing 5% CO2 and 95% air at 37uC for

24 hours, and analyzed for mitochondrial membrane potential,

annexin V-affinity binding, and western blot analysis of p53. The

cell viability was more than 90% in all sets of experiments, as

measured by trypan blue dye exclusion test.

Detection of granulosa cell mitochondrial membrane

potential. Analysis of mitochondrial membrane potential

was done by staining with JC-1, a lipophilic cationic

fluorescent dye capable of selectively entering mitochondria

and acting as a dual emission probe that reversibly changes color

from green (FL-1) to greenish orange (FL-2) in concert with

polarization of mitochondrial membrane [61]. On completion of

culture for 24 h, the granulosa cells were incubated with JC-1

for 30 min at 37uC in darkness. Cells were washed with PBS.

The cover slips were inverted on glass slides, fixed in 2%

formaldehyde, and analyzed by confocal microscopy (Nikon,

A1R, Japan).
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Granulosa cell annexin V binding assay. The cultured

granulosa cells on the poly L-lysine coated coverslips were flooded

with 500 ml of 1X binding buffer, 5 mL of Annexin V-FITC, and

5 mL of propidium iodide (PI), and incubated at room temperature

for 15 min in dark. The cover slips were inverted on glass slides,

fixed in 2% formaldehyde, and visualized under confocal

microscope.
Western blot analysis of granulosa cell p53. The cultured

granulosa cells were lysed in buffer (150 mM NaCl, 500 mM Tris,

10 mM EDTA) supplemented with protease inhibitors (1 mg/ml

aprotinin, 1 mg/ml pepstatin, 1 mg/ml leupeptin, 1 mM PMSF,

1 mg/ml trypsin inhibitor) and 1% Triton X-100, and centrifuged

at 5,000 rpm for 10 min at 4uC. The supernatant was collected

and estimated for protein concentration. Fifty microgram of total

protein from each sample was resolved on a 10% sodium dodecyl

sulfate polyacrylamide gel and transferred onto immobilon-P

membranes. The membrane was incubated with 5% blocking

solution (Tris-buffered saline [TBS] containing 0.1% Tween-20,

5% non-fat dried milk) for 2 h, washed twice with TBS containing

0.1% Tween-20, and incubated for 4 h with rabbit polyclonal

anti-p53 antibody (1:500 dilution) and anti-b-actin antibody

(1:1000). HRP-conjugated secondary mouse anti-rabbit antibody

(1:2000) was added and peroxide activity was visualized by

enhanced chemiluminescence and exposure to X-Ray film.

Densitometric quantification of signals was done by Image-J

software. The data were expressed as p53 to b-actin ratio.
Immunofluorescence detection of granulosa cell p53

expression. Granulosa cells collected from immature control

rat ovaries were grown on four-chambered slides and incubated

for 24 h with 50 nM galactose in the presence or absence of E2

(100 pg/ml and 1 ng/ml) or FSH (25 ng/ml and 100 ng/ml). The

cells were washed with PBS and fixed for 10 min in ice-cold

absolute methanol at 220uC. The slides were dried, rinsed with

PBS, and incubated with 10% normal goat serum in PBS for

30 min to suppress non specific binding. After removing the serum

solution, the slides were incubated overnight at 4uC with mouse

monoclonal p53 antibody (1:200 dilution) in PBS containing 1.5%

normal goat serum. The slides were washed and incubated for 2 h

in dark with Alexa 633 anti-mouse secondary antibody (1:400

dilution) in PBS containing 1.5% normal goat serum. Finally, the

slides were thoroughly washed in PBS, mounted with DAPI-

containing media, and observed under confocal microscope.

Statistical analyses
The data were expressed as mean 6 standard error of the mean

(SEM), where ‘n’ refers to the number of animals or determina-

tions. All treatments of the granulosa as well as theca cells in

culture with either FSH/LH or serum samples were carried out in

triplicate, and each experiment was repeated at least twice. Given

that the numbers of determinations were low, two-tailed Student’s

t-test was used to analyse the significance of differences between

the experimental and control observations. A difference was

considered statistically significant at P,0.05.

Acknowledgments

The authors thank NIDDK, California, USA for generously providing rat-

FSH-LH reference preparation. We gratefully acknowledge Ms. Durba

Pal, Project Assistant, CSIR-IICB for her technical assistance, Dr. B.

Achari, former Scientist, CSIR-IICB for editing the manuscript, and Dr.

