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Abstract Red blood cell transfusion (RBCT) is a common
therapy used in the intensive care unit to treat anemia.
However, due to deleterious side effects and questionable
efficacy, the clinical benefit of RBCT in patients who are not
actively bleeding is unclear. The results of randomized con-
trolled trials suggest there is no benefit to a liberal transfusion
practice in general critical care populations. Whether the
results of these trials are applicable to brain injured patients
is unknown, as patients with primary neurological injury were
excluded. This article reviews the efficacy and complications
of RBCT, as well as the relationship between RBCT and its
outcome in both the general intensive care unit and neurolog-
ically critically ill populations.
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Efficacy of Red Blood Cell Transfusions

Red blood cell transfusions (RBCTs) are intended to im-
prove tissue oxygenation; however, whether they do so
remains unclear. The notion that RBCT augments tissue
perfusion presumes that transfused blood efficiently stores
and offloads oxygen, and that compromised tissues utilize

the additional oxygen. However, studies have shown that
although transfusion increases oxygen carrying capacity by
augmenting hemoglobin concentration, it often fails to in-
crease oxygen utilization [1–5]. The inability of transfused
blood to increase tissue perfusion has been attributed to a
series of biochemical and biomechanical changes that occur
during red blood cell (RBC) storage collectively termed the
“storage lesion.”

The storage lesion results in decreased oxygen delivery to
tissues. After 7 days, stored blood is depleted of 2,3-diphos-
phoglycerate, a compound that is responsible for enhancing
oxygen release from hemoglobin to tissues [6, 7]. A loss of
2,3-diphosphoglycerate in stored blood shifts the oxygen
dissociation curve to the left and reduces the amount of
oxygen available for tissue consumption. Furthermore,
time-dependent changes in stored blood lead to acidemia
and hyperkalemia, which result in RBC lysis and release of
free hemoglobin [8]. Free hemoglobin is a nitric oxide
scavenger and therefore may result in vasoconstriction and
exacerbation of organ dysfunction [9].

Structural changes, induced by RBC storage, have been
shown to compromise microvascular circulation [10]. RBCs
undergo a predictable change from biconcave disks to
sphero-echinocytes, resulting in loss of deformability. The
loss of the biconcave structure of the 8-μm erythrocyte
impairs its ability to navigate capillaries with smaller diam-
eters (e.g., 3–8 μm) and may result in vessel occlusion.
Sphero-echinocytes result from microvesiculation and loss
of surface-to-volume ratio. The formation of microvesicles
is associated with increased osmotic fragility and decreased
RBC survival [11, 12]. Depletion of adenosine tri-phosphate
may also contribute to corpuscular changes [13]. Storage
duration of greater than 42 days may cause vasoconstriction
due to lysophosphatidyl choline species released from the
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cellular membrane of senescent RBCs [14]. The storage
lesion also promotes increased RBC aggregability and
RBC endothelial cell adhesion, which may compromise or
obstruct microvascular circulation [15, 16]. Part of this
effect may be mediated by microparticles, anucleoid mem-
brane vesicles, which increase in concentration with storage
duration [17, 18].Microparticles have been implicated in post-
transfusion thrombosis likely due to the expression of phos-
phatidyl serine, which promotes plasma-mediated thrombin
generation [17–19].

In summary, RBCT may not accomplish the intended
effect of improved tissue oxygenation. The lack of efficacy
is mediated in part by the storage lesion.

Complications of Transfusions

Blood transfusion therapy is associated with adverse side
effects, including transmission of infections and immune ac-
tivation or immunosuppression. Both viral illness and prion
diseases may be transmitted by blood transfusion. Risks of
transmission of human immunodeficiency virus, hepatitis C
virus, and hepatitis B virus are 1 in 1,900,000; 1 in 600,000;
and 1 in 220,000, respectively [20]. Cytomegalovirus is pres-
ent in 4% of transfusions from healthy donors due to the
reactivation of latent cytomegalovirus in leukocytes [21, 22].

Transfusion modulates the immune system in 2 opposite
ways: 1) it may heighten the immune response (“alloimuni-
zation”), as in transfusion reactions, or it may quell the
immune response (“tolerance induction”), which predispo-
ses to nosocomial infections. Human leukocyte antigens
(HLA), specifically HLA-DR antigens, on donor leukocytes
partly determine which response ensues following RBCT;
shared HLA-DR antigens between donor and recipient
induce tolerance, whereas antigenic mismatch results in
immunization [23].

