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Abstract
Airway diseases are frequently associated with morphological changes that may affect the
physiology of the lungs. Accurate characterization of airways may be useful for quantitatively
assessing prognosis and for monitoring therapeutic efficacy. The information gained may also
provide insight into the underlying mechanisms of various lung diseases. We developed a
computerized scheme to automatically segment the three-dimensional human airway tree depicted
on CT images. The method takes advantage of both principal curvatures and principal directions in
differentiating airways from other tissues in geometric space. A “puzzle game” procedure is used
to identify false negative regions and reduce false positive regions that do not meet the shape
analysis criteria. The negative impact of partial volume effects on small airway detection is
partially alleviated by repeating the developed differential geometric analysis on lung anatomical
structures modeled at multiple iso-values (thresholds). In addition to having advantages, such as
full automation, easy implementation and relative insensitivity to image noise and/or artifacts, this
scheme has virtually no leakage issues and can be easily extended to the extraction or the
segmentation of other tubular type structures (e.g., vascular tree). The performance of this scheme
was assessed quantitatively using 75 chest CT examinations acquired on 45 subjects with different
slice thicknesses and using 20 publicly available test cases that were originally designed for
evaluating the performance of different airway tree segmentation algorithms.
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I. INTRODUCTION
Appearing as an upside-down bifurcating tree, human airways are susceptible to a wide
variety of diseases as a result of direct exposure to airborne pathogens. Airway related
diseases such as asthma and chronic obstructive pulmonary disease (COPD) are the most
prevalent diseases associated with high morbidity and mortality [1]. Studies have shown that
airway diseases are frequently associated with damage and/or obstruction of the airway
anatomical structures that generally correlate with pulmonary function [2–4]. Hence,
accurate segmentation and quantitative assessment of airway morphology and related
features (e.g., airway wall thickness) are useful in routine clinical practice for assessing the
existence and/or severity of specific diseases and for monitoring responses to therapies.
Although advanced CT imaging techniques enable visualization of three-dimensional (3D)
lung structures in significant detail, it is extremely time consuming to manually segment the
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airways due to the complexity of the bronchial structure and the involvement of a large
number of CT images in a single examination. There are typically large errors associated
with subjective assessments in terms of inter- and intra-observer variability [5–6]. Therefore,
the availability of an automated, reliable, and accurate computerized segmentation tool for
this purpose could be of great value.

Leakage and obstruction are the two primary challenging problems associated with
automated computerized segmentation of the airway tree. Both are frequently caused by
partial volume effects that reduce the contrast between the airway wall and the lumen [7].
Leakage typically leads to the fusion of airways with surrounding lung tissues (e.g.,
parenchyma) and obstruction typically results in broken or discontinuous segmented
airways. These problems occur frequently in the segmentation of small airways where image
artifacts and/or noise have a relatively high impact on the detectability of small airways.
These problems are magnified in the presence of lung diseases such as chronic obstructive
pulmonary disease (COPD) or interstitial lung disease (ILD). Attempts to “smear out” image
artifacts or to reduce noise using a smoothing operation (e.g., Gaussian filters) actually
decreases the contrast between the airway wall and the lumen due to the incurred blurring.

In an attempt to robustly segment airway trees, a large number of computerized schemes
have been developed [8–31]. To take advantage of the relatively large contrast between the
air (airway lumen) and the surrounding soft tissue (airway wall), an intuitive approach to
this problem is frequently based on automatically or interactively locating one or multiple
seeds in large airway regions (e.g., trachea) and then performing a three-dimensional (3D)
region growing operation under either a fixed or an adaptive threshold [8–14]. However,
region-growing methods are frequently associated with leakage and therefore this approach
often fails to identify small airways. Regardless, due to its simplicity and efficiency, this
approach has been used in the majority of available schemes as an initial step and it is
primarily used for the detection of large airways [15]. To extract more airway generations,
additional operations that exploit intrinsic information and/or knowledge about the airway
tree structure are needed. These methods can be generally classified into five categories: (1)
knowledge or rule based methods, (2) morphological methods, (3) template matching
methods, (4) shape analysis methods, and (5) hybrid methods. The knowledge or rule based
approaches typically include prior anatomical relationships between airways and vessels in
space [16], airway topology [17], local image appearance [18], fuzzy logic [19], and
connectivity [20]. Template matching methods [21–22] use a set of predefined masks or
structures (templates), which are based on some prior knowledge of the airways, to facilitate
a search of highly correlated regions in 2D or 3D space. For example, Mayer et al. [22]
defined a set of oval rings with different radii as templates and used these to identify airways
by searching consecutive image slices. Kaftan et al. [23] used a tree-path structure as a
template for airway identification. To refine the initially detected airway tree, different
morphological operations [17, 24–27] have been used to connect (merge) disconnected 2D/
3D regions. For example, Aykac et al. [25] developed a scheme that identified airways on
single slices followed by a dilation operation to connect identified regions on consecutive
slices. Fetita et al. [26] described a connection-cost based mathematical morphological
procedure to detect airway regions. Since airways generally appear as tubular shapes,
eigenvalue analysis of the Hessian matrix of CT images has also been used to enhance and
track tubular structures in image space by analyzing the second derivatives of airway
boundaries [28–31]. In a recent study, Graham et al. [15] identified small airways by
analyzing the elliptical shape of the airways cross sections following the application of a
region growing operation. In practice, many schemes [17, 29, 32] combine region growing
with two or more of the above strategies in order to improve performance. For example,
Bartz et al. [21] introduced a hybrid method consisting of three stages, namely a 3D region
growing stage, a 2D wave propagation stage, and a 2D template matching stage.
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In this study, we present a fully automated airway tree segmentation scheme that operates by
analyzing both the principal curvatures and the principal directions of lung anatomical
structures in geometric space followed by a “puzzle game” procedure. We deal with the
wide intensity range associated with airway walls using a progressively adjusted threshold
based modeling strategy. The underlying idea is to take advantage of the fact that: (1) the
minimum curvatures of tubular regions are close to zero and (2) the principal directions
associated with minimum curvatures of tubular regions are parallel to the axes of these
regions. The performance of this scheme was tested on 95 chest CT examinations
comprising of two independent datasets. A detailed description of the scheme and a
preliminary assessment of performance follow.

