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The Ras effector NORE1 is frequently silenced in primary
adenocarcinomas, although the significance of this silencing for
tumorigenesis is unclear. Here we show that NORE1 induces
polyubiquitination and proteasomal degradation of oncoprotein
HIPK1 by facilitating its interaction with the Mdm2 E3 ubiquitin
ligase. Endogenous HIPK1 is stabilized in Nore1-deficient mouse
embryonic fibroblasts, and depletion of HIPK1 in NORE1-
silenced lung adenocarcinoma cells inhibits anchorage-indepen-
dent cell growth and tumour formation in nude mice. These
findings indicate that the control of HIPK1 stability by Mdm2–
NORE1 has a major effect on cell behaviour, and epigenetic
inactivation of NORE1 enables adenocarcinoma formation in vivo
through HIPK1 stabilization.
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INTRODUCTION
NORE1 (Novel Ras effector 1, also called RASSF5) is the founding
member of the RASSF gene family (van der Weyden & Adams,
2007; Richter et al, 2009). Nore1 is a proapoptotic effector of Ras,
which binds to Mst1, a protein kinase implicated in apoptosis
(Khokhlatchev et al, 2002). Nore1-null mice were resistant to
tumour necrosis factor-a-induced apoptosis. In addition, loss of
Nore1 resulted in spontaneous immortalization of mouse embryo-
nic fibroblasts (MEFs), and Nore1-null immortalized MEFs were
fully transformed by K-RasG12V (Park et al, 2010). Methylation of
the NORE1A promoter has been reported in various tumour types
including lung, kidney and breast tumour cell lines and primary
tumours (Richter et al, 2009). As the loss of NORE1 expression has
been linked to tumour formation, identification of the downstream
effector(s) of Nore1 is crucial to understand the mechanism by
which tumour formation is induced by loss of NORE1 expression.

Homeodomain-interacting protein kinase 1 (HIPK1) was
identified as an NK class homeodomain protein-interacting
protein and was shown to be involved in the transcriptional
regulation of target genes as a co-repressor or coactivator in a
context-dependent manner (Kim et al, 1998). HIPK1 participates
in haematopoietic cell lineage differentiation and blood vessel
formation (Aikawa et al, 2006). HIPK1 knockout (KO) mice appear
grossly normal with no obvious effect on viability (Aikawa et al,
2006; Isono et al, 2006), but HIPK1 knockout mice are resistant to
drug-induced skin tumorigenesis, implying an oncogenic role of
HIPK1 (Kondo et al, 2003). Consistent with this potential oncogenic
role, HIPK1 was found to be overexpressed in E1A/Ras-transformed
MEFs and in a variety of breast cancer cell lines (Kondo et al, 2003).
However, the mechanism of HIPK1 involvement in tumorigenesis
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and the physiological relevance of HIPK1 overexpression in cancer
cell lines are as yet unclear.

Here we show that Nore1 facilitates Mdm2-mediated protea-
somal degradation of HIPK1, and that HIPK1 is stabilized in
Nore1-null immortalized MEFs. The tumorigenic activity of A549
lung cancer cells, in which NORE1A was silenced because of
NORE1A promoter methylation, was reversed on suppression of
HIPK1 expression in a soft agar assay and xenograft nude mice
model. These results provide new insight into the tumorigenic
mechanism of NORE1A promoter methylation, where suppression
of NORE1A expression leads to stabilization of the HIPK1
oncoprotein, resulting in tumour formation in vivo.

