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Drebrin E, an actin-binding protein 
lacking intrinsic activity in the reg-

ulation of actin dynamics (e.g., polymer-
ization, capping, nucleation, branching, 
cross-linking, bundling and severing), is 
known to recruit actin regulatory pro-
teins to a specific cellular site. Herein, we 
critically evaluate recent findings in the 
field which illustrate that drebrin E works 
together with two other actin-binding 
proteins, namely Arp3 (actin-related 
protein 3, a component of the Arp2/3 
complex that simultaneously controls 
actin nucleation for polymerization and 
branching of actin filaments) and Eps8 
(epidermal growth factor receptor path-
way substrate 8 that controls capping 
of the barbed ends of actin filaments, as 
well as actin filament bundling) to regu-
late the homeostasis of F-actin filament 
bundles at the ectoplasmic specialization 
(ES), a testis-specific atypical adherens 
junction (AJ) in the seminiferous epi-
thelium. This is mediated by the strict 
temporal and spatial expression of these 
three actin-binding proteins at the apical 
and basal ES at the Sertoli cell-spermatid 
(step 8–19) and Sertoli-Sertoli cell inter-
face, respectively, during the seminifer-
ous epithelial cycle of spermatogenesis. 
In this Commentary, we put forth a pos-
sible model by which drebrin E may be 
acting as a platform upon which proteins 
(e.g., Arp3) that are needed to alter the 
conformation of actin filament bundles 
at the ES can be recruited to the site, 
thus facilitating changes in cell shape 
and cell position in the epithelium dur-
ing spermiogenesis and spermiation. 
In short, drebrin E may be acting as a 
“logistic” distribution center to manage 
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different regulatory proteins at the api-
cal ES, thereby regulating the dynamics 
of actin filament bundles and modulat-
ing the plasticity of the apical ES. This 
would allow adhesion to be altered con-
tinuously throughout the epithelial cycle 
to accommodate spermatid movement 
in the seminiferous epithelium during 
spermiogenesis and spermiation. We 
also describe a hypothetical model, upon 
which functional studies can be designed 
in the future.

Introduction

Spermiogenesis is marked by the most 
obvious morphological changes in sper-
matids that take place in the seminiferous 
epithelium during spermatogenesis.1-5 The 
onset of spermiogenesis begins right after 
meiosis II in the apical (adluminal) com-
partment of the seminiferous epithelium, 
and it ends just prior to spermiation when 
sperm are released from the epithelium.6-8 
During spermiogenesis, spermatids 
undergo a series of morphological changes 
which are categorized into steps. These are 
manifested by the condensation of genetic 
material in the spermatid head, formation 
of the acrosome over the nucleus, packag-
ing of mitochondria into the mid-piece 
and elongation of the tail, and they can be 
classified into 19, 16 and 12 steps in rats, 
mice and humans, respectively.6,8-12 In fact, 
earlier studies using periodic acid-Schiff 
(PAS) staining of the mammalian testis 
to visualize changes in the Golgi region 
of spermatids, namely the development of 
the acrosome during spermiogenesis, have 
divided the seminiferous epithelium into 
I–XIV, I–XII and I–VI stages in rats, mice 
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N-WASP, WAVE1 and cortactin are 
involved in Arp2/3 complex activation 
before the Arp2/3 complex can exert its 
actin nucleating and branching activ-
ity29,42)]. In essence, the Arp2/3 protein 
complex helps to create a branched actin 
network, thereby eliminating the “rigid-
ity” associated with actin filament bundles 
at the apical ES. This thus destabilizes 
the ES, which in turn, facilitates sperma-
tid movement across the epithelium via 
the action of endocytic vesicle-mediated 
protein trafficking events43,44 and likely 
involving polarity proteins as well45,46 
(see Fig. 1). Furthermore, F-actin can be 
broken down (i.e., depolymerized) 47 by 
cofilin48 and/or gelsolin,49 both of which 
are found at the ES, converting F-actin 
into G-actin and facilitating spermatid 
movement. Additionally, actin reorga-
nization is also maintained by GTPases, 
such as RhoB,50 Cdc4251 and Rac1.51 In 
short, these actin-binding proteins control 
the dynamics of the actin cytoskeleton 
via nucleation, elongation, capping, bun-
dling, cross-linking, severing and depo-
lymerization, thereby facilitating changes 
in cell shape and in the location of sper-
matids in the epithelium during spermio-
genesis (Fig. 1). As noted above, virtually 
all the proteins that are involved in these 
processes have been identified in the testis 
during the past decade and localized to 
the apical and basal ES at sites where actin 
filament bundles are present,52,53 illustrat-
ing that they are involved in actin remod-
eling to facilitate spermiogenesis.

Does Drebrin E Serve as a  
Platform to Recruit Actin  

Regulatory Proteins to the ES  
in the Seminiferous Epithelium?

