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Social norms and institutions are mechanisms that facilitate co-
ordination between individuals. A social innovation is a novel
mechanism that increases the welfare of the individuals who
adopt it compared with the status quo. We model the dynamics
of social innovation as a coordination game played on a network.
Individuals experiment with a novel strategy that would increase
their payoffs provided that it is also adopted by their neighbors.
The rate at which a social innovation spreads depends on three
factors: the topology of the network and in particular the extent
to which agents interact in small local clusters, the payoff gain of
the innovation relative to the status quo, and the amount of
noise in the best response process. The analysis shows that local
clustering greatly enhances the speed with which social innova-
tions spread. It also suggests that the welfare gains from in-
novation are more likely to occur in large jumps than in a series of
small incremental improvements.
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Social institutions are forms of capital that, together with
physical and human capital, determine the rate of economic

growth. Notable examples include private property rights and
legal systems to protect them, accounting methods, forms of
corporate governance, and the terms of economic contracts.
However, in contrast with the literature on technological prog-
ress, relatively little is known about the ways in which new
institutions are created and how they become established within
a given social framework. In this paper I discuss one approach
to this problem using methods from evolutionary game theory.
In the abstract, an institution can be viewed as a set of rules

that structure a given type of interaction between individuals (1).
These rules can be simple coordination devices, such as which
hand to extend in greeting or who goes through the door first. Or
they can be very elaborate, such as rituals of courtship and
marriage, cycles of retribution, performance criteria in employ-
ment contracts, and litigation procedures in the courts. We want
to know how a particular set of rules becomes established as
common practice and what process describes the displacement of
one set of rules by another.
The viewpoint we adopt here is that new norms and institu-

tions are introduced through a process of experimentation by
individuals and that the value of adoption by a given individual is
an increasing function of the number of his neighbors who have
adopted. Under certain conditions that we discuss below, this
trial-and-error process will eventually trigger a general change in
expectations and behaviors that establishes the new institution
within society at large. However, it can take a very long time for
this to happen even when the new way of doing things is superior
to the status quo.
One reason for this inertia is lack of information: it may not

be immediately evident that an innovation actually is superior to
the status quo, due to the small number of prior instances and
variability in their outcomes. Thus, it may take a long time for
enough information to accumulate before it becomes clear that
the innovation is superior (2). A second reason is that an inno-
vation as initially conceived may not work very well in practice; it
must be refined over time through a process of learning by doing
(3). A third reason is that social innovations often exhibit in-
creasing returns. Indeed this property is characteristic of social

innovations, because they require coordinated change in expect-
ations and behaviors by multiple individuals. For example, an
individual who invents a new form of legal contract cannot
simply institute it on his own: First, the other parties to the
contract must enter into it, and second, the ability to enforce the
contract will depend on its acceptance in society more generally.
Institutions exhibit strongly increasing returns precisely because
of their function as coordination technologies. This property is of
course not limited to social innovations; it is also a feature of
technological innovations with positive network externalities (4–
6), and the results in this paper apply to these situations as well.
The increasing returns feature of social innovation has im-

portant implications for the dynamics governing institutional
change. Of particular relevance is the social network that governs
people’s interactions. The reason is that, when a social in-
novation first appears, it will typically gain a foothold in a rela-
tively small subgroup of individuals that are closely linked by
geography or social connections. Once the new way of doing
things has become firmly established within a local social group,
it propagates to the rest of society through the social network.
Thus, a key determinant of the speed with which institutional
change occurs is the network topology and in particular the extent
to which interactions are “localized”.
The relationship between speed of diffusion and network

structure has been investigated in a variety of settings. One branch
of the literature is concerned with dynamics in which each agent
responds deterministically to the number of his neighbors who
have adopted the innovation. From an initial seeding among a
subset of agents, the question is how long it takes for the inno-
vation to spread as a function of network structure (7–11). A
second branch of the literature explores dynamics in which
agents respond to their neighbors’ choices probabilistically; that is,
actions with higher expected payoffs are more likely to be chosen
than actions with low expected payoffs. Here the question is how
long it takes in expectation for the innovation to spread in the
population at large (12–15). The rate of spread hinges on topo-
logical properties of the network that are different from those
that determine the speed of convergence in the nonstochastic
case. A third branch of the literature examines the issue of how
the network structure itself evolves as agents are matched and
rematched to play a given game (16–19).
In this paper we assume that agents adjust their behavior

