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Sqstm1/p62 functions in the non-canonical activation of nuclear
factor (erythroid-derived 2)-like 2 (Nrf2). However, its physiolo-
gical relevance is not certain. Here, we show that p62�/� mice
exhibited an accelerated presentation of ageing phenotypes, and
tissues from these mice created a pro-oxidative environment
owing to compromised mitochondrial electron transport. Accord-
ingly, mitochondrial function rapidly declined with age in p62�/�

mice. In addition, p62 enhanced basal Nrf2 activity, conferring
a higher steady-state expression of NAD(P)H dehydrogenase,
quinone 1 (Nqo1) to maintain mitochondrial membrane potential
and, thereby, restrict excess oxidant generation. Together, the
p62–Nrf2–Nqo1 cascade functions to assure mammalian
longevity by stabilizing mitochondrial integrity.
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INTRODUCTION
Transcriptional induction of many cytoprotective enzymes in
response to oxidative/electrophilic stress is regulated primarily by
nuclear factor (erythroid-derived 2)-like 2 (Nrf2; Kaspar et al,
2009). Under non-stressed condition, Nrf2 is constitutively

degraded through the ubiquitin–proteasome system by binding
to Kelch-like ECH-associated protein 1 (Keap1), an adaptor of
a ubiquitin ligase complex. Post-translational modification of
Keap1 and/or Nrf2 by electrophiles and oxidants disrupts the
Keap1–Nrf2 interaction, resulting in the stabilization and inducible
activation of Nrf2. Recent studies have shown that expression of
constitutively active Nrf2 or loss-of-function mutant Keap1 confers
increased tolerance to oxidative stress and promotes longevity in
worms and fruitflies (Sykiotis & Bohmann, 2008; Tullet et al, 2008).
On the other hand, keap1 somatic mutation leads to carcinogen-
esis in humans through aberrant activation of Nrf2 (Hayes &
McMahon, 2009). These observations implicate the regulation of
the Keap1–Nrf2 pathway in higher organisms as a means of
promoting longevity while concurrently risking carcinogenesis.

Through its ability to interact with ubiquitin and the LC3
component of autophagy, Sqstm1/p62 in vertebrates regulates
autophagic removal of protein aggregates and damaged intracel-
lular organelles, including mitochondria (Geisler et al, 2010;
Komatsu & Ichimura, 2010). In addition, p62 interacts with Keap1
through the Keap1-binding region (KIR), and functions as an
electrophile/oxidant-independent activator of Nrf2 by interfering
with the Keap1 function and/or facilitating its degradation
(Jain et al, 2010; Komatsu et al, 2010). A recent study showed
that the accumulation of p62, which has been observed in a
number of human cancers (Moscat & Diaz-Meco, 2009),
persistently activates Nrf2 and contributes to the development of
hepatocellular carcinoma (Inami et al, 2011). Thus, the functional
inhibition of Keap1 either by somatic mutation or p62 accumula-
tion appears to similarly mediate aberrant activation of Nrf2 and
support carcinogenesis.

However, it is not clear whether p62 and its function to activate
Nrf2 promote the longevity of higher organisms, although mature-
onset obesity and features of neurodegeneration in p62�/� mice
were reported previously (Rodriguez et al, 2006; Ramesh Babu
et al, 2008). Importantly, mitochondrial dysfunction has long been
considered a principal mechanism underlying the ageing process
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(Beckman & Ames, 1998). In the present study, we show that p62
has a significant role in assuring mammalian longevity by
activating Nrf2 under non-stressed conditions and confers steady
expression of NAD(P)H dehydrogenase, quinone 1 (nqo1) to
maintain mitochondrial integrity. Furthermore, expression of p62
and Nqo1 declines with age in wild-type mice. Thus, p62 is
presumed to be a gene that has evolved to delay mitochondrial
dysfunction and thus attenuate the rate of ageing in vertebrates.

