
[12:08 19/7/2010 Bioinformatics-btq332.tex] Page: 1938 1938–1944

BIOINFORMATICS ORIGINAL PAPER Vol. 26 no. 16 2010, pages 1938–1944
doi:10.1093/bioinformatics/btq332

Genome analysis Advance Access publication June 20, 2010

Savant: genome browser for high-throughput sequencing data
Marc Fiume1,∗, Vanessa Williams1, Andrew Brook1 and Michael Brudno1,2

1Department of Computer Science and 2Donnelly Centre and Banting and Best Department of Medical Research,
University of Toronto, Ontario, Canada
Associate Editor: Alex Bateman

ABSTRACT

Motivation: The advent of high-throughput sequencing (HTS)
technologies has made it affordable to sequence many individuals’
genomes. Simultaneously the computational analysis of the large
volumes of data generated by the new sequencing machines remains
a challenge. While a plethora of tools are available to map the
resulting reads to a reference genome, and to conduct primary
analysis of the mappings, it is often necessary to visually examine the
results and underlying data to confirm predictions and understand
the functional effects, especially in the context of other datasets.
Results: We introduce Savant, the Sequence Annotation,
Visualization and ANalysis Tool, a desktop visualization and
analysis browser for genomic data. Savant was developed for
visualizing and analyzing HTS data, with special care taken
to enable dynamic visualization in the presence of gigabases
of genomic reads and references the size of the human genome.
Savant supports the visualization of genome-based sequence, point,
interval and continuous datasets, and multiple visualization modes
that enable easy identification of genomic variants (including single
nucleotide polymorphisms, structural and copy number variants),
and functional genomic information (e.g. peaks in ChIP-seq data) in
the context of genomic annotations.
Availability: Savant is freely available at http://compbio.cs.toronto
.edu/savant
Contact: savant@cs.toronto.edu

Received on March 2, 2010; revised on May 25, 2010; accepted on
June 15, 2010

1 INTRODUCTION
The emergence of high-throughput (a.k.a. next-generation)
sequencing technologies has made the acquisition of genomic
data quicker and more affordable than ever before. Continued
technological strides are being made to further improve throughput,
cost and accuracy of the sequencing platforms, enabling large-
scale studies of genomes, populations and diseases. Within the
field of personalized genomics, ambitious sequencing projects
such as the 1000 Genomes Project, the International Cancer
Genome Consortium and the Autism Genome Project, are seeking
to identify genomic variants among human genomes and to use
this knowledge to determine the genetic underpinnings of human
diseases by associating variants with symptoms (Hu-Lince et al.,
2005; Via et al., 2010; http://www.icgc.org/). Many computational

∗To whom correspondence should be addressed.

tools have been developed for single nucleotide polymorphism
(SNP), insertion/deletion (indel) and other types of genetic
variation discovery in individuals sequenced using high-throughput
sequencing (HTS) platforms (Chiang et al., 2009; Hormozdiari
et al., 2009; Li et al., 2008; also see Dalca and Brudno, 2010 and
Medvedev et al., 2009 for reviews). The results of these analyses are
being integrated into large-scale datasets, annotating each variant
with the allele frequency in various populations, and enabling
demographic and association studies.

Simultaneously, HTS has also revolutionized functional
genomics, where the ability to sequence RNA and DNA to
extremely high coverage has made possible RNA-seq and ChIP-seq
(Pepke et al., 2009), methodologies that help discover rare RNA
transcripts, identify the location of transcription factor binding sites
on the genome, as well as discover the locations of nucleosomes.
RNA-seq and ChIP-seq data also consist of many reads aligned to
a reference genome, which are then binned and analyzed for peaks
that indicate putative transcription factor binding sites and exons,
respectively. Additionally, anomalously mapped reads or pairs from
RNA-seq experiments can suggest alternative splicing or fusion
transcripts.