probabilistically and that the network structure is fixed. In con-
trast to earlier work in this vein, however, we emphasize that it is
not only the network topology that determines how fast an in-
novation spreads. Rather, the speed depends on the interaction
between three complementary factors: i) the payoff gain repre-
sented by the innovation in relation to the status quo; ii) the
responsiveness or rationality of the agents, that is, the probability
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that they choose a (myopic) best response given their infor-
mation; and iii) the presence of small autonomous enclaves where
the innovation can gain an initial foothold, combined with
pathways that allow the innovation to spread by contagion once
it has gained a sufficient number of distinct footholds. We also
use a somewhat subtle notion of what it means for an innovation
to “spread quickly”. Namely, we ask how long it takes in expec-
tation for a high proportion of agents to adopt the innovation
and stick with it with high probability. This latter condition is
needed because, in a stochastic learning process, it is quite pos-
sible for an innovation to spread initially, but then go into reverse
and die out. We wish to know how long it takes for an innovation
to reach the stage where it is in widespread use and continues to
be widely used with high probability thereafter.
The main results of this paper can be summarized as follows.

First we distinguish between fast and slow rates of diffusion.
Roughly speaking, an innovation spreads quickly in a given class
of networks if the expected waiting time to reach a high level of
penetration and stay at that level with high probability is bounded
above independently of the number of agents; otherwise the in-
novation spreads slowly. Whether it spreads quickly or slowly
depends on the particular learning rule used, the degree of ra-
tionality of the agents, the gain in payoff from the innovation, and
the structure of the network. In the interest of keeping the model
simple and transparent, we restrict our attention to situations
that can be represented by a two-person coordination game with
two actions—the status quo and the innovation. Although this
assumption is somewhat restrictive, many coordination mecha-
nisms are essentially dyadic, such as principal-agent contracts, the
division of property rights between married couples, and rules
governing bilateral trade. We also focus mainly on log-linear
response processes by individuals, because this class of rules is
particularly easy to work with analytically. Among the key find-
ings are the following:

1. If the agents’ level of rationality is too low, the waiting time
to spread successfully is very long (in fact it may be infinite)
because there is too much noise in the system for a substan-
tial proportion of the agents to stay coordinated on the in-
novation once it has spread initially. However, if the level of
rationality is too high, it takes an exponentially long time in
expectation for the innovation to gain a foothold anywhere.
(Here “rationality” refers to the probability of choosing a
myopic best response to the actions of one’s neighbors. Un-
der some circumstances a forward-looking rational agent
might try to induce a change in his neighbors’ behavior by
adopting first, a situation that is investigated in ref. 20.)
Hence only for intermediate levels of rationality can one
expect the waiting time to be fast in an absolute sense and
to be bounded independently of the number of agents. In
this respect the analysis differs substantially from that in
Montanari and Saberi (15).

2. Certain topological characteristics of the network promote
fast learning. In particular, if the agents fall into small
clusters or enclaves that are mainly connected with each
other as opposed to outsiders, then learning will be fast,
assuming that the level of rationality is neither too low nor
too high. One reason why clustering may occur in practice
is homophily—the tendency of like to associate with like
(9, 21). Moreover, recent empirical work suggests that some
behaviors actually do spread more quickly in clustered net-
works than in random ones (22). However, not everyone has
to be contained in a small cluster for learning to be fast: It
suffices that the innovation be able gain a foothold in a subset
of clusters from which it can spread by contagion.

3. For convergence to be fast, it is not necessary for the agents
to be contained in enclaves that are small in an absolute
sense; it suffices that everyone be contained in a subgroup of

bounded (possibly large) size that has a sufficiently high
proportion of its interactions with other members of the
group as opposed to outsiders. Various natural networks
have this property, including those in which agents are em-
bedded more or less uniformly in a finite Euclidean space
and are neighbors if and only if they are within some spec-
ified distance of one another. (This result follows from
Proposition 2 below; a similar result is proved in ref. 15.)

4. The payoff gain from the innovation relative to the status
quo has an important bearing on the absolute speed with
which it spreads. We call this the advance in welfare repre-
sented by the innovation. If the advance is sufficiently large,
no special topological properties of the network are re-
quired for fast learning: It suffices that the maximum degree
is bounded.

5. An innovation that leads to a small advance will tend to take
much longer to spread than an innovation with a large ad-
vance. A consequence is that successful innovations will
tend to occur in big bursts, because a major advance will-
tend to overtake prior innovations that represent only minor
advances.