Sourabh Ghosh, Human Genetics Unit, Indian Statistical Institute,

Kolkata for guiding the statistical analyses.

Author Contributions

Conceived and designed the experiments: SNK SAB Sutapa Banerjee.

Performed the experiments: Sayani Banerjee PS PC Sutapa Banerjee SAB.

Analyzed the data: Sayani Banerjee PS PC. Contributed reagents/

materials/analysis tools: Sayani Banerjee PC PS SAB. Wrote the paper:

SNK Sutapa Banerjee.

References

1. Kaufman FR, Xu YK, Ng WG, Donnell GN (1988) Correlation of ovarian
function with galactose-1-phosphate uridyl transferase levels in galactosaemia.

J Pediatr 112: 754–756.

2. Guerrero NV, Singh RH, Manatunga A, Berry GT, Steiner RD, et al. (2000)

Risk factors for premature ovarian failure in females with galactosaemia.

J Pediatr 137: 833–841.

3. Waggoner DD, Buist NR, Donnell GN (1990) Long-term prognosis in

galactosaemia: results of a survey of 350 cases. J Inherit Metab Dis 13:
802–818.

4. Forges T, Monnier-Barbarino P, Leheup B, Jouvet P (2006) Pathophysiology of

impaired ovarian function in galactosaemia. Hum Reprod Update 12: 573–584.

5. Fridovich-Keli JL, Gubbels CS, Spencer JB, Sanders RD, Land JA, et al. (2011)

Ovarian function in girls and woman with GALT-deficiency galactosemia.

J Inherit Metab Dis 34: 357–366.

6. Anasthi JN (1998) Premature ovarian failure: an update. Fertil Steril 70:

1–15.

7. Campbell BK, Onions V, Kendall NR, Guo L, Scaramuzzi RJ (2010) The effect

of monosaccharide sugars and pyruvate on the differentiation and metabolism of

sheep granulosa cells in vitro. Reproduction 140: 541–550.

8. Campbell BK, Kendall NR, Onions V, Scaramuzzi RJ (2010) The effect of

systemic and ovarian infusion of glucose, galactose and fructose on ovarian
function in sheep. Reproduction 140: 721–732.

9. Rubio-Gozalbo ME, Gubbels CS, Bakker JA, Menheere PP, Wodzig WK, et al.

(2010) Gonadal function in male and female patients with classic galactosemia.
Hum Reprod Update 16: 177–188.

10. Cramer DW, Harlow BL, Barbieri RL, Ng WG (1989) Galactose-1-phosphate

uridyl transferase activity associated with age at menopause and reproductive
history. Fertil Steril 51: 609–615.

11. Gibson JB (1995) Gonadal function in galactosemics and in galactose-intoxicated
animals. Eur J Pediatr 154(suppl.2): S14–S20.

12. Segal S (1995) In utero galactose intoxication in animals. Eur J Pediatr 154

(suppl.2): S82–S86.

13. Bandyopadhyay S, Chakrabarti J, Banerjee S, Pal AK, Goswami SK, et al.

(2003) Galactose toxicity in the rat as a model for premature ovarian failure: an

experimental approach readdressed. Hum Reprod 18: 2031–2038.

14. Bandyopadhyay S, Chakrabarti J, Banerjee S, Pal AK, Bhattacharyya D, et al.

(2003) Prenatal exposure to high galactose adversely affects initial gonadal pool

of germ cells in rats. Hum Reprod 18: 276–282.

15. Liu G, Shi F, Blas-Machado U, Yu R, Davis VL, et al. (2006) Dietary galactose

inhibits GDF-9 mediated follicular development in the rat ovary. Reprod
Toxicol 21: 26–33.

16. Lai KW, Cheng LY, Cheung AL, O WS (2003) Inhibitor of apoptosis proteins
and ovarian dysfunction in galactosaemic rats. Cell Tissue Res 311: 417–425.

17. Swartz WJ, Mattison DR (1988) Galactose inhibition of ovulation in mice. Fertil
Steril 49: 522–526.

18. Prestoz LL, Couto AS, Shin YS, Petry KG (1997) Altered follicle stimulating
hormone isoforms in female galactosaemia patients. Eur J Pediatr 156: 116–120.

19. Kessel B, Dahl KD, Kazer RR, Liu CH, Rivier J, et al. (1988) The dependency
of bioactive follicle-stimulating hormone secretion on gonadotrophin-releasing

hormone in hypogonadal and cycling women. J Clin Endocrinol Metab 66:

361–366.