The capacity of new sequencing technologies to generate huge
volumes of raw sequence data has made its analysis a substantial
informatics challenge. Sequencing machines typically output files
containing a nucleotide sequence and quality values for each read,
which can be tens to hundreds of gigabytes in size due to the sheer
number of reads sequenced in a single run. These files can be easily
parsed line-by-line by downstream computer programs because of
their structured textual format, but are not intended for direct manual
or visual analysis. While downstream analysis programs, such as
read mappers, SNP callers and peak finders can identify regions of
interest to the bench scientist, a visual analysis of the supporting data,
as well as other, orthogonal, information is usually warranted before
costly wetlab experiments are performed to confirm the biological
validity of the prediction.

Visualization of genomic data gives researchers the benefit of
looking at information in a more natural and interpretable way
compared with a textual representation. There are many different
tasks that are facilitated by visualization including: (i) integration of
multiple related datasets into a single view, to gain insight into the
interaction between genomic features, (ii) algorithm development,
where visualization of many putative calls (e.g. genomic variants,
promoter sites, intron–exon boundaries, etc.) helps with debugging
and identification of true and false positives; and (iii) exploration
of various genomic regions for specific signatures of functional
sites that may be difficult to describe within a computer program,
e.g. two closely spaced peaks in ChIP-seq data indicating adjacent

1938 © The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

http://compbio.cs.toronto
http://www.icgc.org/


[12:08 19/7/2010 Bioinformatics-btq332.tex] Page: 1939 1938–1944

Savant genome browser

Table 1. Savant feature list

Feature categories Features

Data formats FASTA, BED, SAM/BAM, WIG, GFF and any
tab-delimited text file containing positional
annotations

Speed and efficiency Fast data access
Scalable to very large input files
Small memory footprint

Navigation Zooming, panning and seeking using range controls
or keyboard and mouse

Layout Dockable modules supporting show/hide,
rearrangement, maximize, float and close

Visualization Compact view of sequence, point, interval and
continuous tracks

Multiple display modes for specific track types
Language Implemented in Java
Operating systems Works on Windows, Linux, Mac and any other

platform having support for Java Virtual Machine
Extensibility Plugin framework allows access to data, tracks and

UI for extensive customization
Others Bookmarking favorite locations

Locking overview tracks
Novel representation of paired-end reads making

structural variations easy to identify

binding sites. Without the convenience of a visualization tool, in each
of these settings all regions of interest would have to be painstakingly
considered via manual analysis of the supporting data.

A number of tools have been developed for visualizing genome-
based annotations. The UCSC and Ensembl genome browsers,
for example, are popular online tools that have traditionally been
used to display various biological datasets, such as genomic
variants, expressed sequence tag (ESTs) and functional genomic
data, in the context of high-quality, manually curated annotations
(Hubbard et al., 2009; Kent et al., 2002). While both have been
recently updated to support display of HTS data, their use for
this purpose is onerous because: (i) a large amount of locally
stored data must be uploaded to servers across the internet,
(ii) once uploaded, the data being visualized cannot easily be
manipulated or computed with; and (iii) server-side browsers are
typically slow and non-interactive. Other visualization programs
such as the Integrative Genomics Viewer, Artemis and Tablet
(http://www.broadinstitute.org/igv; Milne et al., 2010; Rutherford
et al., 2000) are designed to run on conventional desktop computers
and thus make use of local storage capacity and computing resources
to overcome the shortcomings of web-based browsers. While these
popular browsers allow for interactive visualization of HTS data,
they have limited analytic capability, and are not extensible through
user-contributed modules. A substantial barrier for researchers who
use genomic visualization tools, for all types of data, is the
disconnect between the processes of visualization and computer-
intensive analyses (Nielsen et al., 2010), a void which is caused by
visualization tools being programmatically inaccessible.

