Skip to main content
. 2011 Oct 11;5:159. doi: 10.1186/1752-0509-5-159

Table 3.

Results on RMSE and RMSEm of the models estimated from artificial data.

Noise Scenario RMSE RMSEm


DASA PSO DE A717 DASA PSO DE A717
CO 0.0651 0.0527 0.0189 0.7005 0.0651 0.0527 0.0189 0.7005
0% AO 0.0625 0.0539 0.0250 0.6099 1.6272 0.7866 1.7876 1.0684
TO 0.0951 0.1507 0.0197 0.6612 0.5857 0.4606 0.2511 0.7960
NPO 0.2993 0.5040 0.2282 0.6881 2.6840 2.0717 3.9246 3.0273

CO 0.1164 0.1121 0.0999 0.7287 0.1164 0.1121 0.0999 0.7287
5% AO 0.0902 0.0861 0.0690 0.6232 1.0437 0.9043 1.4639 1.3442
TO 0.1363 0.1341 0.1006 0.6546 0.6162 0.2750 0.2831 0.9265
NPO 0.3162 0.5166 0.2463 0.6897 2.8668 3.8831 6.6315 2.1172

CO 0.3958 0.3941 0.3907 0.8113 0.3958 0.3941 0.3907 0.8113
20% AO 0.2770 0.2760 0.2707 0.6782 1.7547 1.0050 2.8513 1.3052
TO 0.4023 0.3983 0.3917 0.7810 0.6967 0.4606 0.4289 0.9952
NPO 0.4929 0.6407 0.4585 0.8023 2.1250 2.5423 2.8333 2.1999

The table presents the median values of RMSE and RMSEm (over the 25 runs) of the models reconstructed with the parameters' estimates obtained by the three optimization methods from artificial data. The best values for both metrics are given in bold.