RESULTS AND DISCUSSION
Male-biased accelerated ageing of p62�/� mice
We deleted the sqstm1 gene in mice by replacing its first and
second exons with a neomycin-resistance cassette (supplementary
Fig S1 online). Although p62�/� mice at 7 weeks of age did not
reveal any overt abnormalities, they exhibited a significantly
reduced lifespan and accelerated ageing phenotypes. The mean
and maximal lifespans of the p62�/� male mice were 68 and 115
weeks, respectively, whereas those of wild-type controls were 102
and 163 weeks, respectively (Fig 1A, Po0.0001). Thus, the mean
lifespan of male p62�/� mice was 34% shorter than that of male
wild-type controls. Reduced mean lifespan was also apparent in
female p62�/� mice (13%, Po0.002), but less so than in males
(Fig 1B). In addition, manifestations of premature tissue ageing
were observed in male p62�/� mice; that is, early appearance of
lordokyphosis, rough fur coat and thinning of the subcutaneous
adipose layer in the dorsal skin (supplementary Fig S2 online).
These data suggest that p62 promotes mouse longevity by
delaying the ageing process.

The ratio of reduced to oxidized glutathione (GSH/GSSG) was
significantly lower in the tissues of p62�/� mice than in those of

wild-type controls (Fig 1C). This pro-oxidative shift in cellular
redox is reflected in the accumulation of lipid peroxidation
product in the brain of aged p62�/� mice and in the increased
levels of oxidized proteins and nucleotides in p62�/� murine
embryonic fibroblasts (MEFs; supplementary Fig S2 online).
Furthermore, we observed (i) significantly elevated oxidant levels
in p62�/� MEFs, (ii) decreased oxidant levels in p62�/� MEFs in
response to the reintroduction of p62 and (iii) increased oxidant
levels in p62-knockdown HCT116 cells (Fig 1D,E). Thus, p62
appears to decrease oxidant levels in the cells and tissues.

Rapid mitochondrial ageing in p62�/� mice
Mitochondria constitutively generate oxidants in the cell (Balaban
et al, 2005). As compared with wild-type controls, mitochondria
purified from the tissues of p62�/� mice produced increased
amounts of hydrogen peroxide (H2O2; Fig 2A). Furthermore, the
p62�/� mitochondria exhibited decreased rates of both state 2 and
state 3 respiration, indicating a compromised mitochondrial
electron transport in p62�/� tissues (Fig 2B). Morphological
abnormalities of mitochondria were also apparent in the cardiac
muscles of p62�/� mice, as exhibited by disturbed alignment,
appearance of electron-dense matter and accumulation of
distorted mitochondria despite the compatible expression of Lon
protease (Fig 2C; supplementary Fig S3 online). Furthermore, p62
knockdown resulted in an increase of fragmented mitochondria
within the HeLa cell population (supplementary Fig S3 online).
These data together suggest that p62 stabilizes mitochondrial
integrity and, thereby, limits oxidative stress.

We then compared age-associated rates of mitochondrial
dysfunction. At each of the three ages examined, male p62�/�
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Fig 1 | Lifespan reduction and pro-oxidative environment of p62�/� mice. (A,B) Kaplan–Meier survival curves for (A) male p62þ /þ (n¼ 48) and p62�/�

(n¼ 94) and (B) female p62þ /þ (n¼ 61) and p62�/� (n¼ 78) mice. (C) GSH/GSSG ratio in the liver, brain, kidney and pancreas of 8-week-old p62þ /þ

and p62�/� male mice (n¼ 5 per group, *Po0.01). (D,E) p62-dependent changes in DCF-sensitive oxidant levels in (D) MEFs and (E) HCT116 cells.

For this, p62 level was manipulated by ectopic expression (p62) or knockdown of p62 (si-p62). Scrambled siRNA was used as a control (si-con).

Br, brain; DCF-DA, dichlorofluorescein diacetate; GSH/GSSG, ratio of reduced to oxidized glutathione; Kid, kidney; Liv, liver; MEF, murine embryonic

fibroblasts; Pan, pancreas.