Alloimmunization and consequent induction of HLA
antibodies and T-cell activation results in a number of clin-
ical syndromes, including transfusion reactions, transfusion
associated graft-versus-host disease, transfusion-related
acute lung injury, and potentially the development of vari-
ous autoimmune diseases [23]. Transfusion-related acute
lung injury is the number 1 cause of transfusion-related
mortality [24, 25]. Transfusion-related acute lung injury is
defined as a new episode of respiratory distress, which is not
explained by an alternate etiology that occurs during or
within 6 h of a completed transfusion [26]. The most com-
mon clinical features include: bilateral pulmonary edema,
hypoxemia, fever, dyspnea, and hypotension in the presence
of normal cardiac function [27]. Plasma-rich blood compo-
nents (fresh frozen plasma and platelets) and high-volume
transfusion may predispose to transfusion-related acute lung

injury, although it has been associated with all blood product
components including intravenous immunoglobulin G and
cryoprecipitate [28–30].

Tolerance induction after RBCT is associated with a
decrease in natural killer cell function, defective antigen
presentation, and a reduction in helper/suppressor T-
lymphocyte ratio, and has been linked to increased predis-
position to nosocomial and postoperative infections and
even to cancer recurrence [31–39]. Transfusion has been
associated with increased risk of infection in cardiac surgery
patients [40–42], trauma patients [32–35], and critically ill
patients [43, 44]. Of 45 studies included in a meta-analysis
of transfusion in the intensive care unit (ICU), 22 studies
examined the effect of transfusion on infection and all
demonstrated an independent association [45]. The pooled
odds ratio for developing an infectious complication was 1.8
(95% CI, 1.5-2.2). Transfusion was also associated with an
increased risk of multi-organ dysfunction and acute respira-
tory distress syndrome.

Clinical side effects due to the storage lesion result not
only from erythrocyte changes, but also from leukocyte
changes. Transfusion-transmitted infections are thought to
be due to contaminated leukocytes [46]. Donor leukocytes
secrete cytokines, which have been associated with both
febrile nonhemolytic transfusion reactions and hemolytic
transfusion reactions, in a time-dependent manner after stor-
age [47]. Accumulation of lipid mediators, capable of prim-
ing recipient neutrophils and exacerbating multi-organ
dysfunction, may result from leukocyte activity on RBC
membranes during storage [48, 49]. Leukocyte degradation
during storage results in release of oxygen free radicals and
proteases, which may also incite inflammation in the trans-
fusion recipient [50].

Leukoreduction of stored blood might mitigate the im-
munomodulatory effects of transfused RBCs, but its clinical
impact and cost-effectiveness have not been fully studied.
Although leukoreduction has been shown to reduce the rate
of febrile nonhemolytic transfusion reactions [51], it has not
consistently prevented such reactions [52]. A Canadian
study, in which 7000 patients treated after institution of
universal leukoreduction were compared to 7000 historical
controls, suggested that universal leukoreduction was asso-
ciated with lower mortality, but not a significant decrease in
infection rate [53]. Smaller randomized controlled clinical
trials of LR have failed to demonstrate any beneficial effect
of leukoreduction on clinical outcome, including in-hospital
mortality, ICU length of stay (LOS), and antibiotic usage
[54–56]. Although the utility and cost-effectiveness of uni-
versal leukoreduction remains controversial, the majority of
blood banking centers in the United States have followed
the lead of Canada by adopting this practice, given the
putative benefit and minimal risk.
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Transfusion Practice in General ICUs

Transfusion is commonly used to improve cellular oxygen
metabolism in sepsis and other shock states; however, phys-
iological studies of its effects on tissue perfusion have not
consistently demonstrated benefit [57–59]. Although RBCT,
as part of a bundled approach to early sepsis management,
did confer a survival advantage in a landmark study of
patients with septic shock [60], subsequent studies have
not confirmed this finding [61]. It should be noted that
RBCT remains a recommendation of the 2008 Surviving
Sepsis Campaign guideline as part of an algorithm for the
treatment of sepsis.