Model
Let Γ be a graph with vertex set V and edge set E, where the
edges are assumed to be undirected. Thus, E is a collection of
unordered pairs of vertices {i, j}, where i ≠ j. Assume that there
are n vertices or nodes. Each edge {i, j} has a weight wij = wji > 0
that we interpret as a measure of the mutual influence that i
and j have on one another. For example, wij may increase the
closer that i and j are to each other geographically. Because we
can always assume that wij = wji = 0 whenever {i, j} is not an
edge, the graph Γ is completely specified by a set V consisting of
n vertices and a symmetric nonnegative n × n matrix of weights
W = (wij), where wii = 0 for all i.
Assume that each agent has two available choices, A and B. We

think of B as the status quo behavior and A as the innovative be-
havior. The state of the evolutionary process at time t is a vector xt

∈ {A, B}n, where xti is i’s choice at time t. Let G be a symmetric
two-person game with payoff function u(x, y), which is the payoff
to the player who chooses x against an opponent who chooses y.
We assume that u(x, x) > u(y, x) and u(y, y) > u(x, y); that is, G is
a coordination game. The game G induces an n-person network
game on Γ as follows: The payoff to individual i in any given pe-
riod results from playing the game against each of his neighbors
once, where i’s current strategy xti is unconditional on which
neighbor he plays. The payoff from any given match is weighted
according to the influence of that neighbor. For each agent i,
letNi denote the set of i’s neighbors, that is, the set of all vertices j
such that {i, j} is an edge. Thus, the payoff to i in state x is

Ui
�
x
� ¼

X

j∈Ni

wiju
�
xi; xj

�
: [1]

To give this a concrete interpretation, suppose that B is a form
of contractual negotiation that relies solely on a verbal under-
standing and a handshake, whereas A requires a written agree-
ment and a witness to the parties’ signatures. If one side insists
on a written agreement (A) whereas the other side views a verbal
understanding as appropriate (B), they will fail to coordinate
because they disagree on the basic rules of the game. Note that
this metagame (agreeing on the rules of the game) can be viewed
as a pure coordination game with zero off-diagonal payoffs:
There is no inherent value in adopting A or B unless someone
else also adopts it. This situation is shown below, where α is the
added benefit from the superior action:
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A B
A 1þ α; 1þ α 0; 0
B 0; 0 1; 1

: [2]

[In the case of a symmetric 2 × 2 coordination game with non-
zero off-diagonal payoffs, the adoption dynamics are qualita-
tively similar, but they tend to select the risk-dominant
equilibrium, which may differ from the Pareto-dominant equi-
librium (13, 23, 24).]

Learning
How do agents adapt their expectations and behaviors in such
an environment? Several models of the learning process have
been proposed in the literature; here we discuss two particular
examples. Assume that each agent updates at random times
according to the realization of a Poisson process with unit ex-
pectation. The processes are assumed to be independent among
agents. Thus, the probability is zero that two agents update si-
multaneously, and each agent updates once per unit time period
in expectation. We think of each update by some agent as de-
fining a “tick” of the clock (a period), and the periods are
denoted by t = 1, 2, 3, . . . .
Denote the state of the process at the start of period t by xt−1.

Let ε > 0 be a small error probability. Suppose that agent i is the
unique agent who updates at time t. Assume that, with proba-
bility 1 – ε, i chooses an action that maximizes his expected
payoff, and with probability ε he chooses an action uniformly at
random. This process is the uniform error model (12, 23, 24).
An alternative approach is the log-linear model (13). Given

a real number β ≥ 0 and two actions A and B, suppose that agent
i chooses A with probability

eβUiðA; xt− 1
− i Þ

eβUiðA; xt− 1
− i Þ þ eβUiðB; xt− 1

− i Þ
: [3]

In other words, the log probability of choosing A minus the log
probability of choosing B is β times the difference in payoff;
hence the term “log-linear learning”. [This model is also stan-
dard in the discrete choice literature (25).] The parameter β
measures the responsiveness or rationality of the agent: the larger
β is, the more likely it is that he chooses a best reply given the
actions of his neighbors, i.e., the less likely it is that he experi-
ments with a suboptimal action.
More generally, we may define a perturbed best response

