Table 3.
Noise | Scenario | RMSE | RMSEm | ||||||
---|---|---|---|---|---|---|---|---|---|
DASA | PSO | DE | A717 | DASA | PSO | DE | A717 | ||
CO | 0.0651 | 0.0527 | 0.0189 | 0.7005 | 0.0651 | 0.0527 | 0.0189 | 0.7005 | |
0% | AO | 0.0625 | 0.0539 | 0.0250 | 0.6099 | 1.6272 | 0.7866 | 1.7876 | 1.0684 |
TO | 0.0951 | 0.1507 | 0.0197 | 0.6612 | 0.5857 | 0.4606 | 0.2511 | 0.7960 | |
NPO | 0.2993 | 0.5040 | 0.2282 | 0.6881 | 2.6840 | 2.0717 | 3.9246 | 3.0273 | |
CO | 0.1164 | 0.1121 | 0.0999 | 0.7287 | 0.1164 | 0.1121 | 0.0999 | 0.7287 | |
5% | AO | 0.0902 | 0.0861 | 0.0690 | 0.6232 | 1.0437 | 0.9043 | 1.4639 | 1.3442 |
TO | 0.1363 | 0.1341 | 0.1006 | 0.6546 | 0.6162 | 0.2750 | 0.2831 | 0.9265 | |
NPO | 0.3162 | 0.5166 | 0.2463 | 0.6897 | 2.8668 | 3.8831 | 6.6315 | 2.1172 | |
CO | 0.3958 | 0.3941 | 0.3907 | 0.8113 | 0.3958 | 0.3941 | 0.3907 | 0.8113 | |
20% | AO | 0.2770 | 0.2760 | 0.2707 | 0.6782 | 1.7547 | 1.0050 | 2.8513 | 1.3052 |
TO | 0.4023 | 0.3983 | 0.3917 | 0.7810 | 0.6967 | 0.4606 | 0.4289 | 0.9952 | |
NPO | 0.4929 | 0.6407 | 0.4585 | 0.8023 | 2.1250 | 2.5423 | 2.8333 | 2.1999 |
The table presents the median values of RMSE and RMSEm (over the 25 runs) of the models reconstructed with the parameters' estimates obtained by the three optimization methods from artificial data. The best values for both metrics are given in bold.