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Industrialization, Chemical Contamination  
and Human Health

In the past century, the drastic advancement in industrialization 
and technology and the growth in human population have driven 
a change to the environment to a scope that is unprecedented 
in human history. The production of large amounts of synthetic 
industrial and biomedical chemicals, as well as unwanted pollut-
ants pose destructive consequences to our ecosystem and impose 
negative health effects to wildlife and humans.1-4 A recent review 
highlighted that about 40% of human death (62 million per 
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In the past 200 years, an enormous number of synthetic 
chemicals with diverse structural features have been produced 
for industrial, medical and domestic purposes. These chemicals, 
originally thought to have little or no biological toxicity, are 
widely used in our daily lives as well as are commonly present 
in foods. It was not until the first World Wildlife Federation 
Wingspread Conference held in 1994 were concerns about 
the endocrine disrupting (ED) effects of these chemicals 
articulated. The potential hazardous effects of endocrine 
disrupting chemicals (EDCs) on human health and ecological 
well-being are one of the global concerns that affect the health 
and propagation of human beings. Considerable numbers 
of studies indicated that endocrine disruption is linked to 
“the developmental basis of adult disease,” highlighting the 
significant effects of EDC exposure on a developing organism, 
leading to the propensity of an individual to develop a 
disease or dysfunction in later life. In this review, we intend 
to provide environmental, epidemiological and experimental 
data to associate pollutant exposure with reproductive 
disorders, in particular on the development and function of 
the male reproductive system. Possible effects of pollutant 
exposure on the processes of embryonic development, like 
sex determination and masculinization are described. In 
addition, the effects of pollutant exposure on hypothalamus-
pituitary-gonadal axis, testicular signaling, steroidogenesis 
and spermatogenesis are also discussed.
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year) is attributed to the exposure of chemical pollutants.5 In the 
past 60 years, more than 140,000 synthetic chemical compounds 
were made and approximately 1,000–2,000 new chemicals are 
produced each year.6 These chemicals are ubiquitous and are dis-
persed in air, water, soil and food. A study from the US Center for 
Disease Control (CDC) reported that Americans of all ages have 
accumulated over 116 extraneous chemicals into their bodies.7 
Over 358 industrial chemicals and pesticides have been detected 
in the cord blood of American infants.8 Some of the more damag-
ing chemical contaminants are classified as endocrine disrupting 
chemicals (EDCs) since they can interfere with the synthe-
sis, metabolism and action of endogenous hormones (Fig. 1).2 
They are known to exert different biological effects via a diverse 
mechanism of actions.9 Most of the understanding of the EDC 
elicited-effects is derived from experimental studies conducted on 
animals and/or cell culture, but little direct evidence of effects 
has been compiled for humans. Nevertheless, the potential haz-
ardous effects of EDCs on human health are currently strength-
ening via epidemiological studies and clinical observations10 and 
have been shown to impose long-term effects on metabolism, 
immune system defects, cancer development, decreased fertility 
and reproductive health.9,11-15

Environmental Pollution and Reproductive Health

Exposure to environmental pollutants is suggested to be one of 
the culprits to reproductive problems worldwide. This exposure-
effect relationship has long been established in wildlife and in 
laboratory animal studies.16-23 Adverse biological effects to male 
reproductive functions were first reported in wild animals where 
an accidental exposure to pollutants caused feminization or a 
change in reproductive behavior in the animals.24 In the 1980s, 
the adult male alligators in Apopka Lake that were exposed to 
agricultural wastes, produced low testosterone levels and pre-
sented micro-penis and disorganized testes.25-27 Effects of mer-
cury exposure on reproductive behavior and sexual preference of 
white ibises were reported in reference 28.

In humans, increased incidences of birth defects, precocious 
puberty, reproductive cancers and infertility have been reported 
in reference 29–32. From the data of World Bank 2005, total 
fertility rate had decreased from 1970 to 2002 in both devel-
oped and industrialized countries.33 According to the 2001 
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exposure to environmental pollutants might impose significant 
effects on fetal development.11,41-43

Effects of EDC on Sex Ratio  
and Early Testicular Development

In human epidemiologic studies, significant reductions in the 
ratio of “male birth to total number of birth” were recorded in 
highly polluted areas. The incidences of low male-to-female sex 
ratio at birth were reported in Aamjiwnaang First Nation com-
munity (areas close to industrial areas) in Canada,44 Seveso 
Italy,45 the Austrian chloracne cohort,46 and the victims in the 
Yucheng oil disaster, Taiwan.47 Possible explanation for the 
change in sex ratio at birth has not been elucidated. In mam-
mals, sex development in embryonic stage depends on a delicate 
balance between male and female sex determining pathways.48-50 
It is generally believed that the development of ovary from geni-
tal ridges is a default mechanism while the development of tes-
tis depends on the activity of Y chromosome testis-determining 
gene (Sry) and its downstream/associated factors [i.e., SRY-box 
containing gene 9 (Sox9), doublesex and mab-3 related transcrip-
tion factor 1 (Dmrt1), prostaglandin D synthase, anti-Müllerian 
hormone (Amh) and testosterone].51-54 The spatiotemporal action 