II. METHODS
A. Scheme Overview

The proposed airway tree segmentation algorithm has four basic steps (Fig. 1): (1)
anatomical structure modeling; (2) principal curvature computation; (3) non-airway region
filtering; and (4) a “puzzle game” procedure acting as a “correction” operation for filtering
false identifications. Before the airway segmentation procedure commences, a lung volume
segmentation operation is applied to limit the computation space, thereby improving the
scheme’s efficiency and eliminating the possibility of erroneous identifications outside the
lung. As intensity levels of inner airway walls depicted on CT images are not fixed in value,
we used a multi-threshold (or iso-value) strategy when modeling lung anatomical structures
and repeated the airway segmentation steps at each iso-value. The union of the airways
identified at different iso-values forms the final segmented airway tree. The implementation
of these steps is presented in the following sections.

B. Lung Volume Segmentation
Due to the low intensity values of lung parenchyma regions and the high contrast with
surrounding tissue, we used a well-established and computationally efficient thresholding
operation to extract the lung volume (Fig. 2(a)). The threshold is determined adaptively
based on intensity histogram analysis of the CT images [34]. The isolated pockets of air (if
any) between the patient and the CT bed as well as image noise or artifact after thresholding
are filtered out by applying a simple size based classification rule. Unlike other lung
segmentation schemes designed for specific applications [35–37], this thresholding approach
cannot assure a smooth lung boundary and/or the inclusion of specific diseases (e.g., the
juxtapleural nodule as indicated by the arrow in Fig. 2(b)). However, this simple approach is
sufficient for our specific application because the airway regions are retained due to their
relatively low intensities.

C. Lung Anatomical Structure Modeling
Applying the Marching Cubes Algorithm (MCA) [33] to the segmented lung volume results
in three-dimensional lung anatomical structures in the form of a triangle mesh surface (Fig.
2(b)–(d)). In this study, the front faces of a surface model, whose normal vectors point to the
outside of an object (i.e., from high intensity to low intensity), are displayed in pink and the
back faces, whose normal vectors point to the inside of an object (i.e., from low intensity to
high intensity), are displayed in green. Such a lung model generally contains an extremely
large number of triangles (e.g., the model in Fig. 2(b) consists of 12,747,562 triangles). The
MCA treats eight neighboring voxels in the scalar field of the lung volume as a logical cube
and determines the isosurface along each edge of the cube by linearly interpolating the
scalar values of the voxels that form the edges. If a cube has one or more voxels with higher
or lower intensity than a predefined iso-value, this cube contributes a set of triangles. After
traversing all voxels, a triangular surface is constructed. A detailed description of the MCA
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has been described elsewhere [33]. The linear interpolation property of the MCA enables CT
examinations with different in-plane or through-plane resolutions to be processed directly
without the need for an additional reconstruction.

When applying the MCA to a scalar field, an intensity threshold (an iso-value) has to be
specified in order to define the surface boundary of interest. An example in Fig. 3 is used to
demonstrate the impact of the selected iso-value on lung anatomical structure modeling. As
the iso-value is adjusted from −950 HU to −450 HU for the same local region enclosed by
the bounding box as shown in Fig. 3(a), the inner and outer airway walls as well as other
structures (such as vessels) vary in appearance. In Fig. 3(c), the inner airway wall is visible
while vessels are not modeled due to the relatively low iso-value selected and the relatively
high intensity of the vessels. In Fig. 3(h), on the other hand, portions of the airway wall are
fused with vessels due to their similar intensity in relationship to the selected iso-value.
Since intensity levels between the airway lumen and the airway wall vary over a wide range
of values, it is impossible to pre-determine a fixed optimal iso-value for all airways.
Therefore, we used a multiple iso-value strategy (e.g., an iso-value ranging from −800 HU
to −900 HU) to fully model the airway structure.