RESULTS AND DISCUSSION
Nore1 induces degradation of HIPK1
To identify proteins that bind to and potentially regulate the
function of HIPK1, a yeast two-hybrid screen of a mouse
embryonic complementary DNA library was performed using
the HIPK1 C terminus (amino acids 520–1209) as bait. Nore1 was
identified as a HIPK1-interacting protein through this screen
(Fig 1A). The specificity of HIPK1 binding to Nore1 was confirmed
by a coimmunoprecipitation assay in mammalian cells (Fig 1B).
Endogenous HIPK1 co-precipitated with endogenous Nore1, and
coexpression of green fluorescent protein (GFP)–HIPK1 and Flag–
Nore1 resulted in the colocalization of the two proteins to the
discrete dot structures in the nucleus (supplementary Fig S1
online). In addition, glutathione S-transferase (GST) pull-down
analysis showed that Nore1 physically interacts with HIPK1
(supplementary Fig S1B online). During the coimmunoprecipita-
tion experiments, we found unexpectedly that the level of HIPK1
was reduced by Nore1 expression (Fig 1B, lane 2, bottom panel).
Subsequently, a series of experiments was conducted to examine
whether HIPK1 expression is modulated by Nore1. Expression of
increasing amounts of Nore1 in COS7 cells reduced the HIPK1
level in a dose-dependent manner (Fig 1C). The decrease in HIPK1
levels in the presence of Nore1 was blocked by the administration
of the proteasome inhibitor MG132 (Fig 1D). To confirm whether
Nore1 causes a decrease in HIPK1, the stability of HIPK1 was
determined in the presence of cycloheximide. Coexpression of
Flag–Nore1 resulted in a markedly reduced half-life of GFP–
HIPK1 protein (o30 min; Fig 1E). In addition, the stability of
endogenous HIPK1 in Nore1-KO MEFs was higher than in wild-
type MEF cells (Fig 1F). When Nore1 was reintroduced into
Nore1-KO MEFs, the level of endogenous HIPK1 decreased,
showing that Nore1 destabilizes HIPK1 protein (Fig 1G).
Consistently, western blot analysis showed that polyubiquitination
of HIPK1 increased on coexpression with Nore1, and MG132
treatment caused an overall accumulation of polyubiquitinated
HIPK1 (Fig 1H). We also found that HIPK1 was polyubiquitinated
in Nore1-KO MEFs only when Nore1 was reintroduced, verifying
that polyubiquitination of HIPK1 depends on Nore1 (Fig 1I,
lane 6). Collectively, these results showed that Nore1 regulates
the stability of HIPK1 by inducing polyubiquitination and
proteasome-dependent degradation of HIPK1.

Nore1 degrades HIPK1 through the E3 ligase Mdm2
Nore1 has high similarity in amino acids and domain organization
with RASSF1. RASSF1 interacts with the E3 ubiquitin ligase Mdm2
via its C1-type zinc-finger motif, which is well conserved in Nore1

(Song et al, 2008). We therefore proposed that Nore1-bound
Mdm2 might cause the polyubiquitination and degradation of
HIPK1. In a yeast two-hybrid assay, an Mdm2–GAL4 DNA-
binding domain fusion protein interacted with a Nore1–GAL4
activation domain fusion protein (Fig 2A). In coimmunoprecipita-
tion assays in mammalian cells, endogenous Mdm2 was observed
to be bound to endogenous Nore1 (Fig 2B). In GST pull-down
assay, Nore1 bound to GST–Mdm2 but not to GST (Fig 2C). These
results indicate that Nore1 interacts with Mdm2 in vitro and
in vivo. Consistently, coexpression with Nore1 caused Mdm2 to
colocalize with Nore1 in U2OS cells (Fig 2D). Next, we examined
the role of Mdm2 in Nore1-mediated HIPK1 degradation. Nore1-
induced degradation of HIPK1 was further enhanced with Mdm2
coexpression. However, when the transfected cells were treated
with an Mdm2 inhibitor that blocks E3 ligase activity, Nore1-
induced degradation of HIPK1 was inhibited (Fig 2E). Expression
of Mdm2 alone resulted in only a slight decrease in HIPK1.
Coexpression of Mdm2 and Nore1 resulted in a greater decrease
in HIPK1, which was not observed when the catalytically inactive
C462A Mdm2 mutant was coexpressed (Fig 2F). Next, we
examined Mdm2 function on HIPK1 stability under physiological
conditions. Endogenous HIPK1 levels increased when endogen-
ous Mdm2 or Nore1 was knocked down in U2OS cells using short
interfering RNAs (siRNAs). Knockdown of both Mdm2 and Nore1
resulted in an increase in endogenous HIPK1 to a level similar to
the Nore1 knockdown cells, indicating that Mdm2 and Nore1
affect HIPK1 stability in a non-additive manner (Fig 2G). This
result indicates that Mdm2 and Nore1 exert their functions on the
same pathway. In addition, whereas p53/Mdm2-double KO MEFs
showed an increase in HIPK1 stability compared with p53-KO
MEFs, reintroduction of Mdm2 into Mdm2-KO MEFs resulted in
HIPK1 degradation (Fig 2H). Furthermore, expression of both
Nore1 and Mdm2 resulted in lower levels of HIPK1 than either
expression of Mdm2 alone into Mdm2-KO MEFs or expression of
Nore1 alone into Nore1-KO MEFs (Fig 2H,I). Using Mdm2 siRNA,
we tested whether Mdm2 is involved in Nore1-mediated
polyubiquitination of HIPK1. Nore1-induced enhancement of
HIPK1 polyubiquitination was reduced when Mdm2 was knocked
down (Fig 2J). These results show that Nore1 induces the
degradation of HIPK1 through the E3 ubiquitin ligase activity
of Mdm2.

