Table 5.
Noise | Scenario | DASA | PSO | DE | A717 | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | RMSEm | RMSE | RMSEm | RMSE | RMSEm | RMSE | RMSEm | ||
CO | 0.0345 | 0.0345 | 0.0430 | 0.0430 | 0.0064 | 0.0064 | 0.6080 | 0.6080 | |
0% | AO | 0.0446 | 6.0913 | 0.0406 | 0.7693 | 0.0043 | 1.1807 | 0.4644 | 21.3690 |
TO | 0.0468 | 1.0964 | 0.0447 | 0.0877 | 0.0110 | 0.1074 | 0.4542 | 0.6150 | |
NPO | 0.2382 | 2.5430 | 0.3198 | 1.9977 | 0.1774 | 12.2287 | 0.6220 | 3.0273 | |
CO | 0.1064 | 0.1064 | 0.1072 | 0.1072 | 0.0977 | 0.0977 | 0.5363 | 0.5362 | |
5% | AO | 0.0739 | 0.3343 | 0.0803 | 1.8387 | 0.0678 | 0.2424 | 0.3570 | 0.3723 |
TO | 0.1139 | 0.1246 | 0.1096 | 0.1639 | 0.0985 | 0.5058 | 0.4007 | 0.9028 | |
NPO | 0.2562 | 3.0161 | 0.3349 | 1.4970 | 0.2163 | 318.415 | 0.5189 | 1.9670 | |
CO | 0.3926 | 0.3926 | 0.3925 | 0.3925 | 0.3904 | 0.3904 | 0.6490 | 0.6490 | |
20% | AO | 0.2742 | 1.3904 | 0.2735 | 0.4750 | 0.2704 | 1.6916 | 0.4680 | 0.6220 |
TO | 0.3948 | 0.4568 | 0.3955 | 0.4368 | 0.3913 | 0.3954 | 0.5698 | 1.2933 | |
NPO | 0.4616 | 1.8011 | 0.5055 | 2.6218 | 0.4448 | 5.4207 | 0.7556 | 7.2268 |
The table presents the RMSE and corresponding RMSEm values for the model simulated with the best parameters obtained by parameter estimation with the four optimization methods from artificial data. The best values for RMSE are marked in bold, while the best values for RMSEm are marked in italic.