D. Principal Curvature Computation
As a concept describing a shape in differential geometry, curvature is a measure of how a
surface or a curve “bends” at a given point and is defined in terms of the amount of bending
and the bending direction. The principal curvatures k1 and k2 are defined here as the
maximum and minimum values of the normal curvatures at a given point p, and the principal
directions e1 and e2 are defined as the directions in which the normal curvatures reach
maximum and minimum values. Given a point with a normal vector n, a local coordinate
system (u, v) perpendicular to n (or tangent to the local surface) is generated. The normal
curvature k at this point can then be expressed in a fundamental form:

(1)

where Π denotes the second fundamental tensor. The principal curvatures k1 and k2 and the
principal directions e1 and e2 can be determined by diagonalizing the symmetric matrix in
Eq. (1). A number of investigations [28–31, 38] used curvature analysis to identify lesions
and/or structures with specific shapes (e.g., airway and nodules), where the curvatures were
typically derived from the eigenvalue calculation of the Hessian matrix in image space. Due
to their discrete voxel-based representation, CT images are frequently convolved prior to
setting up the Hessian matrix with Gaussian filters that frequently suppress valuable
anatomic information as well as image artifacts or noise. In this study, we estimated the
curvatures of the anatomical structures in geometric space and exploited both the principal
curvatures and the principal directions in order to identify the airway tree and remove non-
airway regions. The MCA can faithfully model anatomical structures as geometric surfaces,
where image noise/artifacts are also included as a part of the modeling. However, proper
geometric processing can remove the latter (noise and/or artifact) without changing the
anatomical structures and their associated topology.

A number of computational geometry based methods to accurately estimate the principal
curvature at a given point on a surface have been developed [39–42]. These can be classified
into two broad categories: (1) local surface fitting [39–40], and (2) finite difference analysis
of normal vectors [41–42]. The former estimates the curvatures at a point analytically by
fitting (or parameterizing) a mathematical surface (e.g., z= ax2 + bxy + cy2 + dx + ey) using
neighboring vertices of the point of interest. The latter estimates surface curvatures based on
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a differential analysis of the relative positions of neighboring vertices. As compared with the
local surface fitting method, the finite difference method frequently exhibits inferior
accuracy, but it has high computational efficiency. Considering the large number of triangles
involved in the modeling of lung anatomical structures, we used the finite-difference
approach developed by Rusinkiewicz [41] to estimate principal curvatures and principal
directions. This method offers reasonable accuracy with a linear computational complexity
in space and time (i.e., O(N), where N is the number of vertices). Here we offer but a brief
description of our implementation.

To generate the second fundamental form in Eq. (1), Rusinkiewicz used Eq. 2, in which
finite differences of the normal vectors at each vertex are computed along the three edges of
a triangle (Fig. 4(a)), as an approximation of Eq. (1):

(2)

The normal vector no at a vertex is usually estimated as a weighted average of the normal
vectors of the m triangles adjacent to that vertex:

(3)

where n is the face normal vector of the ith adjacent triangle, and Ai is the area of the ith

adjacent triangle.

Thereafter, a least square solution is applied to solve for the resulting second fundamental
form (Eq. (2)). We used the LDL factorization to obtain a numerical solution to the above
linear equations. Since A is symmetric and positive, we solved for AX = B by computing the
LDL factorization A = LLT, then solved LY = B for Y, and finally LTX=Y for X. Finally,
with consideration for the contributions of the neighboring vertices to the curvatures at a
given vertex, the curvature tensor at each vertex was adjusted by averaging the curvature
tensors of its 1-ring neighboring triangles (Fig. 4). The average weights are determined by
the “Voronoi areas” rather than the geometric areas of the neighboring triangles as detailed
in [41]. Given a triangle (e.g., the vi vj vj+1 in Fig. 4), its Voronoi area is computed as:

(4)

where α represents the angle between s1 and s3, and β represents the angle between s2 and
s3.

To assure an accurate estimation of curvatures, we first smoothed the triangle mesh of the
modeled anatomical structures using Laplacian smoothing [43] before applying the above
curvature estimation approach. As illustrated in Fig. 4(b), Laplacian smoothing adjusts the
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location of each mesh vertex vi to the geometric center  of its neighboring vertices vj (j∈
[0,5]) without any modification of the topology of the triangle mesh itself:

(5)

where Aj denotes the area of the jth adjacent triangle of the vertex vi. The computational
complexity of Laplacian smoothing is linear to the number of triangles. This smoothing
operation is often performed iteratively and tends to progressively shrink the size of an
object and flatten its surface. Thus, small isolated artifacts tend to degenerate into points
after iterations, spherical surfaces (e.g., nodules) tend to become more “spherical”, and
tubular surfaces (e.g., vessels) along the axial direction tend to become flatter (Fig. 4(c)–
(d)). Unlike Gaussian filtering, which is performed in image space and may “smooth out”
anatomic information and image artifacts, Laplacian smoothing does not meaningfully
change the number of triangles or the topology of a triangle mesh. Therefore, the shape
information of lung structures is well persevered while artifacts and image noise tend to be
reduced as a result of Laplacian smoothing. The example in Fig. 5 demonstrates the
performance of the Rusinkiewicz’s method in estimating principal curvatures and principal
directions. In the field of computer graphics, there have been a number of algorithms
developed for this purpose such as curvature flow [44] or bilateral de-noising [45]. These
approaches may achieve better performance than the Laplacian smoothing approach in terms
of surface smoothing. However, due to the very large number of triangles involved in lung
modeling, the Laplacian smoothing operation offers higher efficiency as compared with
other smoothing algorithms, and it provides a sufficiently robust performance for our
purpose.