Here, we introduce Savant, the Sequence Annotation
Visualization and ANalysis Tool, which combines visualization of
HTS and other genome-based data with powerful analytic tools.
The Savant feature set (summarized in Table 1) was guided by three
key design principles. (i) Ease of use: users can easily install the
application, obtain and load data, and navigate to specific regions

of interest. The general layout of data mirrors the standard genome
browsers to shorten the learning curve. (ii) Speed and efficiency: the
program quickly and dynamically sifts through very large datasets
while maintaining a reasonable memory footprint. (iii) Access and
extensibility: the underlying data is readily accessible from within
the tool itself, and users can extend the application by adding any
number of plug-ins for specific tasks.

2 INTERFACE
Savant has a simple and intuitive interface, which is customizable
through the use of a modular docking framework. Figure 1 shows
a screenshot of Savant, and illustrates its various components,
expanded upon in the following subsections.

2.1 Navigation
There are several ways a user can specify the genomic region to
be displayed by the viewer. Coarse navigation is made possible
through a range selection panel whose horizontal length represents
the length of the loaded genome, from which subranges can be
chosen using the mouse. Alternatively, fine navigation is possible
by entering the desired genomic range into text fields. Neighboring
buttons enable zooming in and out and panning left and right. Each
of these functions can also be engaged through mouse and keyboard
shortcuts. Savant also uses a bookmarking framework to allow the
user to switch between many regions of interest, as described lower.

2.2 Modules and docking framework
Savant uses a modular docking framework, similar to those
used in most Integrated Development Environments (IDEs). Each
module within the application appears as a separate window that
can be shown, hidden, maximized, minimized, resized, closed or
rearranged in any configuration the user desires. Modules can also be
detached from the main interface and moved to a separate location,
which is useful for maximizing screen usage on setups having
multiple displays. Savant includes a number of modules which are
described in subsections that follow. To demonstrate the power and
utility of Savant’s plug-in framework the Table View module was
implemented as a plug-in.

2.3 Tracks
A track is a visual representation of one dataset. Each track shows
data of a single type, such as a genome, read alignment, gene set
or generic annotation. A user can specify the region of the loaded
tracks to be displayed via the browser’s many navigation controls.
By default, multiple tracks are stacked on top of each other so that
positions along their horizontal axes correspond to the same location
of the genome, which is standard for genomic viewers (Gordon et al.,
1998, Staden et al., 2000). Simultaneously, Savant enables the user
to lock a certain track, while updating the others, as is described in
Section 3.1

2.4 Bookmarks
It is often useful to make note of interesting regions while using the
browser, or to load a set of such regions in order to quickly navigate
between them. The Bookmarks module helps keep track of such
locations. Users may add, remove or seek to a bookmarked region by

1939

http://www.broadinstitute.org/igv


[12:08 19/7/2010 Bioinformatics-btq332.tex] Page: 1940 1938–1944

M.Fiume et al.

Fig. 1. Screenshot of Savant. (A) Range controls. Selection, zoom and pan controls for coarse navigation; text fields for fine navigation. Zooming and
panning are also possible via keyboard and mouse commands. (B) Tracks. These represent the data in current range. Top: read alignments, with colored pixels
representing differences between the reads and the reference. Bottom: color representation of the genome sequence. (C) Table View module, detached from
the main interface. The table view module is displaying the mapped reads with SAM format fields. (D) Bookmarks module.

using buttons within the module or keyboard shortcuts. Furthermore,
bookmarks may be tagged with a description and exported for future
use or for sharing among colleagues.

2.5 Table view
Finally, while Savant aims to provide the user with the ability
to compute on the underlying data directly, through the plug-in
framework described in Section 5, in many cases the user may wish
to identify the underlying data elements for export to an external
program, e.g. identifying the genomic sequence within a window to
align against another genome, or downloading all of the supporting
reads for a SNP to make sure they do not align elsewhere in the
genome. In Savant, the user can display the underlying textual data
from any loaded track within the Table View. This module displays
records as rows and fields as columns in a spreadsheet. For each

read mapping, for example, the Table View displays the read name,
mapped position, CIGAR string and other SAM fields. The data can
be sorted in either ascending or descending order with respect to any
field. The spreadsheet can also be exported for further analyses.