As reported in this issue of Spermatogenesis, 
we have identified drebrin E (develop-
mentally regulated brain protein E) to be 
a component of the apical and basal ES 
in the rat testis. Drebrin was originally 
identified in avians as neuronal drebrin 
A (adult), along with two other embry-
onic isoforms known as E1 and E2.54,55 
Initially, it was described as a brain protein 
that regulates cell shape and plasticity,56 
in particular dendritic spine morpho-
genesis.57 Subsequent studies showed 
drebrins to be members of the ADF-H 

change the arrangement and distribu-
tion of actin filament bundles at the ES 
to facilitate cell movement and changes in 
cell shape of elongating spermatids during 
spermiogenesis. In this Commentary, we 
critically evaluate the role of actin-binding 
proteins (ABP or microfilament-associ-
ated proteins) in actin dynamics during 
spermiogenesis. While there are more 
than 100 actin-binding proteins found in 
eukaryotic cells, until recently there have 
been few studies conducted to assess the 
role of these proteins in spermiogenesis. 
Thus, this is a rapidly evolving area of 
research that deserves attention.

Actin-Binding Proteins, Actin 
Dynamics and Spermiogenesis

Actin is a component of one of the three 
cytoskeletons in eukaryotic cells found in 
Sertoli and germ cells in the seminiferous 
epithelium, which exists either as globu-
lar actin (G-actin) or filamentous actin 
(F-actin).26 The formation and mainte-
nance of F-actin filament bundles, such as 
those found at the ES, involves the assem-
bly of actin monomers into filaments 
which are then bundled. This process is 
mediated by end-to-end and side-to-side 
protein contacts via the actions of formins 
[e.g., mDia1/2 (diaphanous-related for-
min proteins 1 and 2) are members of 
the formin family that are expressed by 
the rat testis],27 which initiate actin fila-
ment nucleation and elongation,28-30 and 
actin cross-linking proteins31,32 (note: 
cross-linkers that anchor the plasma 
membrane to the actin-based cytoskel-
eton, e.g., vinculin33) and actin-bundling 
proteins (i.e., crosslinking actin filaments 
into bundles),28,34 [e.g., espin,35 fimbrin,33 
α-actinin,36 fascin,37 Eps8 (epidermal 
growth factor receptor pathway substrate 
8, also an actin capping protein) 38], all 
of which have been shown to be putative 
components of the apical and basal ES. 
However, filament bundle plasticity is 
conferred by proteins that facilitate actin 
nucleation and actin filament branch-
ing [e.g., Arp3 (actin-related protein 3, a 
component of the Arp2/3 protein com-
plex),39,40 N-WASP (neural or neuronal 
Wiskott-Aldrich syndrome protein),39,40 
WAVE1 (WASP-family verprolin homol-
ogous protein 1),41 and cortactin40 (note: 

and humans, respectively. These stages 
depicted changes in cellular associations 
in cross-sections of seminiferous tubules, 
and thus generated the concept of the 
seminiferous epithelial cycle of spermato-
genesis.13-15 Subsequent studies in the rat 
testis by electron microscopy have shown 
that adhesion sites surrounding the head 
of step 8–19 spermatids to be encircled 
entirely with a unique adherens junction 
(AJ) known as the ectoplasmic specializa-
tion (ES), which is typified by the pres-
ence of highly organized actin filament 
bundles sandwiched in between cisternae 
of endoplasmic reticulum and the appos-
ing plasma membranes of the spermatid 
and the Sertoli cell but with the exception 
that these unique actin filament bundles 
are limited only to the Sertoli cell side (see 
Fig. 1).16-18 Once the ES appears at the 
interface of the step 8 spermatid and the 
Sertoli cell, it is the only anchoring device 
to confer spermatid adhesion, orientation 
and polarity, and it persists in the epithe-
lium until spermiation.8,18,19 Since it is 
restricted to the apical compartment, it is 
defined as the apical ES.20 Moreover, the 
ES is also found at the Sertoli-Sertoli cell 
interface at the BTB, and it is known as 
basal ES.21,22 It shares identical ultrastruc-
tural features with the apical ES, except 
that its typical features, namely the actin 
filament bundles and cisternae of endo-
plasmic reticulum, are found on both sides 
of the Sertoli cell.23,24 The unique arrange-
ment of actin filament bundles at the ES, 
which is not found in any other anchoring 
junction type in the mammalian body, 
also confers remarkable adhesive strength 
to the ES. For instance, the apical ES was 
found to be significantly stronger than 
the desmosome which is restricted to the 
interface of pre-step 8 spermatids and the 
Sertoli cell.25 Interestingly, the apical ES 
undergoes extensive restructuring during 
spermiogenesis because of changes in cell 
shape and the relative location of devel-
oping spermatids within the seminifer-
ous epithelium. For instance, elongating 
spermatids move toward the tubule lumen 
during stages XIV-III, but downward 
and toward the basement membrane dur-
ing stages IV–V, followed once again by 
upward and toward to the luminal edge 
during stages VI–VIII. Thus, a unique 
mechanism must be in place to rapidly 
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Figure 1. A schematic drawing that illustrates an emerging concept regarding the role of actin-binding protein drebrin E in regulating spermiogenesis 
in the rat testis via its effects to recruit the actin nucleation protein Arp3 to the apical ES to facilitate junction restructuring during spermatogenesis. 
The left part in this figure illustrates intact apical ES (maintained by adhesion protein complexes such as integrin-laminin at the Sertoli cell-step 8–19 
spermatid interface), gap junction and desmosome [at the Sertoli cell-step 1–7 spermatid interface] that confers proper adhesion of developing sper-
matids to the Sertoli cell in the seminiferous epithelium. Apical ES adhesion is conferred and strengthened by actin filament bundles sandwiched in 
between the cisternae of endoplasmic reticulum and the Sertoli cell plasma membrane, and this likely involves the presence of polarity proteins, such 
as PAR3 (partitioning-defective protein 3), PAR6.72 Highly organized F-actin filament bundles uniquely found at the apical ES are maintained by actin-
bundling proteins, such as Eps8. During spermiogenesis, the transit of developing spermatids is facilitated by a surge in the expression of drebrin E, 
which recruits actin nucleation proteins (e.g., Arp3 in the Arp2/3 protein complex) to the apical ES to convert actin filament bundles into a branched 
network, causing the loss of “rigidity” of, but conferring “plasticity” to, the apical ES (see middle part). This thus destabilizes the apical ES, facilitating 
protein endocytosis, which is regulated by cytokines (e.g., TGFβ3 and TNFα) 8 and assisted by polarity proteins (e.g., 14-3-3, Cdc42).73,74 As spermio-
genesis progresses, the elevated expression of drebrin E recruits more Arp3 to the apical ES, surrounding the head of elongated spermatids to further 
destabilize adhesion at the apical ES to facilitate the release of sperm at spermiation (i.e., degeneration of the apical ES at stage VIII of the epithelial 
cycle), and internalized apical ES proteins can be transcytosed and recycled to assemble “new” apical ES to anchor newly differentiated step 8 sper-
matids onto the epithelium (see right part). This thus provides an efficient physiological system to “re-use” many of the component proteins from the 
“old” apical ES site surrounding the head of step 19 spermatids to assemble the “new” apical ES in step 8 spermatids that arises during spermiogenesis. 
This emerging new concept is the basis for many functional studies in the future.
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at the apical ES. Nonetheless, the model 
depicted in Figure 1 serves as a hypothesis 
upon which functional experiments can 
be designed. Future studies will help to 
understand the role of this critical actin-
binding protein in spermiogenesis and 
spermiation.