E. Non-Airway Region Filtering
The general shapes of the soft tissues in human lungs can be reasonably represented by three
basic categories, namely spheres (e.g., nodules), planes (e.g., fissures), and cylinders (e.g.,
vessels and airways). The basic properties of the principal curvatures and the principal
directions associated with these three general shapes are summarized in Table 1. In general,
the minimum curvature at any point on a plane or a cylinder is zero but it has non-zero
values at any point on a sphere. For concave cylinders or spheres, the maximum curvatures
have negative values, while for convex cylinders and spheres the maximum curvatures have
positive values. Therefore, knowledge of curvatures should be useful in differentiating these
basic shapes. Unfortunately, these properties are quite sensitive to local surface
perturbations due to the second derivatives involved. Hence, to reliably identify airways that
appear as concave cylinders, we explore both the principal curvatures and the principal
directions at each point on a given surface. As the example in Fig. 5 shows, the principal
directions in the neighborhood of a point on a cylinder are typically parallel to each other,
while those on a sphere or a plane are randomly distributed.

Non-airway regions were removed in our implementation through the identification of
vertices that meet one of the following empirically predetermined criteria: (1) Cmax≥−0.05
(unit: 1/mm); (2) |Cmax| ≥ 0.2 (unit: 1/mm); and (3) Amax > 30°, where Amax is the largest
angle difference in the minimum principal directions among the 1-ring vertices. The first
criterion filters out convex regions as well as plane regions. The second and the third criteria
assure that remaining regions have cylindrical shapes. The primary intent behind the above
parameter selection is to identify as many as possible concave cylindrical regions of interest
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(airways) while maintaining a reasonable number of false positive identifications. The
example in Fig. 6(b) shows the results after applying the three criteria to a three-dimensional
lung model of a chest CT examination displayed in Fig. 6(a). It can be seen that, as intended,
the majority of non-airway regions were discarded.

Curvature-based filtering will result in a number of false positive identifications that
typically appear as small regions (Fig. 6(b)) due to the existence of surface perturbations.
Although the application of a simple size criterion would likely filter out many of these
regions, there is no unique fixed threshold for robust filtering of non-airway regions. As
airway regions of interest are cylindrical in shape they appear as circles when projected
along the axis and other non-airway regions could be treated as small plane patches due to
their small size (Fig. 7(e)–(f)). Therefore, we developed a normal vector distribution based
method to retain regions with a tubular shape and discard all other regions. Given an isolated
surface patch that could be any shape, a direction d is determined by the average of the
minimum curvature directions e2i of all vertices of the surface patch in question:

(6)

where n represents the number of vertices that a surface patch contains. This surface is then
transformed in a manner that d is aligned with the z-axis of the global coordinate system
(Fig. 7). Following this transformation a tubular region, as shown in Fig. 7(a), typically has
a normal vector distribution (not vertex distribution) in all the four octants (Fig. 7(c)), while
a plane surface does not (Fig. 7(d)). Hence, the normal vector distribution can be used to
differentiate tubular regions from planar patches. Shown in Fig. 7(g)–(h) are the results after
applying a normal distribution based filtering operation to the initially identified airways in
Fig. 6(b) and the locally enlarged region in Fig. 7(f).

F. False Positive /Negative Reduction Using a “Puzzle Game”
The initial non-airway filtering divides the lung model denoted as S (Fig. 6(a)) into two sets,
namely the “airway” set A (Fig. 6(b)) and the “non-airway” set B (Fig. 6(c)). For brevity, we
show in figure 8 results of Fig. 6(b) and Fig. 6(c) after normal vector distribution based
filtering for the trachea regions. In both sets, there are regions that could be misclassified.
As demonstrated by the local enlargement in Fig. 6(a), the “holes” appearing on the trachea
indicate the existence of false negative regions. These are primarily caused by the fact that
airways are not exactly cylindrical in shape everywhere. Therefore, local regions as
indicated by the “holes” are actually incorrectly removed from the “airway” set. These
missing regions (holes) in the airway set typically appear as isolated matching regions in the
non-airway set B shown in Fig. 8(b). Similarly, some non-airway regions with local shapes
that are similar to a concave cylinder could be incorrectly classified as airways (i.e., false
positive identifications). Because the initially modeled lung anatomical structure (Fig. 6(a))
is represented by a completely enclosed surface, the misclassified isolated regions in either
set (A or B) would have corresponding holes in the other set. Hence, by investigating the
“matched” regions between the sets using a “puzzle game” we can reduce the false positive
and false negative identifications.

This “puzzle game” consists of a forward operation and a backward operation. The forward
operation reduces the false negative identifications by determining which isolated regions in
the non-airway set (B) “match” holes in the airway set (A). First, we ranked all isolated
regions by the size of surface area and identified the two largest regions in A and B, and
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these two regions were excluded from the game. The remaining regions in set B were tested
one by one in a surface area size decreasing order. Given an isolated region in set B, it is
assumed to belong in set A if two criteria (both) are met: (1) it actually shares edges with a
region in set A and (2) it has a smaller geometric area than the connected region in set A.
The backward operation reduces the false positive identifications by determining which
isolated regions in the airway set (A) actually belong in the non-airway set (B). In the
backward operation, we filtered out isolated regions located on the lung boundary, since it is
assumed to be an impossibility for regions located inside the lung volume that appear as
concave cylindrical shapes to represent non-airway regions. Shown in Fig. 8(c) and 8(d) are
the updated results after applying the “puzzle” game to the airway set (A) and the non-
airway set (B) in Fig. 6.