Sqstm1/p62 as a mammalian longevity assurance gene

J. Kwon et al

&2012 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 13 | NO 2 | 2012

scientificreport

151



mitochondria always had a greater rate of oxidant generation (RH2O2)
than that observed in wild-type controls (Fig 2D). This difference was
especially substantial at later ages. Compared with 20-week-old
wild-type controls, 90-week-old wild-type mitochondria generate
57% more H2O2, whereas 90-week-old p62�/� mitochondria
generate fully twice the amount of H2O2. Accordingly, amplification
of mitochondrial DNA revealed the largely increased appearance of
two major fragments corresponding to age-associated deletions
(Wang et al, 1997) in p62�/� samples from 60- and 90-week-old
mice (Fig 2E). Deletions in this region provide a robust measure of
age-dependent mitochondrial mutation. In contrast, these fragments
were not detected in wild-type mice aged less than 90 weeks.
Furthermore, whole-body oxygen consumption (VO2) of 27- and 40-
week-old p62�/� mice was only 84% and 53% of that in age-
matched wild-type mice, respectively (Fig 2F). Thus, protracted loss
of p62 function accelerated the rate of mitochondrial dysfunction.
The rate of mitochondrial dysfunction was also faster in female
p62�/� mice than in female wild-type controls, but relatively slower
than that of male p62�/� mice (Fig 2D,E). The correlation between
the rate of mitochondrial dysfunction and the magnitude of lifespan
reduction in both sexes (Fig 1) further suggests that loss of p62
functionality contributed to the accelerated ageing of p62�/� mice.

Attenuated basal expression of Nqo1 in p62�/� mice
Consistent with previous reports (Jain et al, 2010), Nrf2-dependent
antioxidant response was directly related to the p62 expression
level in MEFs, whereas antioxidant response on exposure to an

electrophile, tertiary butylhydroquinone, was similarly induced in
p62þ /þ and p62�/� MEFs (supplementary Figs S4A,B online).
Furthermore, p62 activated Nrf2 even in the presence of an
antioxidant, N-acetylcysteine, under which tertiary butylhydro-
quinone-induced antioxidant response was largely suppressed
(supplementary Fig S4C online). Thus, p62-mediated antioxidant
response is expected to have a role separate from that induced
by electrophiles or oxidants. Interestingly, as compared with
control cells, p62�/� MEFs and p62-knockdown HCT116 cells
demonstrated a 20–30% lower basal antioxidant response along
with increased Keap1 protein levels (Fig 3A). Consistent with
previous reports (Komatsu et al, 2010), deletion of a region
encompassing the KIR (D335–357), but not mutation of cysteines
in the ZZ domain (6CA) or two leucines in the ubiquitin
association domain (UBA), resulted in the loss of p62 function
for both basal antioxidant response and Keap1 stability (Fig 3B).
In accordance with this, protein levels of Keap1 were significantly
higher in the skeletal muscles of p62�/� mice, despite their
comparable message levels (Fig 3C). Furthermore, p62�/� tissues
exhibited attenuated expression of Nqo1 but not other Nrf2 target
genes (Fig 3D). Thus, p62 seems to support the basal activation of
Nrf2 through modulating Keap1 stability, conferring a higher
steady-state expression of Nqo1.

p62–Nrf2–Nqo1 cascade for mitochondrial integrity
We then examined whether mitochondrial dysfunction in
p62-deficient cells is a consequence of an attenuated basal
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Fig 2 | Mitochondrial dysfunction in p62�/� mice. (A) The rate of oxidant generation in mitochondria purified from brains and livers of 10-week-old
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p62�/� mice. (D) Relative rates of oxidant generation in liver mitochondria of p62þ /þ and p62�/� mice at three different ages. Data are expressed as

percentage of the rate in 20-week-old male wild-type mice (n¼ 4–6 per group, *Po0.05). (E) Appearance of two PCR products of mitochondrial DNA,

989 and 846 bp, corresponding to age-associated deletions at 9089–12956 and 9553–13279, respectively. As a control, PCR products of an ageing-

resistant mitochondrial DNA segment (12S rRNA) are also presented. (F) Oxygen consumptions during the light cycle of the 7-, 12-, 27- and 40-week-