Transfusion administration has been shown to exacerbate
sepsis-related microcirculatory dysfunction and impair tis-
sue perfusion. In a study of patients with sepsis, splanchnic
perfusion, as measured by gastric tonometry, did not im-
prove after transfusion [62]. In another study, transfusion of
3 units of RBCs did not measurably increase systemic
oxygen uptake; however, it did result in splanchnic ischemia
in those who had received blood stored for >15 days [63].

Prospective, multicenter observational studies suggest an
association between RBCT and increased mortality and
morbidity in general ICUs [64, 65]. The Anemia, Blood
Transfusion in Critically Ill Patients (ABC) trial demonstrat-
ed that transfused patients had more severe organ failure,
increased LOS, and higher mortality rates than nontrans-
fused patients [64]. Higher mortality rates were observed
regardless of admission hemoglobin level, thereby account-
ing for any effect of pre-morbid anemia. A dose–response
relationship was identified between number of units trans-
fused and mortality; the mortality rate for patients receiving
1 unit of RBCs was 15.9%, whereas those receiving >4 units
it was 44.8%. Overall, RBCT increased the odds of death by
a factor of 1.4. Propensity score analysis, performed on a
subset of patients, demonstrated a higher mortality rate for
those transfused, and this coupled with the fact that mortal-
ity rates were higher for transfused patients at nearly all
levels of organ dysfunction, suggested that transfusion-
related mortality was not simply a surrogate for increased
severity of illness. A meta-analysis of transfusion therapy in
the ICU concluded that transfusion was an independent
predictor of mortality in critically-ill adult, trauma and sur-
gical patients [45].

Concern about the safety and efficacy of red blood cell
transfusion, including immunosuppressive and microcircu-
latory complications, has led to a reappraisal of transfusion
practices. The Transfusion Requirements in Critical Care
(TRICC) trial was designed to determine whether restrictive
and liberal transfusion strategies in the ICU produces equiv-
alent all-cause mortality at 30 days and equivalent organ
dysfunction [66]. In this randomized controlled study, a

hemoglobin threshold of either 7 g/dL or 10 g/dL was
targeted as a trigger for transfusion to maintain hemoglobin
concentrations in the goal ranges of 7 to 9 g/dL and 10 to
12 g/dL, respectively. The primary endpoint of the 30-day
mortality was not significantly different between the 2
groups; however, in patients with an Acute Physiology and
Chronic Health Evaluation II (APACHE II) score of <20, or
55 years of age, a restrictive approach was favorable (p0
0.03 and p00.02, respectively). Thirty-day mortality rates
between treatment groups were not significantly different in
the subgroups of patients with cardiac disease, severe infec-
tions or septic shock, or trauma. Although no significant
difference in mortality rates was observed for the subset of
patients with cardiovascular disease, there were significantly
more cardiac complications in the liberal transfusion arm
than in the restrictive arm (21.0% vs 13.2%; p<0.01). The
authors recommended that critically ill patients receive
RBCT when the hemoglobin concentration falls below
7.0 g/dl, and it is also recommend that hemoglobin levels
be maintained between 7.0 and 9.0 g/dl.

A similar study was performed in a larger cohort of
patients admitted for hip surgery with a history of risk
factors for cardiovascular disease [67]. Approximately
2000 patients were randomized to transfusion, either when
clinically symptomatic or at an arbitrary threshold of 10 g/
dL. The primary outcome was death or inability to walk
unassisted for a pre-specified distance at 60 days. There was
no significant difference in outcome between the high
threshold and symptomatic groups. The authors concluded
that a symptomatic transfusion practice conserved blood and
did not negatively impact outcomes in elderly patients with
underlying cardiovascular disease or cardiovascular risk
factors.

In the general critical care population, RBCT has been
associated with increased mortality and morbidity. Although
the TRICC trial provides the best evidence for transfusion
practice in the management of the critically ill, it should be
recognized that patients with primary neurological injury
were excluded.

Impact of Transfusion in the Neuro-ICU

Ischemic Stroke

Although trials studying RBCT in ischemic stroke are lack-
ing, many trials exist studying the relationship between
hematocrit and ischemic stroke. Although it seems intuitive
that augmentation of oxygen carrying capacity (CaO2) and
oxygen delivery (DO2) might ameliorate symptoms of an
ischemic disease, concerns about viscosity-related reductions
in cerebral blood flow (CBF) have limited consideration of
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RBCT in stroke. Conversely, hemodilution has been studied
extensively as a putative treatment option for ischemic
stroke because of the inverse relationship between hemato-
crit, the main determinant of viscosity, and CBF, although it
has not been shown to improve outcome [68].