World Health Organization (WHO) report “Current practices 
and Controversies in Assisted Reproduction,” at least 80 mil-
lion people worldwide were estimated to be affected by infer-
tility, of which the most common cause has been identified to 
be the “male factor”.34 Among all the infertility cases, over 10% 
of infertility cannot be explained medically. Given the adverse 
effects of EDC exposure on wildlife and laboratory animals, neg-
ative effects of environmental pollutants/chemicals on human 
fecundity are extrapolated. This postulation was supported by 
a study from Carlsen and coworkers in 1992, highlighting that 
the estrogenic-like activity of EDC was the cause of the decline 
in male fertility.35 However the scientific accuracy of the paper 
remains questionable, as numerous flaws have been recognized 
in the study.36-38 Although the accuracy of the Carlsen’s paper 
is controversial, the paper motivated many follow-up investi-
gations to re-analyze the data or to identify putative causative 
agents responsible for the declined human fecundity. Since there 
are variations in the quality of the methodologies and the great 
heterogeneity of the recruited subjects (i.e., different in age, 
behaviors and lifestyles), the general outcomes of these investiga-
tions are still not conclusive.39,40 At present the possible involve-
ment of EDCs in human fecundity can neither be confirmed 
nor rejected.40 However it is generally agree that in utero chronic 

Figure 1. Chemical structures of sex steroid hormones (testosterone, estrogen), natural metabolite (retinoic acid) and some common EDCs (BPA, DDT, 
DEHP, PCB, PFOS, dioxin).



www.landesbioscience.com Spermatogenesis 233

EDC on neuronal circuit development. This presumption has 
been supported by other studies where prenatal PCBs exposure 
interrupted neuronal development and receptor expression in 
rat hypothalamus.83 In rodent models, bisphenol A (BPA) expo-
sures were found to affect hypothalamic kisspeptin fiber density, 
KiSS-1 and estrogen receptor-α (ERα) mRNA expression.84-88 In 
our recent study, we demonstrated that prenatal exposure to BPA 
exerted considerable effects on the functional circuitry of HPG 
axis in mice.84 The disruption of the normal functioning of the 
hypothalamic circuitry may lead to an interruption of GnRH, 
LH and FSH release for the regulation of sexual development and 
gametogenesis (Fig. 2 and arrow A).89 In addition to the modula-
tion of hormone release from hypothalamus-pituitary level, the 
decrease in testosterone and sperm production can be the conse-
quence of the reduced testicular expression levels of receptors for 
gonadotrophin, as demonstrated in perfluorooctanesulfonic acid 
(PFOS) exposed mice (Fig. 2 and arrow B).90

Although the biological and physiological outcomes of EDC 
exposures have been reported, the possible molecular targets at the 
HPG axis have not been elucidated. Since some of the EDCs bear 
very similar chemical structures to the endogenous hormones,91 
the interaction between nuclear hormone receptors (NHRs) and 
EDCs has been proposed as the elementary action on endocrine 
disruption.92,93 It is generally believed that EDCs can affect the 
hormonal system via (but not limited to) estrogenic, androgenic, 
anti-androgenic and anti-thyroid mechanisms.30,94 The mecha-
nistic aspects of endocrine disruption may be via the roles as  
(1) agonist or antagonist, (2) selective modulators in the recruit-
ment of coactivators/co-repressor in transcriptional complex or/
and (3) in cross-talk between NHRs.95 Among different EDCs, 
the molecular targets and the mechanistic actions of dioxins 
are well characterized. Dioxins are known to impose biological 
effects via the aryl hydrocarbon receptor (AHR), which belongs 
to a member of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/
PAS) family of transcription factors. AHR exhibits its transcrip-
tional activity primarily via ligand-dependent nuclear translo-
cation.96 Other regulatory functions mediated by dioxin/AHR 
complex include the modulation of other transcriptional fac-
tors, including retinoblastoma (Rb)/elongation factor-2 (E2F), 
nuclear factor-κB (NFκB) and the estrogen receptors (ERα and 
ERβ) and androgen receptors.97-103 Comparable to the dioxin/
AHR mediated actions, EDCs that possess estrogenic and/or 
anti-estrogenic activities, have also been shown to have striking 
effect on animals.104 This is particularly true if we look at it from 
an evolutionary perspective where the DNA-binding domain and 
the ligand-binding domain of ERα are conserved across metazo-
ans.105,106 Global environmental contaminants, persistent organic 
pollutants (i.e., dichlorodiphenyl-trichloroethane (DDT), 
hydroxylated PCBs, BPA, p-nonylphenol and dioxins) and heavy 
metals (i.e., cadmium and mercury) were shown to have either or 
both estrogenic and androgenic activity.104,107,108 In addition, BPA 
was found to able to activate membrane G-protein coupled estro-
gen receptor.109 Some newly identified emerging contaminants, 
like perfluorinated compounds (PFCs) and flame retardants were 
also reported to possess estrogenic activities.110,111