20. Gubbels CS, Thomas CM, Wodzig WK, Olthaar AJ, Jaeken J, et al. (2011) FSH

isoform pattern in classic galactosemia. J Inherit Metab Dis 34: 387–390.

21. Sanders RD, Spencer JB, Epstein MP, Pollak SV, Vardhana PA, et al. (2009)

Biomarkers of ovarian function in girls and woman with classic galactosemia.
Fertil Steril 92: 344–351.

22. Fraser IS, Russell P, Greco S, Robertson DM (1986) Resistant ovary syndrome
and premature ovarian failure in young women with galactosaemia. Clin

Reprod Fertil 4: 133–138.

23. Sharma RK, Bhardwaj JK (2009) Ultrastructural characterization of apoptotic

granulosa cells in caprine ovary. J Microscopy 236: 236–242.

24. Ng WG, Xu YK, Kaufman FR, Donnell GN (1989) Deficit of uridine

diphosphate galactose in galactosaemia. J Inherit Metab Dis 12: 257–266.

25. Segal S (1995) Defective galactosylation in galactosaemia: is low cell UDP

galactose an explanation? Eur J Pediatr 154(suppl. 2): S65–S71.

26. Kim YS, Perdomo J, Whitehead JS, Curtis KJ (1972) Glycosyltransferases in

human blood. II. Study of serum galactosyltransferase and N-acetylgalactosa-
minyltransferase in patients with liver diseases. J Clin Invest 51: 2033–2039.

27. Sairam MR (1989) Role of carbohydrates in glycoprotein hormone signal

transduction. FASEB J 3: 1915–1926.

Galactose Toxicity and Ovarian Dysfunction

PLoS ONE | www.plosone.org 11 February 2012 | Volume 7 | Issue 2 | e30709



28. Haberland C, Perou M, Brunngraber EG, Hof H (1971) The neuropathology of

galactosemia. A histopathological and biochemical study. J Neuropathol Exp
Neurol 30: 431–447.

29. Tedesco TA, Miller KL (1979) Galactosemia: alterations in sulfate metabolism

secondary to galactose-1-phosphate uridyltransferase deficiency. Science 205:
1395–1397.

30. Dobbie JA, Holton JB, Clamp JR (1990) Defective galactosylation of proteins in
cultured skin fibroblasts from galactosaemic patients. Ann Clin Biochem 27:

274–275.

31. Petry K, Greinix HT, Nudelman E, Eisen H, Hakomori S, et al. (1991)
Characterization of a novel biochemical abnormality in galactosemia: deficiency

of glycolipids containing galactose or N-acetylgalactosamine and accumulation
of precursors in brain and lymphocytes. Biochem Med Metab Biol 46: 93–104.

32. Jaeken J, Kint J, Spaapen L (1992) Serum lysosomal enzyme abnormalities in
galactosaemia. Lancet 340: 1472–1473.

33. Ornstein KS, McGuire EJ, Berry GT, Roth S, Segal S (1992) Abnormal

galactosylation of complex carbohydrates in cultured fibroblasts from patients
with galactose-1-phosphate uridyltransferase deficiency. Pediatr Res 31:

508–511.
34. Charlwood J, Clayton P, Keir G, Mian N, Winchester B (1998) Defective

galactosylation of serum transferrin in galactosemia. Glycobiology 8: 351–357.

35. Sturiale L, Barone R, Fiumara A, Perez M, Zaffanello M, et al. (2005)
Hypoglycosylation with increased fucosylation and branching of serum

tranferrin N-glycans in untreated galactosemia. Glycobiology 15: 1268–1276.
36. Creus S, Pellizzari E, Cigorraga SB, Campo S (1996) FSH isoforms: bio and

immuno-activities in post-menopausal and normal menstruating women. Clin
Endocrinol 44: 181–189.

37. Anobile CJ, Talbot JA, McCann SJ, Padmanabhan V, Robertson WR (1998)

Glycoform composition of serum gonadotrophins through the normal menstrual
cycle and in the post-menopausal state. Mol Hum Reprod 4: 631–639.

38. Reddi K, Wickings EJ, Mcneilly AS, Baird DT, Hillier SG (1990) Circulating
bioactive follicle stimulating hormone and immunoreactive inhibin levels during

the normal human menstrual cycle. Clin Endocrinol 33: 547–557.

39. Chen YT, Mattison DR, Bercu BB, Schulman JD (1984) Resistance of the male
gonad to a high galactose diet. Pediatr Res 18: 345–348.