G. Airway Region Mapping from Geometric Space to Image Space
After a round of airway identification was completed at a specific iso-value (e.g., −850 HU),
the resulting airway tree was represented as a geometric surface in a triangle mesh. Before
repeating the above steps at different iso-values, we mapped the identified airway tree from
the geometric space to the CT image space. The motivation for this mapping arises from the
technical difficulty in computing the union of airway trees identified at different thresholds
in geometric space because different iso-values may lead to different airway tree boundaries
as a result of the different lung anatomical structure models. When segmented airway trees
at different iso-values are mapped onto the CT image space, their union can be computed by
a simple summation of the mapped airway voxels. In addition, this mapping enables a direct
visualization of the performance of the airway tree segmentation superimposed on the
corresponding CT images.

Although there are a number of algorithms developed for “voxelization” of a triangle mesh
object, many of them require a water-tight (or continuous) surface and these algorithms
often have a high computational cost in time and space. Since the identified airway trees in
this scheme frequently had holes that needed to be filled in, the mapping operation was
relatively complicated. Considering that airways appear as concave cylindrical shapes, we
took advantage of the shrinking effect of the Laplacian smoothing operation. Repeating the
Laplacian operation on the identified airways progressively shrinks their size (Fig. 4(c)–(e)).
However, the Laplacian operation does not change the topology or the number of triangles
in a triangle mesh surface; hence, this repetitious process progressively increases the
“triangle density” in the triangle mesh and thereby slowing the shrinking process. To
accelerate the process, we adaptively adjusted the “triangle density” by performing a simple
“ring-collapse” operation on the triangle mesh, after each Laplacian operation. The ring-
collapse operation merges the 1-ring vertices of a vertex vi onto a single vertex vi (Fig. 9)

under the condition that the distance between a vertex vi and the centroid  of its 1-ring, is
smaller than a predefined value (threshold). The threshold in this case should be smaller than
the size of a voxel so that this sweeping operation does not “jump over” any voxel within the
airway volume. In this study, we empirically set the threshold as one fourth of the size of a
voxel. The computational complexities in time and space of both the Laplacian operation
and the edge-collapse operation are linear with respect to the number of the vertices
contained in an airway tree. Hence, the mapping of airways from the geometric space onto
the CT image space is relatively efficient. Shown in Fig. 10 are the results of mapping the
identified airway tree onto the CT images.

H. Iterative Airway Identification Based On Multiple Thresholds
As explained previously, there is a need to overcome the negative impact of the selected iso-
values on the lung anatomical structure modeling (Fig. 3). This is important in particular in
regard to airway regions where partial volume effects may cause fusion with other non-
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airway regions. Therefore, we repeated the airway identification process at different iso-
values. The examples in Fig. 11 show the impact of different iso-values on the identification
of an airway tree. When the iso-value is set at a high value, surfaces of larger airways (e.g.
trachea) become less smooth and curvature analysis may remove some of these regions,
ultimately causing an incomplete identification of these “easier” airways. Similarly, the
example in Fig. 3 shows the possible effect of the iso-values on modeling of small airways.
These demonstrate that a lower iso-value typically results in the identification of smaller
airways as shown in Fig. 11. The union of these airway trees in image space is shown in Fig.
12(a) with a set of empirically set threshold values ranging from −800 HU to −900 HU at
10HU increments.

I. Performance Measures
It is extremely difficult if not impossible to manually and accurately trace and mark the
three-dimensional airway trees depicted on CT images and use these as a gold standard for
evaluation purposes. As important, there are no datasets that are accepted as a gold standard
for this purpose. Therefore, as summary performance measures we provide objectively
determined performance measures obtained on a defined dataset, namely the total tree length
(excluding the trachea), the branch number, and the generation number. To enable
computation of the summary measures, we used a skeletonization algorithm developed by
Cornea et al. [46] to automatically extract the centerlines and identify the branch points of
segmented airway trees. The example in Fig. 12 shows the results after applying this
algorithm to an identified airway tree in a form proposed for application in virtual
bronchoscopy. The detailed description of this algorithm was reported elsewhere [46]. Given
that human airways typically appear as a bifurcating tree, we defined a generation as a
continuous region starting and ending at two distinct bifurcations and used the dichotomic
representation to count the airway generation number. Unlike other approaches, we did not
compute measures related to leakage (e.g., leakage volume) as there is no leakage issue per
se associated with our proposed methodology. Three measures were computed automatically
using the airway tree centerline extraction scheme [46] with mean values and standard
deviations calculated for all test cases. We also investigated the impact of CT image slice
thickness on performance measures reported here. To do so, we computed all performance
measures on clinically ascertained CT examinations that had been reconstructed with
different slice thicknesses at 0.625 mm, 1.25 mm, and 2.5 mm.