Nore1 enhances interaction between HIPK1 and Mdm2
As we had observed that Nore1 colocalized with either HIPK1 or
Mdm2 in nuclear dots (supplementary Fig S1 online; Fig 2D),
we tested whether HIPK1 could also affect Mdm2 localization.
When GFP–HIPK1 and haemagglutinin (HA)–Mdm2 plasmids
were co-transfected into U2OS cells, Mdm2 expression remained
diffuse, indicating that HIPK1 by itself was not sufficient to induce
nuclear dot localization of Mdm2 (Fig 3A, first row of top panels).
However, coexpression of cyan fluorescent protein (CFP)–Nore1
along with both GFP–HIPK1 and HA–Mdm2 in the presence of
MG132 resulted in colocalization of all three proteins to discrete
nuclear dot structures (Fig 3A, second row of top panels). This
result indicates that Nore1 recruits Mdm2 and HIPK1 on the
nuclear dots for HIPK1 degradation. To determine whether the
Nore1-induced nuclear dots are associated with HIPK1 degrada-
tion, the number and size of the nuclear dots containing
endogenous HIPK1 and Mdm2 were determined in the presence
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of CFP–Nore1. The Nore1-induced nuclear dots harbouring
endogenous HIPK1 and Mdm2 were stabilized by MG132
treatment (Fig 3A, bottom panels), indicating association of HIPK1
degradation with nuclear dots. We subsequently tested whether

Nore1 could affect the interaction between HIPK1 and Mdm2 by
coimmunoprecipitation and GST pull-down experiments. Myc–
HIPK1 was observed to bind to HA–Mdm2 in mammalian cells,
and the amount of bound HA–Mdm2 increased when GFP–Nore1
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was coexpressed (Fig 3B, lane 4). In addition, a GST pull-down
assay revealed that the affinity of HIPK1 binding to GST–Mdm2
was significantly increased in the presence of Nore1 (Fig 3C).

Consistently, Mdm2-mediated HIPK1 polyubiquitination levels
were further increased by Nore1 coexpression (Fig 3D). Using
Nore1-KO MEFs and antibodies against endogenous HIPK1 and
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Mdm2, we observed that the amount of Mdm2 protein binding to
HIPK1 was greatly decreased in Nore1-KO MEFs (Fig 3E). These
results indicate that Nore1 might function as a scaffold protein that
enhances association between HIPK1 and Mdm2.

HIPK1 knockdown reduces tumorigenicity of A549 cells
Hypermethylation of the NORE1A promoter has been associated
with tumorigenesis in tissues such as the lung, kidney and liver
(Richter et al, 2009). To extend our understanding of NORE1
regulation of HIPK1 in cancer cell lines, we used the A549 lung
carcinoma cell in which NORE1A is silenced by hypermethylation
of its promoter. NORE1 siRNA treatment of 5-Aza-2-deoxycyti-
dine-exposed A549 cells resulted in recovery of HIPK1 levels to
the levels of MG132-treated cells (Fig 4A), suggesting that HIPK1
is stabilized by methylation-mediated suppression of NORE1A
expression in A549 cells. Consistently, either knockdown of
Mdm2 expression or treatment of Mdm2 inhibitor resulted in the
stabilization of endogenous HIPK1 in A549 cells (Fig 4B). To

explore whether the tumorigenic potential of A549 cells can be
influenced by changes in HIPK1 levels, we established A549 cell
lines stably expressing HIPK1 short hairpin (sh) RNA (Fig 4C). We
then determined the effect of HIPK1 knockdown on proliferation,
cell migration and anchorage-independent growth of A549 cells.
The rate of cell growth in HIPK1 knockdown cell lines was
markedly reduced when compared with parental and control
A549 cells (shcontrol; Fig 4D). A wound healing assay also
revealed that knockdown of HIPK1 inhibited the migration of
A549 cells (Fig 4E). In addition, depletion of HIPK1 reduced the
number and size of colonies produced in soft agar assay (Fig 4F).
These results were not due to the downregulation of Mdm2, a
transcriptional target of HIPK1, because p53 was not elevated in
HIPK1 knockdown cells (supplementary Fig S2 online). Increased
cell colony formation is indicative of higher potential for cell
transformation and thus greater tumorigenic risk. To validate in
vivo tumour-forming capabilities, A549-parental cells and A549-
derived HIPK1 knockdown cell lines were subcutaneously
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injected into athymic nude mice. Consistent with the results of the
soft agar assay, whereas both A549-parental and A549-shcontrol
cells produced large and aggressive tumours, the two independent
A549–shHIPK1 cell lines generated smaller ones (supplementary