learning process as follows. Let G be a 2 × 2 game with payoff
matrix as in eq. 2, and let Γ be a weighted undirected network
with n nodes, each occupied by an agent. For simplicity we
continue to assume that agents update asynchronously according
to i.i.d. Poisson arrival processes. Let ε > 0 be a noise parameter,
and let qεi ðxt− 1Þ be the probability that agent i chooses action A
when i is chosen to update and the state is xt−1. We assume that
i) qεi ðxt− 1Þ depends only on the choices of i’s neighbors; ii)
q0i ðxt− 1Þ ¼ 1 if and only if A is a strict best response to the choices
of i’s neighbors; iii) qεi ðxt− 1Þ does not decrease when one or more
of i’s neighbors switches to A; and iv) qεi ðxt− 1Þ→q0i ðxt− 1Þ in an
exponentially smooth manner; that is, there is a real number r ≥ 0
such that 0< limε→0 qεi ðxt− 1Þ=εr <∞. (In the case of log-linear
learning these conditions are satisfied if we take ε = e–β.) This
process defines a Markov chain on the finite set of states {A, B}n,
whose probability transition matrix is denoted by Pε.

Speed of Diffusion
Let B

!
be the initial state in which everyone is following the status

quo behavior B. How long does it take for the innovative behavior
A to become widely adopted? One criterion would be the
expected waiting time until the first time that everyone plays A.
Unfortunately this definition is not satisfactory due to the sto-

chastic nature of the learning process. To understand the nature
of the problem, consider a situation in which β is close to zero, so
that the probability of playing A is only slightly larger than the
probability of playing B. No matter how long we wait, the prob-
ability is high that a sizable proportion of the population will be
playing B at any given future time. Thus, the expected waiting
time until everyone first plays A is not the relevant concept. A
similar difficulty arises for any stochastic learning process: If the
noise is too large, it is unlikely that everyone is playing A in any
given period.
We are therefore led to the following definition. Given a sto-

chastic learning process Pε on a graph Γ (not necessarily log-
linear learning), for each state x let a(x) denote the proportion
of agents playing A in state x. Given a target level of penetration
0 < p < 1, define

TðPε;Γ; α; pÞ ¼ E½min ft : aðxtÞ ≥ p& ∀ t ′≥ t;Pðaðxt′Þ ≥ pÞ≥ pg�
[4]

In words, T(Pε, Γ, α, p) is the expected waiting time until at least p
of the agents are playing A, and the probability is at least p that at
least this proportion plays A at all subsequent times. The waiting
time depends on the learning process Pε (including the specific
level of noise ε), as well as on the graph Γ and the size of the
advance (the payoff gain) α. Note that the higher the value of p
is, the smaller the noise must be for the waiting time to be finite.
To distinguish between fast and slow learning as a function of

the number of agents, we consider families of networks of dif-
ferent sizes, where the size of a network is the number of nodes
(equivalently, the number of agents).

Fast Versus Slow Learning.Given a family of networks G and a size
of advance α > 0 (the payoff gain from the innovation), learning
is fast for G and α if, for every p < 1 there exists εp > 0 such that
for each ε ∈ (0, εp),

TðPε;Γ; α; pÞ is bounded above for all Γ∈G: [5]

Otherwise learning is slow; that is, for every ε > 0 there is an
infinite sequence of graphs Γ1, Γ2, . . . , Γn, . . . ∈ G such that
limn→∞T(P

ε, Γn, α, p) = ∞.

Autonomy
In this section we describe a general condition on families of
networks that guarantees fast learning. Fix a network Γ= (V,W),
a learning process Pε, and an advance α > 0. Given a subset of
vertices S ⊆ V, define the restricted learning process ~P

ε

S as follows:
All nodes i ∉ S are held fixed at B whereas the nodes in S update
according to the process Pε. Let ðA!S; B

!
V− SÞ denote the state in

which every member of S plays A and every member of V – S
plays B.
The set S is autonomous for (Pε, Γ, α) if and only if

ðA!S; B
!

V− SÞ is strictly stochastically stable for the restricted
process ~P

ε

S. [A state is strictly stochastically stable if it has prob-
ability one in the limit as the noise goes to zero (24, 26, 27).]

Proposition 1. Given a learning process Pε, a family of networks
G, and an innovation with advance α > 0, suppose that there exists
a positive integer s such that for every Γ ∈ G, every node of Γ is
contained in a subset of size at most s that is autonomous for (Pε, Γ,
α). Then learning is fast.