It has been postulated that increased viscosity exacer-
bates stasis, compromising microcirculatory blood flow to
the ischemic penumbra [69]. In support of this theory,
Allport et al. [70] demonstrated that higher baseline hemat-
ocrit (>50%) was associated with expansion of infarction
and less reperfusion [70]. This effect may be more pro-
nounced in women with hematocrit >50% [71]. Moreover,
elevated hematocrit levels have been associated with carotid
atherosclerosis [72, 73], atrial fibrillation [74], unilateral
cerebral infarction [75], greater infarct size [75], early mor-
tality [71, 74], and major disability after stroke [76].

Other studies have noted a “U-” or “reverse J”-shaped
relationship between hematocrit and increased risk of stroke
[74, 77, 78], suggesting that not only high hematocrit con-
centrations (>50%), but also low hematocrit concentrations
(<30%) are also associated with an increased risk of ische-
mic stroke [79]. Reduced admission hemoglobin concentra-
tions have been associated with larger infarct volume and
infarct expansion on magnetic resonance imaging, and he-
moglobin and hematocrit nadir have been associated with
poor outcome [80]. Failure of compensatory autoregulation
and oxygen extraction due to active ischemia was proposed
as the mechanism of reduced oxygen use and infarction.
Low baseline and intraoperative hemoglobin and hematocrit
have also been associated with postoperative strokes in
cardiac surgery patients [81, 82], although this finding has
been inconsistent [83, 84]. A study of more than 10,000
cardiac surgery patients found that each percent decrease in
hematocrit from baseline resulted in a 10% increase in
stroke risk [81]. Independent of hemoglobin concentration,
intraoperative transfusion has been associated with in-
creased postoperative stroke in patients undergoing cardio-
pulmonary bypass [82]. Further studies are needed to
determine whether RBCT or other interventions to augment
oxygen delivery might reduce cerebral ischemia in both
acute ischemic stroke and cardiac surgery patients.

Intracerebral Hemorrhage

A dose-dependent relationship between anemia and intrace-
rebral hemorrhage (ICH) volume has been demonstrated in
the literature [85], and a single study exists regarding the
effect of RBCT on outcome after ICH [86]. Sheth et al. [86]
found that RBC transfusion was associated with improved
survival at 30 days (odds ratio, 2.76; 95% CI 1.45-5.26; p0
0.002) and decreased mortality at 30 days (odds ratio, 0.40;
95% CI 0.19-0.69; p00.02). However, despite transfusion,
there was no significant increase in hemoglobin

concentration among patients who were transfused; there-
fore, the mechanism by which transfusion appeared to be
protective remained elusive. The authors tried to reconcile
their findings with the fact that restrictive strategies appear
to be beneficial in general ICU patients. They postulated
that predictors of mortality in general ICU populations may
not be analogous to those in patients with ICH, and thus the
results may lead to different conclusions. They surmised
that the benefit of transfusion might have been derived from
augmented intravascular and/or cerebral blood volume giv-
en the fact that hemoglobin did not increase with time.
Whether increased oxygen carrying capacity is required in
the post-ICH period during times of cerebral edema, hydro-
cephalus, intracranial hypertension, or seizures remains un-
known. Secondary injury after ICH, characterized by iron-
mediated neurotoxicity, macrophage activation, and matrix
metalloproteinase upregulation, may further increase the
demand for oxygen.

Anemia may be associated with increased hematoma
volume, the primary predictor of mortality in patients with
ICH. Whether transfusion can limit hematoma volume and
improve outcome remains to be determined.

Subarachnoid Hemorrhage

The impact of transfusion on subarachnoid hemorrhage
(SAH) outcome is largely unknown, and the relevant data
are mainly derived from retrospective clinical studies and
from physiologic studies. There exists relatively more data
on the relationship between anemia and outcome in patients
with SAH. Anemia consistently predicts, in a dose-
dependent fashion, infarction, death, and dependency [87,
88], and may also predict cognitive impairment [89].
Whether transfusion mitigates these risks is unknown.