Fig S3 online). These results indicate that the tumorigenic activity
of NORE1-silenced A549 adenocarcinoma cells is likely to be due
to upregulation of HIPK1 levels. To determine functional
relevance between HIPK1 expression levels and its tumorigenic
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activity, H1299 cell lines stably expressing either GFP or GFP–
HIPK1 were established (supplementary Fig S4 online). The
production of colonies with H1299 cells expressing GFP–HIPK1
increased fourfold in soft agar assays (Fig 4G), suggesting that
overexpression of HIPK1 might be associated with tumorigenic
activity. Furthermore, NIH3T3 cells stably expressing GFP–HIPK1
formed anchorage-independent colonies in a soft agar assay,
whereas parental NIH3T3 cells did not (Fig 4H; supplementary Fig
S4 online), indicating oncogenic function of HIPK1 in normal
cells. To establish the clinical relevance of our findings, we
determined the methylation status of the NORE1A promoter in 25
human lung cancer patient samples and normal tissue adjacent to
cancers using the methylation-specific polymerase chain reaction.
Among the 25 samples, six primary tumours were found to have
methylated NORE1A promoters, but not in their normal tissue
counterparts. Western blotting of the six primary tumours revealed
that HIPK1 levels were highly elevated in these tumours compared
with their normal counterparts. Elevated expression of HIPK1 in
the tumours was further confirmed by immunostaining the tumour
tissues with anti-HIPK1 antibodies (supplementary Fig S5 online).
These results indicate that inhibition of NORE1A expression via
methylation of its promoter and the resulting stabilization of
HIPK1 might contribute to lung cancer pathogenesis.

The oncogenic potential of HIPK1 was initially proposed in a
HIPK1-KO mouse model in which tumour formation was
markedly reduced in HIPK1-KO mice after topical exposure to a
chemical carcinogen (Kondo et al, 2003). In addition, the HIPK1
gene was highly expressed in human breast cancer cell lines
and oncogenically transformed MEFs (Kondo et al, 2003). Here
we have provided evidence that HIPK1 is able to transform
normal cells such as NIH3T3 cells, and epigenetic inactivation
of NORE1A by promoter hypermethylation can cause upregula-
tion of HIPK1, probably contributing to tumorigenesis. We
therefore propose that HIPK1 stabilization might have a main
causative role in the tumorigenesis of lung cancer mediated by
NORE1A silencing.

METHODS
Cell culture and treatment. COS7 and HeLa cells were grown in
Dulbecco’s modified Eagle’s medium, supplemented with 10%
fetal bovine serum (FBS). U2OS and A549 cells were grown in
RPMI1640 medium, supplemented with 10% FBS. Primary
Nore1þ /þ and Nore1�/� MEF cells were previously described
(Park et al, 2010). Mdm2 E3 ligase inhibitor (no. 373225) was
purchased from Calbiochem.
Plasmids. Nore1A was excised from pACT2–Nore1A and inserted
into EcoRI/SalI-digested pEntr3C to construct pEntr–Nore1A. The
Nore1 expression plasmids were then generated using Gateway
Technology (Invitrogen). Mouse Nore1A was expressed as a GST
fusion protein in BL21 cells. Myc–HIPK1, GFP–HIPK1 and Flag–
HIPK1 were described previously (Kim et al, 1998). The
expression plasmid encoding H-Ras Q61L mutant was purchased
from Upstate Biotechnology. Lentiviral pLKO.1 shRNA vectors
against human HIPK1 were obtained from the DFCI-Broad RNAi
Consortium.
In vitro pull-down assay. Myc-tagged HIPK1 constructs were
translated in vitro using a TNT-coupled Reticulocyte Lysate
System (Promega). Pull-down assays were performed by incubat-

ing equal amounts of GST or GST–Nore1A fusion proteins
immobilized on glutathione-Sepharose beads with Myc–HIPK1.
This mixture was placed onto a rocking platform for 2 h, washed
three times with 20 mM Tris–HCl, pH 8.0, 150 mM NaCl and
0.5% Nonidet P40, and bound proteins were eluted and separated
on an 8% SDS–polyacrylamide gel.
Anchorage-independent growth assay. A549 shHIPK1 cells were
seeded into 0.3% agar containing 2� DMEM and 10% FBS on
top of a bed of 0.6% agar, in 35-mm dishes at a density of 5� 103

cells per dish. Plating was done in duplicate. At 18–20 days
after plating, colonies were photographed and counted in 10
randomly chosen fields. Colony numbers are presented as the
means of the duplicate plates, and are representative of two
independent experiments.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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