III. EXPERIMENTS AND RESULTS
A. Testing CT Dataset

We selected a dataset of 75 chest CT examinations acquired on 45 participants in a COPD
(chronic obstructive pulmonary disease) screening cohort at the University of Pittsburgh
Medical Center. All subjects had relatively low levels of airflow obstruction and/or visually
depicted emphysema noted during interpretations of their CT examinations. These
examinations were performed under an Institutional Review Board (IRB) approved protocol
using a LightSpeed VCT 64-detector scanner (GE Healthcare, Waukesha, WI) with subjects
holding their breath at end inspiration. CT data were acquired using a helical technique at a
pitch of 0.969, 120 kVp, 0.4 sec gantry rotation, and 250 mAs (or 100 mAs). The CT images
were represented using a 512 × 512 pixel matrix with a pixel dimension ranging from 0.549
to 0.738 mm, depending on the participant’s body size. The detector configuration was 32 ×
0.625 mm. We note that our primary objective is not to comprehensively assess the quality
of segmentation as a function of slice thickness. However, lower resolution CT
examinations with slice thicknesses of 1.25 mm and 2.5 mm are widely used in routine
clinical practice. In addition, as a part of other unrelated studies we had acquired
examinations reconstructed at different slice thicknesses for other purposes. Therefore we
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included these examinations in the performance assessment and investigated preliminarily
the impact of CT slice thickness on the performance of our scheme. The examinations in our
dataset were divided into two groups. The first group included 30 examinations (on 30
participants, i.e., Case #1 - Case #30 in Table II) that were reconstructed to encompass the
entire lung field using the GE “standard” kernel at 0.625 mm slice thickness and at 0.625
mm increments (namely, no slice overlapping). The second group includes 45 examinations
(15 participants, i.e., Case #31 - Case #45 in Table II) that were reconstructed using the
“bone” kernel with two additional slice thicknesses: (1) 1.25 mm slice thicknesses with 1.25
mm increments and (2) 2.5 mm slice thickness with 2.5 mm increments. We note that none
of the examinations in the testing dataset had been used in any intermediate assessments
and/or visual evaluations of the scheme during development.

We are aware of the fact that our dataset is unique and our results, when the scheme is
applied to our own dataset, can not be directly compared with other methods. Therefore, we
applied the developed scheme to the publicly available dataset of 20 test cases that were
originally designed to compare performance of different segmentation algorithms (http://
image.diku.dk/exact/index.php) [47] and provide the same summary measures for these
cases. A detail description of these cases was presented in [47].

B. Experimental Results
The three performance measures in terms of total tree lengths (excluding the trachea),
generation numbers, and branch numbers resulting from the application of our segmentation
scheme to each of the 75 chest CT examinations are summarized in Table II. As the
segmentation results may include disconnected airways (Fig. 12-Fig. 13), we also calculated
the number of “isolated” branches for each examination. For all examinations with a slice
thickness of 0.625 mm (45 examinations), the average total airways length of the segmented
airway trees per examination was 261.8±92.9 cm, the average number of airway tree
generations per examination was 9.2±1.0, and the average number of segmented airway tree
branches per examination was 173.2±58.1. Among these airway branches, the number of
isolated (non-connected) branches was 6.1±4.0 per examination. As compared to
examinations with a slice thickness of 0.625 mm, the performance of airway segmentation
decreased somewhat in examinations with a slice thickness of 1.25 mm. The average
airways total length per examination decreased in the subset of 15 examinations from
259.2±106.1 cm to 214.8±88.9 cm. When the slice thickness was increased to 2.5 mm, the
segmentation performance deteriorated significantly, namely the average airways total
length decreased to 104.7±44.6 cm. The average airway total length per examination in the
two subsets of cases reconstructed with different kernels, namely 263.2±87.5 cm and
259.2±106.1 cm, suggest that there was but a small difference in performance between
segmentation of examinations reconstructed with a “standard” kernel and those
reconstructed with a “bone” kernel. There was no simple direct relationship between the
generation numbers and the average total airway lengths, and the average total length and
branch number in an airway tree seemed to reflect the quality of segmentation performance
more accurately and directly than did the generation number. To visually demonstrate the
performance of the scheme, we listed a set of segmentation results from each group with the
“high”, “average”, and “poor” levels of performance. Several examples are also presented to
illustrate the impact of slice thickness on the performance of our airway tree segmentation
scheme.

When the scheme was applied “as is” to the publicly available test dataset of 20 cases our
average airways total length, average number of airway tree generations per examination
and the average number of segmented airway tree branches per examination were
188.5±102.5 cm, 8.2±1.2 generations, and 120.1±67.4 segmented branches, respectively
(Table III). The screenshots of the segmentation results are shown in Appendix.
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IV. DISCUSSION
We developed a computerized scheme to automatically segment the airway tree in the
human lungs as depicted on chest CT examinations and tested its performance on 75 chest
CT examinations with different slice thicknesses as well as on a small publicly available
dataset consisting of 20 examinations. This scheme has a number of advantages and unique
characteristics: 1) unlike previous approaches, this scheme does not trace the paths of
airways; hence, there are no leakage related issues; 2) with but limited changes this scheme
can be easily generalized to extract other tubular type structures. As shown in Fig. 14,
simply changing the signs of the curvatures used for filtering purposes and adjusting the
intensities of swept voxels could lead to the identification of the vascular tree; 3) the three-
dimensional surface representation of the identified airways makes it reasonably intuitive
and enables an automated, objective measurement of the geometric properties of segmented
airways (e.g. airway volume, lumen area, etc.). Most important, the surface representation
used here makes it possible to use a “puzzle game” to partially correct for false negative
regions. Our analysis showed that isolated regions were typically caused by either partial
volume effect or airway obstruction. Although several previously developed morphological
operations [17, 24–27] could be used to “bridge” isolated regions, these approaches may not
always depict correctly the morphological properties of the “bridged” airways.