Transfusion in patients after SAH is associated with
poor outcome in some studies. A small prospective
study of fluid therapy in SAH management found that
RBCT was associated with poor outcome at discharge,
but not at 6 months [90]. A single center, retrospective
study found that discharge outcome in transfused
patients was worse only in patients with arterial vaso-
spasm [91]. Intraoperative transfusion also may be as-
sociated with poor 6-month outcome [92].

Red blood cell transfusion may be associated with in-
creased risk of cerebral vasospasm [90]. In a retrospective
study of 441 SAH patients, postoperative RBCT was asso-
ciated with an increased risk of both angiographic and
symptomatic vasospasm, independent of smoking, Hunt-
Hess grade, Fisher group, and intraoperative rupture [92].
It was postulated that transfused blood, depleted of nitric
oxide, might result in a blunted vasodilatory response to
vasospasm.
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Other retrospective studies have demonstrated an associ-
ation between transfusion and increased frequency of cere-
bral and extra-cerebral complications in patients with SAH
[93, 94]. Transfusion significantly increases the risk of
major (cardiac, pulmonary, renal, or hepatic) and minor
(rash, deep vein thrombosis) medical complications [93].
In a study of 620 SAH patients, RBCT was identified as a
risk factor associated with the development of acute lung
injury, independent of severity of illness, clinical grade, and
severe sepsis [95]. RBCTmay be associated with an increased
risk of infection and inflammation; this could prove particu-
larly deleterious to the patient with SAH, as infection has been
shown to exacerbate delayed cerebral ischemia (DCI) and
potentially worsen outcome in SAH [45, 96]. Erythrocyte
transfusion may also be associated with an increased risk of
thrombotic events in SAH patients, independent of injury
severity, baseline demographics, comorbid conditions, other
blood component transfusion, and Transcranial Doppler Ul-
trasound (TCD) vasospasm [97]. This may be explained by
rheological and storage-induced changes in RBC structure,
coupled with alterations in coagulation and fibrinolysis in
SAH patients that may result in an increased risk of
thrombosis.

Studies using physiological endpoints, such as cellular
metabolism and brain hypoxia, have examined the relation-
ship between hemoglobin concentration and cerebral meta-
bolic dysfunction. Studies that used brain tissue oxygen
tension (PbtO2) monitoring and lactate-to-pyruvate (LPR)
measurements via cerebral microdialysis demonstrated in-
creased brain hypoxia and cell energy dysfunction when
hemoglobin levels were less than 9 g/dl [98]. This associa-
tion was independent of other factors such as cerebral per-
fusion pressure and vasospasm. Other studies have shown
that reduced hemoglobin concentration was associated with
hypoxia, impaired autoregulation, and increased cellular
injury [99, 100]. One mathematical model suggested that
hemoglobin concentrations <10 g/dL were associated with
increased brain damage in animals with focal ischemia [79].

Physiological studies have also been used to examine the
relationship between RBCT and outcome. In 1 study
15-Oxygen labeled positron emission tomography (15O-
PET) was performed in 8 SAH patients before and after
transfusion of 1 unit of RBCs [101]. Transfusion resulted in
a 15% rise in both hemoglobin concentration and CaO2, but
did not reduce global CBF, demonstrating that CBF may not
be negatively impacted by changes in viscosity induced by
transfusion of 1 unit RBCs. Although oligemic regions
demonstrated improved DO2 and CBF after transfusion,
CBF fell in areas of vasospasm. It was suggested that
transfusion might improve perfusion-related reductions in
DO2 in areas with preserved autoregulation, but not in
territories affected by vasospasm. The authors concluded
that RBC transfusion could provide benefits similar to

CBF augmentation (with intravenous crystalloid infusions
and vasopressors), the current mainstay of DCI prevention.

At present, a multidisciplinary consensus panel of the
Neurocritical Care Society strongly recommends that
patients should receive RBCT to maintain a hemoglobin
concentration >8 to 10 g/dl, based on moderate quality data
[102]. A pilot study has shown that it is feasible to target
hemoglobin thresholds and to prospectively assess outcome
after transfusion; a prospective, randomized controlled trial
to definitively determine transfusion thresholds in SAH
patients is required [103].