Concretely this means that given any target level of penetra-
tion p < 1, there is an upper bound on the noise, εp,α, such that
for any given ε in the range 0 < ε < εp,α, the expected waiting
time until at least p of the agents play A (and continue to do so
with probability at least p in each subsequent period) is bounded
above independently of the number of agents n in the network.
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This result differs in a key respect from those in Montanari and
Saberi (15), who show that for log-linear learning the expected
waiting time to reach all-A with high probability is bounded as
a function of n provided that the noise level is arbitrarily small. Un-
fortunately this result implies that the absolute waiting time to
reach all-A is arbitrarily large, because the waiting time until any
given agent first switches to A grows exponentially as the noise
level goes to zero.
The proof of Proposition 1 runs as follows. For each agent i let Si

be an autonomous set containing i such that |Si| ≤ s. By assumption
the state ðA!Si ; B

!
V− Si Þ in which all members of Si play A is sto-

chastically stable. Given a target level of penetration p < 1, we can
choose ε so small that the probability of being in this state after some
finite time t≥TSi is at least 1 – (1 – p)

2. Because this result holds for
the restricted process, and the probability that i chooses A does
not decrease when someone else switches to A, it follows that in
the unrestricted process Pðxti ¼ AÞ≥ 1− ð1− pÞ2 for all t≥TSi .
(This result uses a coupling argument similar to that in ref. 27.)
Because |Si| ≤ s for all i, we can choose ε and T so that
Pðxti ¼ AÞ≥ 1− ð1− pÞ2 for all i and all t ≥ T. It follows that the
expected proportion of agents playing A is at least 1 – (1 – p)2 at all
times t ≥ T.
Now suppose, by way of contradiction, that the probability is

less than p that at least p of the agents are playing A at some time
t ≥ T. Then the probability is greater than 1 – p that at least 1 – p
of the agents are playing B. Hence the expected number playing
A is less than 1 – (1 – p)2, which is a contradiction.

Autonomy and Close-Knittedness
Autonomy is defined in terms of a given learning process, but the
underlying idea is topological: if agents are contained in small
subgroups that interact to a large degree with each other as
opposed to outsiders, then autonomy will hold under a variety of
learning rules. The precise formulation of this topological con-
dition depends on the particular learning rule in question; here
we examine the situation for log-linear learning.

The degree of vertex i is di ¼
X

j∈V
wij:

Let Γ = (V, W) be a graph and α > 0 the size of the advance. For
every subset of vertices S ⊆ V let

d
�
S
� ¼

X

i∈S
di: [6]

Further, for every nonempty subset S′ ⊆ S let

d
�
S′; S

� ¼
X

fi; jg:i∈S′; j∈S
wij: [7]

Thus, d(S) is the sum of the degrees of the vertices in S, and
d(S′, S) is the weighted sum of edges with one end in S′ and the
other end in S. Given any real number r ∈ (0, 1/2), we say that the
set S is r-close-knit if

∀S′⊆ S; S′≠∅; d
�
S′; S

��
d
�
S′
�
≥ r: [8]

S is r-close-knit if no subset has “too many” (i.e., more than 1 – r)
interactions with outsiders. This condition implies in particular
that no individual i ∈ S has more than 1 – r of its interactions with
outsiders, a property known as r-cohesiveness (8).
One consequence of close-knittedness is that the “perimeter”

of S must not be too large relative to its “area”. Specifically, let
us define the perimeter and area of any nonempty set of vertices
S ⊆ V as follows:

periðSÞ ¼ dðS;V− SÞ; areaðSÞ ¼ dðS; SÞ: [9]

Next observe that d(S) = 2 area(S) + peri(S). It follows from
eq. 8 with S′ = S that

periðSÞ=areaðSÞ≤ ð1=rÞ− 2: [10]

If S is autonomous under log-linear learning, then by definition
the potential function of the restricted process is maximized
when everyone in S chooses A. Straightforward computations
show that this result implies the following.

Proposition 2. Given a graph Γ and innovation advance α > 0,
S is autonomous for α under log-linear learning if and only if S is
r-close-knit for some r > 1/(α + 2).

Corollary 2.1. If S is autonomous for α under log-linear learning,
then peri(S)/area(S) < α.

A family of graphs G is close-knit if for every r ∈ (0, 1/2) there
exists a positive integer s(r) such that, for every Γ ∈ G, every node
of Γ is in an r-close–knit set of cardinality at most s(r) (27).

Corollary 2.2. Given any close-knit family of graphs G, log-linear
learning is fast for all α > 0.