3 VISUALIZATION
Savant retrieves and renders data every time a range change is
requested by the user. Together, these processes happen quickly so
as to confer seamless navigation around the genome. The renderer
for each track is adaptive to both the display mode and the length
of the viewed region chosen by the user.

3.1 Dynamic resolution changes
Savant dynamically adjusts its resolution—the amount of
information it displays—to optimize both nucleotide- and

1940



[12:08 19/7/2010 Bioinformatics-btq332.tex] Page: 1941 1938–1944

Savant genome browser

Fig. 2. Read alignments, visualized at various resolutions and using two
modes. (A) Chromosome-wide view of read mappings, showing the overall
coverage (with no coverage in the centromere). (B) Regional view, still
visualized as a coverage map, showing higher coverage in certain regions
of the genome. (C) Local view, the reads are shown separately and
differences between the reads and the reference genome are colored. Reads
on the forward and reverse strand are shown with different shades of blue.
(D) Matepair (arc) mode, showing the relative distance between the two
reads of a pair. Taller arcs indicate larger distances between the pairs.

genome-scale visualization of tracks. For example, read alignments
can be visualized as a coverage track when the number of base
pairs within a region is too large to enable the visualization of
individual reads. Once the region is small enough, Savant seamlessly
switches to a read-alignment view, as shown in Figure 2. In addition
to presenting a more intuitive visualization, this feature also reduces
the program’s memory footprint and improves overall speed.

Individual tracks can also be locked to a particular range so that
they are not updated until they are unlocked. Locked tracks can be
used as overview profiles from which subregions can be selected to
specify range changes for other tracks. Track locking also enables
simultaneous viewing of high- and low-resolution profiles.

3.2 Display modes
Particular data types can be displayed in different modes. For
example, interval annotations can be squished together on a single
line or packed neatly so that none overlap (mimicking the squish
and pack modes of the UCSC browser). The representation can be
dynamically toggled within the browser, with each representation
option emphasizing different aspects of the data. The variant and
strand modes for read alignments, for instance, use colors to
emphasize mismatches in reads and the strands to which reads
are mapped, respectively. A novel mode for representing matepairs
shows arcs between the mapped locations of paired reads, where the
height of each arc is proportional to the inferred insert size. Arcs for
anomalously mapped pairs, such as those suggestive of inversions
or duplications, are colored differently. The various modes for read
alignments are illustrated in Figure 2.

4 FILE FORMATTING AND PERFORMANCE
Savant supports a number of common text-based formats, which
are described in Table 2. However, because text-files do not enable
fast random access, Savant formats and saves each file so as to
provide very efficient search operations at runtime. The speed with
which Savant can sift through large datasets is enabled by the way in

Table 2. Supported file formats

File Format Description

FASTA Standard format for nucleotide sequences
BED Format for describing coordinates of localized

features on genomes, such as genes
SAM/BAM Relatively standard format for large sets of

nucleotide sequence alignments
WIG Standard format for continuous-valued data.

Useful for GC percent, probability scores and
transcriptome data

GFF General feature format for annotations of ranges
Tab delimited Any tab-delimited file containing point, interval

or continuous genome annotations

which it formats and indexes data. In particular, formatting involves
converting text records into an indexed binary data structure specific
to each data type. Sequence and continuous tracks are stored as
fixed-width records, enabling direct lookup of records of interest.
Annotation ranges (such as genes) are stored using a binning scheme
similar to the one used in the UCSC Browser (Kent et al., 2002) and
in BAM files (Li et al., 2009), so retrieving all ranges corresponding
to some region usually requires only one, and at most O(logn) disk
seeks. File formatting can be done directly through the application
itself. Savant keeps its memory usage low by adjusting its sampling
rate depending on the size of the visualized range.