of SRY to switch the supporting cells of genital ridges from the 
female to male pathway is essential and has to be undertaken 
within a critical programming time window.55 Any disruption in 
the early steps of the male pathway would lead to the mal-devel-
opment of testes or an engagement of ovary development. Other 
subtle effects of EDCs on the masculinization process resulted in 
reproductive disorders similar to testicular dysgenesis syndrome 
(TDS). In the Study for Future Families in the United States, a 
correlation of prenatal exposure to several phthalates with short-
ening of the anogenital index and incomplete testicular descent 
were observed.56,57 Using rat models, adverse effects of phthalates 
on the male offspring such as absent/underdeveloped epididy-
mis and germ cell loss were demonstrated.58,59 Epidemiological 
studies reported an increased risk of genital malformations and 
cryptorchidism in children of workers who were exposed to 
pesticides.60,61 The effects observed in laboratory animal stud-
ies seems to correlate with increased incidences of malforma-
tion of genital tracts in both European and US populations,62-64 
however the exploitation of animal data to human cases is still 
controversial.65,66

Effects of EDC on HPG Circuitry Signaling  
in Neonatal and Pubertal Development

Mammalian spermatogenesis is a complicated cascade process 
that is under the tight control of the hypothalamus-pituitary-
gonadal (HPG) axis as well as the de novo auto/paracrine cir-
cuit.67 The primary role of the hormones involved is to enable a 
coordinated regulation of the process that allows the development 
of highly differentiated spermatozoa within the seminiferous 
tubules. The process depends on a functional hypothalamic-
pituitary-testicular (HPT) axis. The hypothalamic kisspeptin-1 
(KiSS-1) and its G protein-coupled receptor (GPR54) act as the 
gatekeeper to control the secretion of gonadotrophin releasing 
hormone (GnRH), which regulates the anterior pituitary hor-
mones—luteinizing hormone (LH) and follicle stimulating hor-
mone (FSH), and testicular hormones—testosterone, activin and 
inhibin B.41,68,70,71 Since neuroendocrine actions of EDCs have 
been shown,72-74 HPG circuitry signaling can be the EDC target 
during perinatal development. Any interruption on the hypotha-
lamic circuitry, hormonal mediated regulation or on the constitu-
ents at the microenvironments in seminiferous tubules may result 
in a transient/long-term modification of the hormonal feedback 
circuitry, leading to the disturbance of spermatogenesis.15,75 In 
the following sections, some examples of the HPG-related sys-
tems that have been shown to be affected by EDCs are discussed.

Considerable numbers of studies have revealed effects of 
EDCs on the hypothalamic KiSS-1/GPR54 system and the HPG 
axis.15,76 The alteration of the HPG axis upon EDCs exposure 
[i.e., polychlorinated biphenyls (PCBs), lead, cadmium] has been 
shown from piscine to rodent,77-80 although their actions may 
vary in different development stages.81 Using nonhuman primate 
and mouse models, Leranth and coworkers demonstrated the 
effects of BPA exposure on spine synapse formation in brains.12,82 
The observation provides profound insights on the effects of 
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CYP11A and CYP17A were observed, resulting in the reduction 
of testosterone production. This hypothesis is rational as receptor 
binding affinities of most EDCs are generally low as compared 
to the endogenous ligands.123 Although the additive/synergistic 
effects of mixture of EDCs cannot be neglected, it seems unlikely 
that EDC can compete with the endogenous ligand for recep-
tor binding. Retrospectively it is more likely that EDCs interfere 
with steroidogenesis and modulate the release of endogenous ste-
roid hormones. The altered serum levels of the steroid hormones 
may cause subsequent reproductive dysfunction by interfering 
with the feedback regulatory mechanisms of the HPG axis. For 
example, BPA is a weak estradiol agonist, its estrogenic effect in 
animal bodies is probably mediated by its stimulatory action on 
gonadal aromatase to increase serum estradiol (E