old p62þ /þ and p62�/� mice (n¼ 5 per group, *Po0.01). H2O2, hydrogen peroxide; VO2, oxygen consumption.
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antioxidant response. Knockdown of either p62 or Nrf2 in
HCT116 cells similarly decreased the mitochondrial membrane
potential (Dcm; Fig 4B,C) and antioxidant response (Fig 4N,O) but
increased cellular oxidant levels (Fig 4I,J). Furthermore, the
number of cells exhibiting a largely reduced Dcm increased under
these conditions (arrows). Interestingly, Dcm, antioxidant response
and oxidant concentration in p62-knockdown HCT116 cells were
restored by ectopic expression of Nrf2 (Fig 4E,I,N). In contrast,
ectopic expression of p62 induced neither effect in the Nrf2-
knockdown HCT116 cells (Fig 4F,J,O). Thus, the positive role of
p62 in the maintenance of mitochondrial integrity reflects
enhanced basal antioxidant response. As a result, p62�/� MEFs
exhibited a lower Dcm and a higher intracellular oxidant level,
which were restored by the expression of wild-type p62 but not
p62D335–357 (supplementary Fig S5 online). Accordingly, over-
expression of Keap1 induced the opposite effects in HCT116 cells.

Interestingly, both decreased Dcm and increased cellular
oxidant level were also observed in Nqo1-knockdown HCT116
cells (Fig 4D,K). Furthermore, ectopic expression of Nqo1
completely restored Dcm and oxidant concentration in the p62-
or Nrf2-knockdown HCT116 cells (Fig 4G,H,L,M), despite the fact
that it could not increase the antioxidant response (Fig 4P,Q).
Thus, Nqo1 has a role in stabilizing mitochondrial integrity as a
downstream effector of p62-induced basal Nrf2 activation.

Role of p62 for mammalian longevity
Previous observations of the ageing-related function of Nrf2 in
worms (Tullet et al, 2008) and male-biased lifespan extension
in the fruitfly by loss-of-function mutation of keap1 (Sykiotis
& Bohmann, 2008) indicated the pro-longevity role of Keap1–Nrf2
pathway also in mammalian species. Importantly, expression of
p62 and Nqo1 rapidly declined during normal ageing of mice, and
message levels of p62 and Nqo1 in the livers of 132-week-old
wild-type mice were only about 5% and 30%, respectively, of
those in 12-week-old mice (Fig 5A,B). Conversely, enhanced
expression of Nrf2-dependent genes including Nqo1 has been
observed in the tissues and cultured cells derived from long-lived
Ames and Snell dwarf mice (Leiser & Miller, 2010; Sun et al,
2011). As p62 is also a target of Nrf2 transcriptional activity
(Jain et al, 2010), our studies together imply that a ‘vicious loop’
within the p62–Keap1–Nrf2–Nqo1 cascade underlies progressive
mitochondrial dysfunction and mammalian ageing (Fig 5E).

In addition, p62 might also promote mammalian longevity
through its adaptor function for selective autophagy, particularly
for autophagic removal of depolarized mitochondria; that is,
mitophagy (Geisler et al, 2010; Komatsu & Ichimura, 2010). Thus,
we do not exclude the possibility that the accelerated ageing in
p62�/� mice might also be attributable to inefficient mitophagy.
However, as controversial data suggesting a dispensable role for
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p62 during mitophagy are also available (Narendra et al, 2010),
further work under in vivo conditions will be required to
evaluate the influence of p62 on the clearance of dysfunctional
mitochondria generated during senescence.

The present study showed that p62 suppresses excessive
oxidant generation. Paradoxically, however, accumulation of
p62 protein in autophagy-deficient mice has been correlated with
increased oxidative stress and tumour promotion (Inami et al,
2011). As the autophagy activity declines with age (Fig 5C,D),
cells in older animals might face an environment similar to that
observed in autophagy-deficient mice. However, as p62 expres-
sion also declines with age (Fig 5A), animals might benefit from
the longevity-promoting nature of p62 during relatively earlier life
stages and the reduced adverse effect of p62 protein accumulation
in old age.

Another interesting observation from our study is the sexually
dimorphic effect of the p62 gene deletion on the mitochondrial
and organismal ageing (Figs 1, 2). Although previous reports
suggest enhanced activity of superoxide dismutase 2 (SOD2) or
glutathione peroxidase (GPX) in the mitochondria of female
animals (Borras et al, 2003), expression of these enzymes was
insignificantly different between males and females, as well as
between p62�/� and p62þ /þ mice (J.K. et al, unpublished results).
Thus, females might have an advantage over males in longevity
assurance because of additional means of supporting mitochon-
drial integrity independently of p62. Interestingly, mutation of
genes such as IGF1 receptor and S6K1 more profoundly extended
the lifespan of female mice (Holzenberger et al, 2003; Selman
et al, 2009), which is opposite to the phenotypes that arose in
p62�/� mice with regard to lifespan modulation and sexual
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dimorphism. However, it is not clear whether these contrary
effects are a result of the separate, converse or compensatory
activities of these genes. Thus, careful examination of these
systems in combination might provide a way to define the nature
of an increased longevity in females.