The time and space requirements for the processes of data
formatting and visualization were measured for a collection of
human chromosome 1 datasets, including a genetic sequence,
genes, SNPs, mammalian conservation and alignments of sequenced
reads from an individual from the 1000 Genomes Project (∼40×
coverage). The tests were performed on a Lenovo T61p laptop
computer with an Intel Core 2 Duo CPU at 2.40 GHz and 3.0 GB
of RAM. The results are summarized in Table 3. Formatting of
the gene, SNP, sequence and conservation tracks took less than
10 min total, while the computation of a coverage track from a
large set of read alignments took about an additional 40 min. The
latter conversion is optional, and allows for dynamic switching
between an alignment view and a coverage view as illustrated in
Figure 2. Runtime performance was assessed by measuring the time
taken to navigate to ranges of various sizes. Each measurement
was performed on a newly started instance of Savant and the start
location of the range was randomized. For seeking arbitrary ranges
of sizes 10 million to 10K bp, Savant took less than a second to fetch
and render data. The performance was worst for ranges just slightly
shorter than 10K long, where the large number of BAM records that
are displayed require 2 s to be fetched from disk. Savant renders
virtually instantaneously for regions having sizes on the order of
hundreds of base pairs, where most fine-scale visualization is done.

5 PLUG-IN FRAMEWORK
Savant is able to integrate user-defined plug-ins, allowing one to
accomplish very specific tasks. Each plug-in can be one of two
general types. Interactive plug-ins are allocated dockable modules
on which graphical user interface (GUI) elements such as buttons or
text fields can be placed to respond to user input and retrieve data.
Non-interactive plug-ins are not designated a GUI component but

1941



[12:08 19/7/2010 Bioinformatics-btq332.tex] Page: 1942 1938–1944

M.Fiume et al.

Table 3. Time and space requirements for file formatting and visualization

Data files Formatting Retrieval and visualization

10M 100K 1K 100

File name Size Records Out size Time #Recs. Time (s) #Recs. Time (s) #Recs. Time (s) #Recs. Time (s)

chr1.genes.bed 1.1 MB 7.5K genes 970 KB 2 s 423 0.18 10 0.05 7 0.03 5 0.00
chr1.snps.point 26 MB 1.5M SNPs 26 MB 4 s – – 559 0.01 12 0.00 6 0.00
chr1.sequence.fasta 242 MB 249M nucs 237 MB 11 s – – – – 1000 0.00 100 0.00
chr1.conservation.wig 1.2 GB 249M vals 1.2 GB 6 m 10Ma 0.32 100Ka 0.18 1000 0.02 100 0.01
NA12878.chr1...bam 25 GB 262M reads No formatting req. Coverage shown at these ranges 1101 0.05 150 0.04
NA12878.chr1...cov Computed from BAM file 1.2 GB 42 m 10Ma 0.32 100Ka 0.18 Read alignments shown at these ranges

TOTAL 53 m 0.82 s 0.40 s 0.10 s 0.05 s

The Data Files section describes input files. The Formatting section shows time required to format each input file and the resulting formatted
file size. The Retrieval and visualization section shows the time taken to retrieve data from ranges of various sizes and the number of records
retrieved and drawn. All operations require <50 MB of memory.
aTracks with continuous values are smoothed before rendering at large ranges. Sequence and point tracks are not rendered beyond certain
ranges, denoted with a hyphen (–). Read alignments (BAM file) are replaced by coverage (precomputed from the BAM file) when visualizing
longer regions.

Table 4. Helper functions provided to plug-ins

Category Function descriptions

Range Change range
Tracks Add, remove, retrieve data, change display

modes and resolutions
Bookmarks Add, remove and seek
UI Rearrange modules
Other Take screenshot, export data, etc.

still have extensive access to the innards of the browser. A number of
helper functions are provided to plug-ins which are summarized in
Table 4. Plug-ins can be used, for example, to prototype a SNP finder
by identifying variable columns currently in view, or for computing
genome-wide statistics, such as the fraction of SNPs in exons.