2
) levels.84,124 

Consistently using H295R human adenocarcinoma cells, BPA 

Effects of EDC on Adult Spermatogenesis

The modulation of steroidogenic enzymes. In addition to the 
NHR-mediated effects, recent hypothesis has highlighted that 
steroidogenesis is the major target for EDCs (Fig. 2 and arrow 
C).112,113 Steroidogenesis is the process for steroid hormone 
production. It is an enzymatic-mediated process catalyzed by 
several enzymes from two main categories: the cytochrome 
P450 enzymes (CYP11A and CYP17A), and hydroxysteroid 
dehydrogenase (HSD) enzymes (3β-HSD and 17β-HSD).114 
Negative influences of EDC exposure on steroidogenesis have 
been reported in both in vivo and in vitro studies. Inhibitory 
effects of BPA, PCBs, PFCs, dioxins and some of the phthalates 
on the expression levels of some steroidogenic enzymes were elu-
cidated.115-122 Mostly downregulation of the expression levels of 

Figure 2. A schematic diagram depicts the effects of EDCs on HPG axis. (A) EDCs modulated the neural circuit in hypothalamus (KiSS-1/GPR54 and HPG 
axis) leading to the dysregulation of gonadotrophin hormones (FSH/LH) secretion by the pituitary. (B) In the testis, EDC exposure caused the reduction 
in the expression of gonadotrophin receptors (LHr and FSHr). (C) EDCs interfered with the enzymes (StAR, P450scc, 3β-HSD, 17β-HSD) involved in 
steroidogenesis. (D) In addition to the reduction of testosterone level, oxidative stress elicited by EDCs caused disruption of cell-cell interaction and 
perturbed the process of spermatogenesis.
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Sertoli-germ cell complex which supports the maximum number 
of sperm that can be produced in adulthood.129,130 More impor-
tantly, the effects on germ cell development can be inherited via 
epigenetic actions of EDCs.11,131 Although the underlying action 
of EDCs on epigenetic modification is not known, this hypothesis 
is supported by data from other laboratory animal studies.132,133 
Retrospectively the effects of EDCs on fetal testis can be long-
lasting and transgenerational.127,128,134 In contrary, the effects on 

treatment caused an increase of E
2
 production.125 Another EDC, 

dioxin was shown to reduce testosterone production in rat pri-
mary Leydig cell culture via the inhibition of human chorionic 
gonadotrophin (hCG)-stimulated cAMP and CYP11A levels.126 
The effects of EDCs on fetal testis seem to be more striking 
as the disruption of steroidogenesis at this early developmental 
stage can also affect the proliferation of germ cells and Sertoli 
cells.113,127,128 Notably it may interfere with the formation of the 

Figure 3. A schematic diagram illustrates the influence of PFOS on GH/IGF-signaling and testicular functions. Our recent data demonstrated that 
PFOS-induced testicular dysfunctions and metabolic disorders via the reduction in the expression levels of receptors for GH and IGF in both liver and 
testis, leading to the inhibition of steroidogenesis and spermatogenesis.
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adult testis may be short-term and reversible upon the reduced 
exposure to the chemicals.

The induction of oxidative stress. As mentioned above, the 
effects of EDs are believed to be mediated by their direct and/or 
indirect actions on steroid hormone receptors and steroidogen-
esis.30 However, these effects may be limited to EDCs with par-
ticular chemical structures. The effects of other heterogeneous 
structures of EDCs may not be accounted for.135 Recently, oxida-
tive stress is identified as a common mechanism of action for EDC 
in affecting cellular structures and functions.136 Induction of oxi-
dative stress was detected in epididymal sperms of rats, exposed 
to BPA.137 Specifically EDC-induced oxidative stress caused dis-
ruption to tight and adherens junctions between Sertoli-Sertoli 
cells and Sertoli-germ cells.67,138 The underlying mechanism of 
the dysregulation is found to be associated with the modulation 
of phosphatidylinositol-3-kinase (PI3K)/c-Src/focal adhesion 
kinase (FAK) and mitogen-activated protein kinase (MAPK)-
signaling, in affecting the metabolism of some polarity proteins 
[e.g., occludin, zonula occludens-1 (ZO-1) and N-cadherin].139 
The disruption of the junctional structures leads to the dysregu-
lation of spermatogenesis (Fig. 2 and arrow D).140,141 Since there 
are two recent excellent reviews from Cheng’s group that have 
covered most of the updated information on this aspect,139,142 
the underlying mechanisms of EDC-induced oxidative stress in 
mediating disruption to cell junctions will not be discussed in 
this review.