Examples
Consider n nodes located around a circle, where each node is
linked by an edge to its two immediate neighbors and the edge
weights are one. [This is the situation originally studied by Ellison
(12).] Any set of s consecutive nodes is (1/2 − 1/2s)-close-knit.
It follows that for any α > 0, log-linear learning is fast.
Next consider a 2D regular lattice (a square grid) in which

every vertex has degree 4 (Fig. 1). Assume that each edge has
weight 1. The shaded region in Fig. 1 is a subset of nine nodes
that is 1/3-close-knit. Hence it is autonomous whenever α > 1.
More generally, observe that any square S of sidem has 2m(m – 1)

internal edges and m2 vertices, each of degree 4; hence

d
�
S; S

��
d
�
S
� ¼ 2m

�
m− 1

��
4m2 ¼ 1=2− 1=2m: [11]

Furthermore it is easily checked that for every nonempty subset
S′ ⊆ S,

d
�
S′; S

��
d
�
S′
�
≥ 1=2− 1=2m: [12]

Therefore, every square of side m is (1/2 – 1/2m)-close-knit and
hence is autonomous for all α > 2/(m – 1). A similar argument
holds for any d-dimensional regular lattice: Given any α > 0,
every sufficiently large sublattice is autonomous for α, and this
holds independently of the number of vertices in the full lattice.

Fig. 1. A 2D lattice with a subset of nine vertices (circled) that is autono-
mous for any α > 1 under log-linear learning.
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Note that in these examples fast learning does not arise be-
cause neighbors of neighbors tend to be neighbors of one an-
other. In fact, a d-dimensional lattice has the property that
none of the neighbors of a given agent are themselves neighbors.
Rather, fast learning arises from a basic fact of Euclidean ge-
ometry: The ratio of “surface” to “volume” of a d-dimensional
cube goes to zero as the cube becomes arbitrarily large.
A d-dimensional lattice illustrates the concept of autonomy in

a very transparent way, but it applies in many other situations as
well. Indeed one could argue that many real-world networks are
composed of relatively small autonomous groups, because people
tend to cluster geographically, or because they tend to interact
with people of their own kind (homophily), or for both reasons.
To understand the difference between a network with small

autonomous groups and one without, consider the pair of net-
works in Fig. 2. Fig. 2, Upper shows a tree in which every node
other than the end nodes has degree 4, and there is a “hub” (not
shown) that is connected to all of the end nodes. Fig. 2, Lower
shows a graph with a similar overall structure in which every node
other than the hub has degree 4; however, in this case everyone
(except the hub) is contained in a clique of size 4. In both networks
all edges are assumed to have weight 1.
Suppose that we begin in the all-B state in both networks, that

agents use log-linear learning with β = 1, and that the size of the
advance is α > 2/3. Let each network have n vertices. It can be
shown that the waiting time to reach at least 99%A (and for this to
hold in each subsequent period with probability at least 99%) is
unbounded in n for the network on the top, whereas it is bounded
independently of n for the network on the bottom. In the latter
case, simulations show that it takes <25 periods (on average) for A
to penetrate to the 99% level independently of n. The key differ-
ence between the two situations is that, in the network with cliques,

the innovation can establish a toehold in the cliques relatively
quickly, which then causes the hub to switch to the innovation also.
Note, however, that fast learning in the network with cliques

does not follow from Proposition 2, because not every node is
contained in a clique. In particular, the hub is connected to all of
the leaves, the number of which grows with the size of the tree, so
it is not in an r-close–knit set of bounded size for any given r < 1/2.
Nevertheless learning is fast: Any given clique adopts A with
high probability in bounded time; hence a sizable proportion
of the cliques linked to the hub switch to A in bounded time, and
then the hub switches to A also. In other words, fast learning
occurs through a combination of autonomy and contagion, a
topic that we explore in the next section.

Autonomy and Contagion
Contagion expresses the idea that once an innovation has become
established for some core group, it spreads throughout the net-
work via the best reply dynamic. Morris (8) was the first to study
the properties of contagion in the setting of local interaction
games and to formulate graph-theoretic conditions under which
contagion causes the innovation to spread throughout the net-
work (for more recent work along these lines see refs. 9–11).
Whereas contagion by itself may not guarantee fast learning in
a stochastic environment, a combination of autonomy and con-
tagion does suffice. The idea is that autonomy allows the in-
novation to gain a foothold quickly on certain key subsets of the
network, after which contagion completes the job.
Consider a subset S of nodes, all of which are playing A, and

choose some i ∉ S. Let α be the size of the advance of A relative
to B. Then A is a strict best response by i provided that

�
1þ α

�X

j∈S
wij >

X

j∉S
wij: [13]