Plug-in development is straight-forward and requires
implementation of one Java interface. The Bookmark Intersection
Plug-in, shown in Figure 3, is an example of an interactive plug-in.
The plug-in allows the user to select two tracks, intersect them and
load the intersecting regions into the list of bookmarks, enabling
easy navigation to all of the regions of interest. Once developed,
plug-ins can be shared among users through the Plugin section of
the Savant web site.

6 EXAMPLE USES
In this section, we demonstrate example usages of Savant to identify
and visualize various polymorphisms between the reference human
genome and a Yoruban genome (HapMap individual NA18507)
sequenced with the Illumina platform (Bentley et al., 2008). The
raw reads and MAQ mappings (in BAM format) were downloaded
from the 1000 Genomes web site, while the conservation track (in
WIG format), gene annotations and dbSNP data were obtained from
the UCSC database. Figure 4A shows two likely SNP variants in

Fig. 3. Code used to make Bookmark Intersection Plug-in. The details of the
UI that allows the user to select two tracks have been omitted. Once the two
tracks are selected, the bookMarkTrackIntersections() method is run, which,
for each interval of one track, finds overlapping intervals of the other, and
saves intervals with overlap to the bookmark panel.

the NA18507 genome. SNPs are typically supported by consistent
mismatches in aligned reads with respect to the reference at the
variant positions. The reads support the existence of a transition

1942



[12:08 19/7/2010 Bioinformatics-btq332.tex] Page: 1943 1938–1944

Savant genome browser

Fig. 4. (A) Visualization of two SNP variants. The displayed tracks are, top to bottom, Conservation, Gene Models, Read Alignments, the Genome sequence
and known SNPs from dbSNP. Two potential SNP variants are indicated by consistent mismatching colors within a column, with the downstream SNP
previously known, while the upstream one, a heterozygous variant, not in dbSNP. (B) Identification and visualization of MoDIL indel variants that overlap
exons via the plug-in framework. The visualized tracks are Gene Models, read mappings (visualized in the matepair mode) and MoDIL predictions. The panel
on top right is the Bookmark module, while on the bottom right is the BookMarkIntersection plug-in described in Figure 3. To identify variants of interest,
the user selects the two tracks in the BookMarkIntersection window, and those variants that overlap exons are added to the list of bookmarks. The user can
then easily go through this list. In this particular case the indel likely occurs in the intron between the exons, but because of MoDIL’s inability to accurately
identify borders of variants, the variant is shown as overlapping.

1943



[12:08 19/7/2010 Bioinformatics-btq332.tex] Page: 1944 1938–1944

M.Fiume et al.

mutation (C to T) at a known SNP site, indicating a likely common
variant in the human population. There is also considerable evidence
(3/12 reads) for another transition (G to A) slightly upstream,
indicating a putatively novel SNP. Both of these SNPs fall in an
exon of a gene, as shown by the annotation, while the conservation
appears to drop-off in the immediate vicinity of the SNPs, indicating
weakened evolutionary constraint.

We also demonstrate the use of the plug-in framework to identify
and investigate biologically interesting indel predictions made using
an external tool. We used the dataset of predicted insertion and
deletion (indel) polymorphisms predicted by MoDIL (Lee et al.,
2009), which identifies these variants by analysis of matepair data. In
particular, MoDIL identifies regions of the genome with a significant
number of discordant matepairs (those with a distance between the
mappings of the reads significantly different from the expected
insert size of the library). We built a plug-in to identify those
indels that overlap exons, the code of which is shown in Figure 3.
Figure 4B displays the result of running this plug-in, together with
one such region of interest. In this case, the deletion lies directly
between two exons, and likely creates a genomic variant with a
much shorter intron, or with the intron completely spliced out of
the gene sequence. Taller arcs in the read visualization mode are
indicative of ‘stretched’ matepairs that confirm the deletion, while
the lack of read mappings within the deleted region indicates that
the deletion is homozygous.