40. O’Shaughnessy PJ, Monteiro A, Verhoeven G, De Gendt K, Abel MH (2010)
Effect of FSH on testicular morphology and spermatogenesis in gonadotrophin-

deficient hypogonadal mice lacking androgen receptors. Reproduction 139:
177–184.

41. Gitzelmann R, Steinmann B (1984) Galactosemia: how does long-term

treatment change the outcome. Enzyme 32: 37–46.
42. Tsai-Turton M, Luderer U (2005) Opposing effects of glutathione depletion and

follicle stimulating hormone on reactive oxygen species and apoptosis in cultured
preovulatory rat follicles. Endocrinology 147: 1224–1236.

43. Quirk MS, Cowan GR, Harman RM, Hu CL, Porter DA (2004) Ovarian

follicular growth and atresia: the relationship between cell proliferation and
survival. J Anim Sci 82(E. Suppl): E40–E52.

44. Gilchrist RB, Lane M, Thompson JG (2008) Oocyte-secreted factors; regulators
of cumulus cell function and oocyte quality. Hum Reprod Update 14: 159–177.

45. Mazerbourg S, Hseuh AJ (2003) Growth differentiation factor-9 signalling in the

ovary. Mol Cell Endocrinol 202: 31–36.

46. Bretscher MS (1972) Asymmetrical lipid bilayer structure for biological

membranes. Nat New Biol 236: 11–12.

47. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT,

et al. (1990) Binding of vascular anticoagulant alpha (VAC alpha) to planar

phospholipid bilayers. J Biol Chem 265: 4923–4928.

48. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP

(1998) Annexin V affinity assay: a review on an apoptosis detection system based

on phosphatidylserine exposure. Cytometry 31: 1–9.

49. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new

method for the cytofluorometric analysis of mitochondrial membrane potential

using the J-aggregate forming lipophilic cation 5,59,6,69-tetrachloro-1,19,3,39-

tetraethylbenzimidazolecarbocyanine iodide (JC-1). Biochem Biophys Res

Commun 197: 40–45.

50. Hussein MR (2005) Apoptosis in the ovary: molecular mechanisms. Hum

Reprod Update 11: 162–178.

51. Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, et al. (1981)

Hypergonadotropic hypogonadism in female patients with galactosemia.

N Engl J Med 304: 994–998.

52. Menezo YJ, Lescaille M, Nicollet B, Servy EJ (2004) Pregnancy and delivery

after stimulation with rFSH of a galactosemia patient suffering hypergonado-

tropic hypogonadism: case report. J Assist Reprod Genet 21: 89–90.

53. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement

with the Folin phenol reagent. J Biol Chem 193: 265–275.

54. Freilich LS, Lewis RG, Reppucci AC, Silbert JE (1977) Galactosyl transferase of

a golgi fraction from cultured neoplastic mast cells. J Cell Biol 72: 655–666.

55. Jia XC, Hsueh AJ (1986) Granulosa cell aromatase bioassay for follicle-

stimulating hormone: validation and application of the method. Endocrinology

119: 1570–1577.

56. Dahl KD, Czekala NM, Lim P, Hsueh AJ (1987) Monitoring the menstrual cycle

of humans and lowland gorillas based on urinary profiles of bioactive follicle-

stimulating hormone and steroid metabolites. J Clin Endocrinol Metab 64:

486–493.

57. Kishi H, Minegishi T, Tano M, Kameda T, Ibuki Y, et al. (1998) The effect of

activin and FSH on the differentiation of rat granulosa cells. FEBS Letters 422:

274–278.

58. Magoffin DA, Erickson GF (1982) Primary culture of differentiating ovarian

androgen-producing cells in defined medium. J Biol Chem 257: 4507–4513.

59. Magoffin DA, Erickson GF (1988) Purification of ovarian theca-interstitial cells

by density gradient centrifugation. Endocrinology 122: 2345–2347.

60. McGee EA, Smith R, Spears N, Nachtigal MW, Ingraham H, et al. (2001)

Mullerian inhibitory substance induces growth of rat preantral ovarian follicles.

Biol of Reprod 64: 293–298.

61. Xu M, Wang Y, Ayub A, Ashraf M (2001) Mitochondrial KATP channel

activation reduces anoxic injury by restoring mitochondrial membrane potential.

Am J Physiol 281: H1295–H1303.

Galactose Toxicity and Ovarian Dysfunction

PLoS ONE | www.plosone.org 12 February 2012 | Volume 7 | Issue 2 | e30709