Traumatic Brain Injury

There are no prospective randomized studies of transfusion
in patients with traumatic brain injury (TBI), and data are
largely derived from subgroup analyses of prospective stud-
ies in other populations. Trials in general trauma patients
suggest that transfusion may increase the risk of both infec-
tion and mortality. Dunne et al. [104] demonstrated that
transfusion of more than 4 units of blood increases the risk
of death by a factor of 3 and increases the risk of perioper-
ative infection by a factor of 9 [104]. In another study, blood
transfusion was found to be an independent predictor of
mortality, systemic inflammatory response syndrome, ICU
admission, and increased ICU length of stay [38]. Trauma
patients who receive blood transfusions have a twofold to
sixfold increase in systemic inflammatory response syndrome
and a more than fourfold increase in ICU admissions [38].
However, some studies of general trauma patients have failed
to demonstrate a relationship between RBCT and adverse
outcome [105]. In a substudy of the TRICC trial, 203 trauma
patients, 25% of whom were identified as having brain injury,
were randomized to a liberal versus restrictive strategy trans-
fusion [106]. No significant differences in mortality, multi-
organ dysfunction, ICU, or hospital LOS were identified. In a
separate analysis, study results confirmed that a liberal trans-
fusion strategy demonstrated no mortality benefit in a smaller
cohort of patients with moderate-severe TBI [106].

Transfusion has been shown to improve PbtO2 in 4 stud-
ies of severe TBI [107–110]; however, the magnitude of
augmentation was small, the significance was questionable,
and the effect was inconsistent. Interestingly, in 1 of these
studies, RBCT resulted in a statistically significant increase
in brain oxygenation; however, 13 of 30 patients (43%)
experienced a decline in PbtO2 after RBCT [107]. In a study
of 49 TBI patients with 564 episodes of compromised PbtO2,
blood transfusion improved compromised PbtO2 only 50%
of the time [111]. In contrast, interventions, such as fraction
of inspired oxygen (FiO2) augmentation, vasospressor utili-
zation, hyperosmolar therapy, and benzodiazepine adminis-
tration resulted in a >70% response rate.
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The variable response to RBCT observed in patients with
TBI may be due to the fact that secondary ischemia is less
common than previously thought. Physiologic studies sug-
gest that what was thought to represent ischemia may actu-
ally signify mitochondrial failure [6]. Cerebral microdialysis
has traditionally been used to identify regional ischemia by
sampling the interstitium for metabolites, such as glucose,
lactate, and pyruvate. The principal marker of cerebral is-
chemia is the LPR. An LPR >40 has been correlated with
PET evidence of regional brain ischemia, particularly in
patients with SAH [112–114]. However, an elevated LPR
has also been identified in TBI without evidence of ische-
mia; PET data suggest that an elevated LPR corresponds to
nonischemic reductions in cerebral metabolic rate for oxy-
gen, a measure of mitochondrial function [114–116]. There-
fore, RBCT intended to improve compromised blood flow
may not be warranted.

Optimal use of transfusion in TBI remains unclear. Data
from subgroup analysis of the TRICC suggests that there
may be no benefit to transfusion in TBI. However, this
analysis lacks the necessary power to make definitive con-
clusions. A survey of physicians at trauma centers in the
United States found that transfusion practice in TBI widely
varied, and many clinicians held the belief that a restrictive
transfusion threshold may be inappropriate for patients with
intracranial hypertension [117].

Conclusions

It remains unclear whether RBCT to correct anemia in brain
injury patients who are not actively bleeding is warranted.
Although RBCT may augment brain oxygenation in com-
promised tissue, it may also result in a paradoxical decrease
in perfusion. This variable effect may be the result of pro-
longed blood storage. It is possible that patients with im-
paired baseline perfusion benefit from RBCT more than
those without. Transfusion may be more effective in patients
with SAH, given the associated risk of DCI, whereas the
ischemia previously identified in TBI patients may more
accurately represent mitochondrial dysfunction less respon-
sive to transfusion. Individualized transfusion therapy may
be preferable, with use of physiological endpoints instead of
arbitrary hemoglobin levels. Large, prospective, randomized
controlled trials are needed to better define the role of
anemia, optimal hemoglobin threshold, and utility of RBCT
and are of paramount importance to improve the manage-
ment of patients in the neurological ICU.
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