Letting r = 1/(α + 2), we can write this as follows:
X

j∈S
wij > r

X

j∈V
wij ¼ rdi: [14]

Recall that for any vertex i and subset of vertices S,
dði; SÞ ¼ P

j∈S wij is the total weight on the edges linking i
to a member of S. Given a graph Γ = (V, W), a real number r ∈
(0, 1/2), and a subset of vertices S, define the first r-orbit of S
as follows:

O1
r

�
S
� ¼ S∪

�
i ∉ S : d

�
i; S

�
> rdi

�
: [15]

Similarly, for each integer k > 1 recursively define the kth r-
orbit by

Ok
r

�
S
� ¼ O k− 1

r ∪
�
i ∉ Ok− 1

r : d
�
i;O k− 1

r

�
> rdi

�
: (16)

Now suppose that r = 1/(α + 2). Suppose also that everyone in
the set S is playing A. If the learning process is deterministic best
response dynamics, and if everyone updates once per time pe-
riod, then after k periods everyone in the kth r-orbit of S will be
playing A. Of course, this argument does not show that log-linear
learning with asynchronous updating will produce the same re-
sult. The key difficulty is that the core set S of A-players might
unravel before contagion converts the other players to A. How-
ever, this problem can be avoided if i) the core set S reaches the
all-A state within a bounded period and ii) S is autonomous and
hence its members continue to play A with high probability. These
conditions are satisfied if the core set is the union of autonomous
sets of bounded size. We therefore have the following result.

Proposition 3. Let G be a family of graphs. Suppose that there
exist positive integers s, k and a real number r ∈ (0,1/2) such that, for

Fig. 2. Two networks of degree 4, except for a hub (not shown) that is
connected to every end node (dashed lines). All edge weights equal 1.
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every Γ = (V, W) ∈ G, there is a subset of vertices S such that i) S is
the union of r-close–knit sets of size at most s and ii) Ok

r ðSÞ ¼ V .
Then log-linear learning is fast on G whenever α > (1/r) – 2.

We illustrate with a simple example. Let the network consist of
a circle of n agents (the rim) plus a central agent (the hub). Each
agent on the rim is adjacent to the hub and to its two immediate
neighbors on the rim. Note that the hub is not contained in an
r-close–knit set of bounded size for any r < 1/2 . However, for
every r < 1/2, the hub is in the first r-orbit of the rim. Moreover,
for every r < 1/3, there is an r-close–knit set of bounded size that
consists of rim nodes; namely, choose any sequence of k adjacent
rim nodes where k > 1/(1 – 3r). It follows from Proposition 3 that
learning is fast for this family of graphs whenever α > 1.
Proposition 3 shows that for some families of networks, log-

learning is fast provided that is α large enough, where the
meaning of “large enough” depends on the network topology.
When the degrees of the vertices are bounded above, however,
there is a simple lower bound on α that guarantees fast learning
independently of the particular topology.
Proposition 4. Let G be a family of graphs with no isolated

vertices and bounded degree d ≥ 3. If α > d – 2, then log-linear
learning is fast.

Proof sketch. Given α> d− 2, let k be the smallest integer that is
strictly larger than ðαþ 2Þ=ðαþ 2− dÞ. I claim that every con-
nected set S of size k is autonomous. By Proposition 2 it suffices
to show that any such set S is r-close-knit for some r> 1=ðαþ 2Þ.
In particular it suffices to show that

∀S′⊆ S; S′≠∅;
dðS′; SÞ
dðS′Þ ¼ dðS′; SÞP

i∈S′
di

> 1=ðαþ 2Þ: [17]

Since S is connected, it contains a spanning tree, hence
dðS; SÞ≥ jSj− 1. Furthermore, d≥ di for all i. It follows that

dðS; SÞ
dðSÞ ≥

jSj− 1
djSj > 1=ðαþ 2Þ; [18]

where the strict inequality follows from the assumption that
jSj ¼ k> ðαþ 2Þ=ðαþ 2− dÞ. This verifies eq. 17 for the case
S′ ¼ S. It is straightforward to show that eq. 17 also holds for all
proper subsets S′of S. We have therefore established that every
connected set of size k is autonomous. Clearly every connected
component of the network with size less than k is also autono-

mous. Therefore every vertex is contained in an autonomous set
of size at most k. It follows that log-linear learning is fast on all
networks in G when α> d− 2.
Fast learning says that the waiting time is bounded for a given