Altered metabolic homeostasis, cognitive impairment and
ageing are correlated with each other (Craft, 2005). Thus,
mature-onset obesity and features of neurodegeneration observed
previously in p62�/� mice (Rodriguez et al, 2006; Ramesh Babu
et al, 2008) seem to have an inseparable relationship with the
rapid ageing phenotype described in the present study. However,
obesity and insulin resistance developed similarly in both male
and female p62�/� mice (J.K. et al, unpublished results), whereas
senescence was less severely affected in females
(Fig 1). In addition, loss of working memory was observed in
p62�/� mice from 6 months of age, whereas anxiety and
depression was observed as early as 2 months of age (Ramesh
Babu et al, 2008). These results indicate that some phenotypes that
arose in p62�/� mice are associated with each other, but some are
intrinsic defects due to the loss of tissue-specific p62 function.

Sqstm1/p62 and its homologues are found in vertebrates, and
the amino-acid sequences of these homologues are highly
conserved (490%) among mammals. In contrast, Drosophila
expresses a gene, ref(2)p, which shares only limited local
homology with p62 within the ZZ and UBA domain (Avila et al,
2002). At present, it is not clear whether ref(2)p also preserves the
longevity assurance function of p62 in Drosophila. However,
unlike the KIR that is not conserved in ref(2)p, either the ZZ
domain or UBA domain in p62 was inessential for inducing Keap1
degradation (Fig 3B). Thus, ref(2)p might contribute to only a

limited extent to the longevity assurance mechanism, unless it
contains a specific but not yet characterized motif for Drosophila
Keap1 regulation. Nevertheless, except for ref(2)p, the lack of p62
homologue in invertebrates or lower organisms suggests that
p62 evolved in concert with the extended lifespans of higher
metazoans. Therefore, ageing animal models carrying mutations
in genes specific to higher organisms, such as p62�/� mice, will
provide a unique advantage in future studies on the ageing of
mammalian subjects.

METHODS
Mice. Mice (p62�/�) were generated by standard gene targeting
methods based on previously published protocols (Hogan et al,
1994), and cumulative survival of wild-type and p62�/� mice
was determined using the Kaplan–Meier method. Whole-body
oxygen consumption was determined by indirect calorimetry
(Butler et al, 2001).
Analysis of tissue mitochondria. The rate of mitochondrial H2O2

generation was determined by linear increase in fluorescence of
oxidized homovanillic acid in the presence of horseradish
peroxidase (Barja, 2002) using mitochondria isolated from tissues
by differential centrifugation and iodixanol density gradient
centrifugation (Sharer et al, 2002). The respiration rate was
measured using a Clark-type oxygen electrode. Mouse cardiac
ventricular ultrastructure was observed under a transmission
electron microscope after tissue sections were fixed and
embedded in osmium tetroxide and epoxy resin, respectively.
Flow cytometry and reporter assay. Intracellular oxidant
level and mitochondrial membrane potential (Dcm) were
assessed by measuring the fluorescence of dichlorofluorescein
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Fig 5 | Age-dependent changes in expression of p62, Nqo1 and autophagy components. (A–D) Relative message levels of p62, Nqo1, Atg5 and Atg7 in
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(E) Schematic presentation of the role of p62 in mammalian longevity. Nqo1, NAD(P)H dehydrogenase, quinone 1; ROS, reactive oxygen species.
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(DCF) and 5,50,6,60-tetrachloro-1,10,3,30-tetraethylben-zimidazolyl-
carbocyanine iodide (JC1, Molecular Probes), respectively (Bass et al,
1983; Royall & Ischiropoulos, 1993). The relative luciferase reporter
activity (human Nqo1-ARE-luciferase versus pRL-TK Renilla lucifer-
ase) was measured 24 h after transfection of plasmids.

Details of protocols and additional methods are available as
supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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