The unavailability of the “truth” makes it difficult to assess the performance of an airway
segmentation scheme. Several studies [16, 22, 25, 26] evaluated performance of their own
airway segmentation schemes by comparing scheme results with the number of bronchial
sections manually traced by one or multiple radiologists. However, this is an extremely
time-consuming task that is prone to observer/rater errors, in particular in examinations that
may include as many as 400–600 slices per case. Lo et al. [47] assembled a “reference
standard” by computing the union of the airway segmentations obtained from multiple
schemes developed by different teams with a visual verification by an expert observer.
Seven measures were computed in [47] to assess the performance of an airway segmentation
scheme. When applied to the publicly available test dataset (EXACT’09), we found that our
results were competitive and quite satisfactory. We note that the overall average
performance of the scheme on the EXACT dataset is somewhat lower in terms of summary
measures, than that when applied to our own dataset. This stems primarily from the fact that
the EXACT set includes lower dose (higher noise) examinations and includes a different of
case mix depicting abnormalities at different severity levels. We summarize the performance
of several methods developed previously in Table IV as an indirect way to compare the
performance of our scheme with other approaches. The size of the testing datasets used for
this purpose ranged from 8 examinations to 44 examinations and the evaluation methods
used varied significantly among these studies. As compared with these methods, our scheme
tended to be comparable to or better than most in terms of airway lengths and the number of
branches, albeit we emphasize that our results are based on a different testing dataset.

We recognize that the scheme described in this study has a relatively higher computational
cost in both absolute time and space, requiring approximately 30 minutes and 1.5 GB
memory for a desktop PC (AMD Athlon™ 64×2 Dual 2.11 GHZ central process and 4 GB
RAM) to identify a complete airway tree depicted in a typical high resolution chest CT
examination. Fortunately, with the exception of real time bronchoscopy related applications,
currently airway identification is typically performed offline. However, the computational
complexities in space and time of the primary steps involved in the airway segmentation,
namely (1) anatomical structure modeling, (2) principal curvature calculation, (3) non-
airway region filtering, and (4) “puzzle game” execution, are linear (O(n)) in terms of the
number n of the triangles in the lung model. The absolute high computational cost is
attributed to the huge number of triangles in the lung model (more than 10 millions
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triangles) and the repetition of the whole procedure at multiple thresholds. Hence, potential
for improving efficiency lies in reducing the number of triangles forming the lung model
without changing the geometric shape. We are investigating ways to improve efficiency of
this scheme using triangle mesh simplification. In addition, as the scheme identifies airways
in the same manner at different iso-values, efficiency of the algorithm could be improved
significantly when using more modern computers with multiple processors. Although our
dataset included cases that were selected from a COPD screening cohort and some of the
examinations depicted airway disease, such as bronchiectasis (Fig. 16), we did not perform a
comprehensive quantitative assessment of the impact of the presence of different lung
diseases with varying severity levels on segmentation performance. This is the focus of a
future study but at this time is beyond the scope of the current study. Finally, at the
bifurcating regions where the next generation of airways originates and the airways are close
to each other, the scheme may produce small junctions due to partial volume effects and the
use of the multiple iso-values when modeling the airways.

V. CONCLUSION
A fully automated computerized scheme was described in this study to segment the airway
tree depicted on CT images. The identification process was primarily achieved by applying a
computational differential geometry method to the entire lung region/volume at multiple
thresholds or iso-values. The proposed approach has several advantages such as
generalizability, simplicity, reliability, and it is relatively insensitive to image noise or
artifacts. A preliminary study using a set of clinical chest CT examinations acquired from a
COPD screening cohort has verified its feasibility and robustness in both normal and
pathological cases.
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APPENDIX

Fig. 17.
Screenshots of the segmentation results on the 20 publicly available test cases from
EXACT’09.
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Fig. 1.
Schematic flowchart of the airway segmentation algorithm
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Fig. 2.
An example of the lung volume segmentation using the adaptive thresholding operation and
its three-dimensional surface model: (a) shows the segmented lung volume in overlay (red),
(b) shows the three-dimensional model of (a) at an iso-value of −650 HU, (c) is a “cut-out”
version of (b), and (d) shows an local enlarged region indicated by the box in (c). The arrow
in (b) indicates a juxtapleural nodule.
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Fig. 3.
An example demonstrating the impact of the iso-value (threshold) on the lung anatomical
structure modeling: (a) shows a CT examination, (b) shows the enlarged version of the
region indicated by a box in (a), and (c)–(h) show the anatomical structures within the
indicated region in (b) as modeled at different iso-values, i.e., −950 HU, −850HU, −750 HU,
−650 HU, −550 HU, and −450 HU, respectively. The tubular regions in (c) indicate the
inner airway wall regions depicted on the image in (b).
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Fig. 4.
An illustration of the Rusinkiewicz curvature estimation (a) and the Laplacian smoothing (b)
using a 1-ring mesh. In (a), (u, v) is the local coordinate system of the triangle in bold; in