family of networks, but it does not specify the size of the bound
concretely. Actual examples show that the waiting time can be
surprisingly short in an absolute sense. Consider an innovation
with advance α = 1, and suppose that all agents use log-linear
learning with β = 1. Fig. 3 shows the expected waiting time to
reach the 99% penetration level for two families of networks:
circles where agents are adjacent to their nearest four neighbors
and 2D lattices. (Thus, in both cases the networks are regular of
degree 4.) The expected waiting time is less than 25 periods in
both situations. In other words, almost everyone will be playing
A after about 25 revision opportunities per individual.
Note that this waiting time is substantially shorter than it takes

for a given individual to switch to A when his neighbors are
playing B. Indeed, the probability of such a switch is e0/(e0 + e4β)
≈ e–4β ≈ 0.018. Hence, in expectation, it takes about 1/0.018 = 54
periods for any given agent to adoptA when none of his neighbors
has adopted, yet it takes only about half as much time for nearly
everyone to adopt. The reason, of course, is that the process is

Fig. 3. Simulated waiting times to reach 99% A starting from all B for circles
(solid curve) and 2D lattices (dashed curve). Time periods represent the
average number of updates per individual.

Fig. 4. Expected number of periods to reach 99% playing A as a function of
the size of advance α when β = 1, estimated from 10,000 simulations starting
from the all-B state.

Fig. 5. The level of innovative advance α = f(r) required to achieve an av-
erage growth rate of r per period. Simulation results for log-linear learning
with β = 1 on a 30 × 30 2D lattice are shown.
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speeded up by contagion. The rate at which the innovation
spreads results from a combination of autonomy and contagion.

Bursts of Innovation
We have seen that the speed with which innovations spread in
a social network depends crucially on the interaction between
three features: the size of the advance α, the degree of rationality
β, and the existence of autonomous groups that allow the in-
novation to gain a secure foothold. The greater the advance is
from the innovation relative to the status quo, the more rapidly it
spreads for any given topology, and the more that people are
clustered in small autonomous groups the more rapidly the in-
novation spreads for any given size of advance. Furthermore the
degree of rationality must be at an intermediate level for the rate
of spread to be reasonably fast: If β is too high it will take a very
long time before anyone even tries out the innovation, whereas if
β is too low there will be so much random behavior that even
approximate convergence will not take place.
In this section we examine how the size of the advance α affects

the rate of diffusion for a given family of networks. The results
suggest that social innovations tend to occur in large bursts rather
than through small incremental improvements. The reason is that
a small improvement takes a much longer time to gain an initial
foothold than does an innovation that results in a major gain.
To illustrate this point concretely, let G be the family of 2D

lattices where each agent has degree 4. Fig. 4 shows the simu-
lated waiting time to reach the target p = 0.99 as a function of α.
For small values of α the waiting time grows as a power of α and
is many thousands of periods long, whereas for large values of α
(e.g., α > 1) the waiting time is less than 20 periods.
To understand the implications of this relationship, suppose

that each successive innovation leads to an advance of size α. Let
T(α) be the waiting time for such an innovation to spread (for
a given level of penetration p and level of rationality β). Assume
that each new advance starts as soon as the previous one has

reached the target p. Then the rate of advance per period is r(α),
where (1 + r(α))T(α) = 1 + α; that is,

r
�
α
� ¼ ð1þ αÞ1=TðαÞ − 1: [19]

The inverse function f(r) mapping r to α is shown in Fig. 5 for a
2D lattice and log-linear learning with β = 1. Fig. 5 shows that to
achieve a 1% average growth rate per period requires innovative
bursts of size at least 40%. A 3% growth rate requires innovative
bursts of at least 80%, and so forth.
Of course, these numbers depend on the topological properties

of the grid and on our assumption that agents update using a log-
linear model. Different network structures and different learning
rules may yield different results. Nevertheless, this example
illustrates a general phenomenon that we conjecture holds across
a range of situations. Institutional change that involves a series of
small step-by-step advances may take a very long time to spread
compared with a change of comparable total magnitude that
occurs all at once. The basic reason is that it takes much longer
for a small advance to gain a secure foothold in an autonomous
group: The group must be quite large and/or it must be quite
interconnected to prevent a small advance from unraveling.
Furthermore, under a small advance there are fewer pathways
through the network that allow contagion to complete the diffu-
sion process. The key point is that social innovations are tech-
nologies that facilitate—and require—coordination with others
to be successful. It is this feature that makes social change so
difficult and that favors large advances when change does occur.
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