7 DISCUSSION AND FUTURE WORK
In this article, we introduce Savant, a genome browser customized
for visualization of HTS data. In addition to dynamic visualization
and support for multiple data types, Savant supports multiple
novel features meant to simplify the analysis of genomic data,
including a Bookmarks module to keep track of regions of interest,
a Table View module to allow researchers access to the raw
data underlying the visualizations and a plug-in framework that
allows developers extensive access to the browser, enabling them to
program novel analysis methods and extend the browser to support
new visualization and data types.

In the near future, we plan to expand Savant by supporting
additional file formats, while also allowing users to automatically
download annotation tracks from various public resources, such
as the UCSC Genome Browser and the 1000 Genomes Project.
Additional functionality, for example, to save/restore user sessions,
enabling novel visualization modes, such as superimposition of
tracks, and combining the matepair and regular read alignment
views in a single panel will also be added in subsequent
releases. Savant is an open source tool, freely available at
http://compbio.cs.toronto.edu/savant/. We are also working to build

a user community, accessible through the same web site. The
community can be used to share Savant plug-ins with other
researchers, as well as to communicate with the development team,
to report bugs and to suggest new functionality and improvements.

ACKNOWLEDGEMENTS
We would like to thank Misko Dzamba, Seunghak Lee and Paul
Medvedev for assistance with this manuscript. We are also indebted
to the scientists at The Centre for Applied Genomics (Toronto,
Canada) for feature and design suggestions. MB is an Alfred P.
Sloan Research Fellow.

Funding: CIHR Catalyst Grant (to M.B.); an NSERC Undergraduate
Student Research Award for (M.F.).

Conflict of Interest: none declared.

REFERENCES
Bentley,D.R. et al. (2008) Accurate whole human genome sequencing using reversible

terminator chemistry. Nature, 456, 53–59.
Chiang,D.Y. et al. (2009) High-resolution mapping of copy-number alterations with

massively parallel sequencing. Nat. Methods, 6, 99–103.
Dalca,A.V. and Brudno,M. (2010) Genome variation discovery with high-throughput

sequencing data. Brief. Bioinform., 11, 3–14.
Gordon, D. et al. (1998) Consed: a graphical tool for sequence finishing. Genome Res.,

8, 195–202.
Hormozdiari,F. et al. (2009) Combinatorial algorithms for structural variation detection

in high-throughput sequenced genomes. Genome Res., 19, 1270–1278.
Hu-Lince,D. et al. (2005) The autism genome project: goals and strategies. Am. J.

Pharmacogenomics, 5, 233–246.
Hubbard,T.J.P. et al. (2009) Ensembl 2009. Nucleic Acids Res., 37 (Suppl. 1),

D690–D697.
Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res., 12,

996–1006.
Lee,S. et al. (2009) Modil: detecting small indels from clone-end sequencing with

mixtures of distributions. Nat. Methods, 6, 473–474.
Li,H. et al. (2008) Mapping short dna sequencing reads and calling variants using

mapping quality scores. Genome Res., 18, 1851–1858.
Li,H. et al. (2009) The sequence alignment/map format and samtools. Bioinformatics,

25, 2078–2079.
Medvedev,P. et al. (2009) Computational methods for discovering structural variation

with next-generation sequencing. Nat. Methods, 6, S13–S20.
Milne,I. et al. (2010) Tablet–next generation sequence assembly visualization.

Bioinformatics, 26, 401–402.
Nielsen,C.B. et al. (2010) Visualizing genomes: techniques and challenges. Nat.

Methods, 7 (Suppl. 3), S5–S15.
Pepke,S. et al. (2009) Computation for chip-seq and RNA-seq studies. Nat. Methods,

6 (Suppl. 11), S22–S32.
Rutherford,K. et al. (2000) Artemis: sequence visualization and annotation.

Bioinformatics, 16, 944–945.
Staden,R. et al. (2000) The staden package, 1998. Methods Mol. Biol., 132, 115–130.
Via,M. et al. (2010) The 1000 genomes project: new opportunities for research and

social challenges. Genome Med., 2, 3.

1944

http://compbio.cs.toronto.edu/savant/