Summary and Future Perspectives

As discussed above, drebrin E may serve 
as a platform to recruit necessary actin 
regulatory proteins to the apical ES to 
affect F-actin filament bundles which 
confer apical ES dynamics during sper-
miogenesis. Additional drebrin E bind-
ing partners, besides Arp3, at the apical 
ES must be identified. The mechanism(s) 
by which drebrin E recruits Arp3 to the 
apical ES at the interface of Sertoli cells 
and step 18–19 spermatids must also be 
delineated, which may involve nonrecep-
tor protein kinases (e.g., c-Src, FAK) and 
polarity proteins (e.g., PAR3, Scribble). In 
short, drebrin E is likely working together 
with the Arp2/3 complex and Eps8 to 
modulate the conversion of F-actin fila-
ment bundles to branched actin network, 
thereby conferring “fluidity” at the apical 
ES which facilitates changes in spermatid 
shape and spermatid movement during 
spermiogenesis.
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(actin depolymerizing factor homology) 
domain family of actin-binding proteins58 
and to be involved in actin dynamics, 
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recruitment of proteins (e.g., chemokine 
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polymerization,60 building of dendritic 
spines and stabilization of gap junctions,61 
actin remodeling via its interaction with 
Ras GTPases,62 and formation of lamelli-
podia and filopodia.63 Thus, drebrins have 
numerous cellular functions via their role 
as actin-binding proteins. Interestingly, 
drebrins do not possess any F-actin sev-
ering, bundling, capping, nucleating or 
cross-linking activity per se, and they do 
not have any intrinsic biological activ-
ity.54,64-66 However, drebrins were found 
to compete with the binding of actin 
regulatory proteins, such as α-actinin, 
fascin and tropomyosin to F-actin,54,55,67,68 
thereby regulating the actin network. In 
short, drebrins regulate actin dynamics 
largely via their ability to “maintain” the 
“proper” levels of actin regulatory proteins 
to specific cellular domains in response 
to changes in environment, growth and 
development, pathological conditions and 
toxicants.

Drebrin E was found to be an ES pro-
tein, displaying stage-specific expression 
at the apical and basal ES in the semi-
niferous epithelium during the epithelial 
cycle.67 The most striking observation is 
that the stage-specific expression of dre-
brin E closely resembles that reported for 
Arp3,39 a component of the actin branch-
ing nucleation regulatory protein Arp2/3 
complex, particularly at the apical ES.39 
More importantly, drebrin E was highly 
expressed at the apical ES at stage VII,67 
co-localizing with Arp3 to the concave side 
of the elongating spermatid head where 
extensive endocytic vesicle-mediated pro-
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