(b), the vertex  is the centroid for the 1-ring triangles around vi. The smoothing and
shrinking effects after applying the Laplacian operation to the structure in (c) 5 and 20 times
are shown in (d) and (e), respectively.
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Fig. 5.
An example demonstrating the performance of the Rusinkiewicz’s method in estimating the
principal curvatures and the principal directions: (a) shows local lung anatomical structures
with three basic shapes, namely planar, spherical, and cylindrical, (b) and (c) show color-
coded visualizations of the maximum and the minimum curvatures respectively, (d) and (e)
depict the maximum and the minimum curvature directions respectively for local regions
with typical shapes.
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Fig. 6.
The lung surface model (a) at an iso-value of −850 HU is subdivided into an “airway”
component (b) and a non-airway component (c), following the application of the set of
curvature filtering criteria.
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Fig. 7.
Illustration of the small planar region filtering procedure: (a) shows a cylindrical shape, (b)
shows a plane like surface patch, (c) and (d) show the normal vector distributions of a
cylindrical shape and the plane like patch in (a) after aligning their averaged minimum
curvature directions with the z-axis, (e) shows tubular regions and surface patch regions
using the locally enlarged region in Fig. 6(b), (f) shows the local region identified by the
arrow in Fig. 6(b), (g) shows the airway after the application of the filtering operation, and
(h) shows the “cleaned up” result for the region shown in (f).
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Fig. 8.
(a) and (b) show local enlargements of trachea regions after applying the normal vector
distribution based filtering to regions shown in Fig. 6(b) and Fig. 6(c); (c) and (d) show the
airway set (A) and non-airway set (B) after applying the “puzzle game” operation to the
regions in Fig. 6(b) and Fig. 6(c). The arrows indicate the “holes” or missing airway regions.
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Fig. 9.
Illustration of the ring-collapse operation: (a) shows a 2-ring triangle mesh, (b) shows the
collapsed triangle mesh of (a) where the dashed edges in (b) are removed from the triangle
mesh, and (c) and (d) show the local region indicated by the box in Fig. 4(c) before and after
the ring-collapse operation.
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Fig. 10.
An example of the mapping of the identified airway tree from the geometric space onto the
CT image space: (a) and (b) shows a coronal view and a sagittal view of the mapped results
and the superimposed geometric airway tree, respectively.
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Fig. 11.
Airway trees are shown (bottom row) after performing the segmentation algorithm on the
three-dimensional lung anatomical structures modeled at different iso-values: (a) −750HU,
(b) −800 HU, (c) −880 HU, and (d) −900 HU. The airway tree identified at an iso-value of
−850 HU is shown in Fig. 10. For better visualization, only a fraction of the lung anatomical
structures are displayed.
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Fig. 12.
Airway centerline extraction and labeling: (a) shows the segmented airways; (b) shows the
centerline and branch points of (a); and, (c) shows a mixed rendering of (a) and (b) at
different locations and from different perspectives. The regions in light green in (c) indicate
centerlines and regions in green represent inner airway walls.
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Fig. 13.
Examples of airway tree segmentations selected from the first group (i.e., Case #1 - Case
#30) with the better performance (the left column: Cases #23 and #27), mid-level
performance (the middle column: Cases #5 and #18), and worst performance (the right
column: Cases #12 and #20). All examinations have a slice thickness of 0.625 mm and were
reconstructed with a “standard” kernel.
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Fig. 14.
Examples of airway tree segmentations selected from the second group (i.e., Case #31 -
Case #45) with the better (“high”) performance (the left column: Cases #45), mid-level
(“average”) performance (the middle column: Case #40), and “poor” performance (the right
column: Case #39). These examinations were reconstructed with “bone” kernel and have
three different slice thickness of 0.625 mm (the top row), 1.25 mm (the mid row), and 2.5
mm (the bottom row), respectively.
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Fig. 15.
An example of the use of the developed scheme to segment vascular tree depicted on CT
images: (a) shows the segmented three-dimensional vascular tree, and (b) shows a mixed
rendering of (a) superimposed on the corresponding CT images.
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Fig. 16.
Two examples of the airways segmentations results is severely diseased cases: (a) shows an
examination (Case #25) with bronchiectasis, (b) shows the segmented airway tree of the
examination in (a); (c) shows an examination (Case #2) with severe COPD displayed at a
threshold of −950 HU, and (d) shows the airway tree as segmented from the examination in
(c).
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Table III

Summary of airway segmneation performance levels for the 20 test cases in exact’09 (http://http://
image.diku.dk/exact/)

Case Total Tree Length (cm) Number of Generations Number of Branches (Isolated Branches)

21 99.3 8 (0–7) 70 (4)

22 220.9 9 (0–8) 152 (5)

23 151.4 8 (0–7) 96 (5)

24 206.2 8 (0–7) 123 (3)

25 252.0 8 (0–7) 147 (3)

26 110.8 5 (0–4) 70 (0)

27 83.8 7 (0–6) 54 (3)

28 106.0 8 (0–7) 71 (4)

29 143.6 9 (0–8) 108 (2)

30 106.2 8 (0–7) 66 (6)

31 155.8 8 (0–7) 93 (2)

32 136.4 10 (0–9) 75 (5)

33 123.3 8 (0–7) 85 (0)

34 260.5 9 (0–8) 164 (3)

35 264.8 9 (0–8) 176 (2)

36 471.7 10 (0–9) 314 (11)

37 165.9 7 (0–6) 87 (3)

38 65.5 7 (0–6) 40 (1)

39 349.4 10 (0–9) 221 (7)

40 296.7 9 (0–8) 190 (4)

Mean 188.5±102.5 8.2±1.2 120.1±67.4 (3.7±2.5)
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