The alternation of body metabolism. The maintenance of 
normal male reproductive function is not exclusively controlled 

by gonadotrophin and testicular hormones/factors (i.e., testos-
terone, activins, inhibins).143-145 Possible influence from body 
metabolic disturbances on testicular functions is discussed in 
recent years.146 Perturbation of the testicular steroidogenesis can 
be due to the inhibitory action of EDC on the gene expression 
levels of insulin-like growth factor-1 (IGF-1) and its receptor 
in rat testes as shown by perfluorododecanoic acid (PFDoA) 
exposure.117 Similarly, our recent data demonstrated that PFOS-
induced testicular dysfunctions and metabolic disorders may be 
related to the reduction in the expression levels of receptors for 
growth hormone (GH) and IGF in both liver and testis of mice 
(Fig. 3).90 The effects of GH and IGF-1 are known to stimulate 
the transcription of CYP11A gene encoding cytochrome P450 
side-chain cleavage (P450scc), for the conversion of free choles-
terol into pregnenolone in the early steps of steroidogenesis.147 
A decrease of signal interaction between GH/IGF-1 and HPG 
axis would therefore affect steroidogenesis.144,148 Furthermore the 
GH/IGF-1 axis has been suggested to link with the adipocy-
tokine signaling system.149-151 Leptin plays a regulatory role on 
the HPG axis via leptin-kisspeptin-GnRH pathway, leading to 
the hormonal regulation of LH and FSH.152-155 Indeed, serum 
leptin was found to be negatively correlated with serum testos-
terone. Reduced interaction of leptin with Leydig or germ cells 
would lead to the reduction in the expression of steroidogenic 
enzymes156,157 and the impairment of sperm mobility.155,158-160 In 
gestational exposure of EDCs (i.e., phthalate), plasma leptin 
level was reduced and was accompanied by the reduction of 
anogenital distance and the expression levels of several steroido-
genic enzymes such as steroidogenic acute regulatory protein 
(StAR), CYP11A, CYP17 in fetal male rats.156 Leptin synthe-
sis was also found to be inhibited in cadmium exposure.161 In 
addition to leptin, another adipocytokines such as adiponectin 
and retinol-binding protein 4 (RBP4) have been suggested to 
be modulated by EDC exposure. For instance, BPA treatment 
diminished adiponectin production in 3T3-L1 adipocytes.162 
Long-term exposure of DDT caused a reduction of serum RBP4 
levels, leading to an inadequate intake of vitamin A,163 which 
is an important factor for the regulation of spermatogenesis.164 
Intriguingly using retinoic acid (RA) reporter assay, PFOS was 
found to inhibit RA-mediated transactivation of retinoic acid 
response element (RARE) (unpublished data, Fig. 4). The data 
indicate that PFOS may act as a RA antagonist to interfere with 
retinoid signaling to inhibit spermatogenesis.165

Conclusion

Adverse effects of EDCs on male reproductive dysfunction are 
well recognized from the epidemiological and laboratory animal 
data. However tens of thousands of industrial chemicals or pol-
lutants are still produced or discharged extensively on a daily 
basis.166-169 They are ubiquitous and the possible routes of human 
exposure to EDCs are from the environments, consumer prod-
ucts and foods. Effects of EDCs on animal reproductive func-
tion can be multi-faceted and pleiotropic. Exposures to EDCs 
can interfere with cell signaling via direct/indirect “hormonal” 
and/or oxidative stress related pathways in HPG axis and other 

Figure 4. PFOS inhibits RA-mediated transactivation of retinoic acid 
response element (RARE), as illustrated using luciferase reporter assay. 
The day before transfection, MCF7 cells were plated into 24-well tissue 
culture dishes at a density reaching 70–80% confluence by the time 
of transfection. Transfection was performed using LipofectAMINETM 
2000 reagent (Invitrogen) and OPTI-MEM®I medium (GIBCO) with 250 
ng of retinoic acid reporter (Addgene). Six hours after transfection, the 
transfection medium was replaced by a complete medium and different 
doses of retinoic acid (10–1,000 nM) or PFOS (0.1–100 μM) or co-treatment 
of retinoic acid (1,000 nM) and PFOS (0.1–100 μM) were added. After 24 h 
incubation, the cells were then lysed in the passive lysis buffer. Firefly 
luciferase activities were measured using the Luciferase reporter assay 
system (Promega) and the multilabel reader VICTORTMX4 (PerkinElmer).
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