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Summary
Variance estimation is a fundamental problem in statistical modelling. In ultrahigh dimensional
linear regression where the dimensionality is much larger than the sample size, traditional variance
estimation techniques are not applicable. Recent advances in variable selection in ultrahigh
dimensional linear regression make this problem accessible. One of the major problems in
ultrahigh dimensional regression is the high spurious correlation between the unobserved realized
noise and some of the predictors. As a result, the realized noises are actually predicted when extra
irrelevant variables are selected, leading to serious underestimate of the level of noise. We propose
a two-stage refitted procedure via a data splitting technique, called refitted cross-validation, to
attenuate the influence of irrelevant variables with high spurious correlations. Our asymptotic
results show that the resulting procedure performs as well as the oracle estimator, which knows in
advance the mean regression function. The simulation studies lend further support to our
theoretical claims. The naive two-stage estimator and the plug-in one-stage estimators using the
lasso and smoothly clipped absolute deviation are also studied and compared. Their performances
can be improved by the reffitted cross-validation method proposed.
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1. Introduction
Variance estimation is a fundamental problem in statistical modelling. It is prominently
featured in the statistical inference on regression coefficients. It is also important for
variable selection criteria such as Akaike’s information criterion AIC and the Bayesian
information criterion BIC. It provides also a benchmark of forecasting error when an oracle
actually knows the regression function and such a benchmark is very important for
forecasters to gauge their forecasting performance relative to the oracle. For conventional
linear models, the residual variance estimator usually performs well and plays an important
role in the inferences after model selection and estimation. However, the ordinary least
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squares methods do not work for many contemporary data sets which have a greater number
of covariates than the sample size. For example, in disease classification using microarray
data, the number of arrays is usually in tens, yet tens of thousands of gene expressions are
potential predictors. When interactions are considered, the dimensionality grows even more
quickly; for example considering possible interactions among thousands of genes or single-
nucleotide polymorphisms yields a number of parameters in the order of millions. In this
paper, we propose and compare several methods for variance estimation in the setting of an
ultrahigh dimensional linear model. A key assumption which makes the high dimensional
problems solvable is the sparsity condition: the number of non-zero components is small
compared with the sample size. With sparsity, variable selection can identify the subset of
important predictors and improve the model interpretability and predictability.

Recently, there have been several important advances in model selection and estimation for
ultrahigh dimensional problems. The properties of penalized likelihood methods such as the
lasso and smoothly clipped absolute deviation (SCAD) have been extensively studied in
high and ultrahigh dimensional regression. Various useful results have been obtained. See,
for example, Fan and Peng (2004), Zhao and Yu (2006), Bunea et al. (2007), Zhang and
Huang (2008), Meinshausen and Yu (2009), Kim et al. (2008), Meier et al. (2008), Lv and
Fan (2009) and Fan and Lv (2011). Another important model selection tool is the Dantzig
selector that was proposed by Candes and Tao (2007), which can be easily recast as a linear
program. It is closely related to the lasso, as demonstrated by Bickel et al. (2009). Fan and
Lv (2008) showed that correlation ranking has a sure screening property in the Gaussian
linear model with Gaussian covariates and proposed the sure independent screening (SIS)
and iteratively sure independent screening (ISIS) methods. Fan et al. (2009) extended ISIS
to a general pseudolikelihood framework, which includes generalized linear models as a
special case. Fan and Song (2010) have developed general conditions under which the
marginal regression has a sure screening property in the context of generalized linear
models. For an overview, see Fan and Lv (2010).

In all the work mentioned above, the primary focus is the consistency of model selection and
parameter estimation. The problem of variance estimation in ultrahigh dimensional settings
has hardly been touched. A natural approach to estimate the variance is the following two-
stage procedure. In the first stage, a model selection tool is applied to select a model which,
if is not exactly the true model, includes all important variables with moderate model size
(smaller than the sample size). In the terminology of Fan and Lv (2008), the model selected
has a sure screening property. In the second stage, the variance is estimated by an ordinary
least squares method based on the variables selected in the first stage. Obviously, this
method works well if we can recover exactly the true model in the first stage. This is usually
difficult to achieve in ultrahigh dimensional problems. Yet, sure screening properties are
much easier to obtain. Unfortunately, this naive two-step approach can seriously
underestimate the level of noise even with the sure screening property in the first stage
owing to spurious correlation that is inherent in ultrahigh dimensional problems. When the
number of irrelevant variables is huge, some of these variables have large sample
correlations with the realized noises. Hence, almost all variable selection procedures will,
with high probability, select those spurious variables in the model when the model is
overfitted, and the realized noises are actually predicted by several spurious variables,
leading to a serious underestimate of the residual variance.

The above phenomenon can be easily illustrated in the simplest model, in which the true
coefficient β = 0. Suppose that one extra variable is selected by a method such as the lasso
or SIS in the first stage. Then, the ordinary least squares estimator  is
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(1)

where γn is the sample correlation of the spurious variable and the response, which is really
the realized noise in this null model. Most variable selection procedures such as stepwise
addition, SIS and the lasso will first select the covariate that has highest sample correlation
with the response, namely, . In other words, this extra variable is
selected to predict the realized noise vector best. However, as Fan and Lv (2008) stated, the
maximum absolute sample correlation γn can be very large, which makes  seriously
biased. To illustrate the point, we simulated 500 data sets with sample size n = 50 and the

number of covariates p =10, 100, 1000, 5000, with  and noise independent and
identically distributed (IID) from the standard normal distribution. Fig. 1(a) presents the
densities of γn across the 500 simulations and Fig. 1(b) depicts the densities of the estimator

 defined in equation (1). Clearly, the biases of  become larger as p increases.

The bias becomes larger when more spurious variables are recruited to the model. To
illustrate the point, let us use stepwise addition to recruit s variables to the model. Clearly,
the realized noises are now better predicted, leading to an even more severe underestimate of
the level of noise. Fig. 2 depicts the distributions of spurious multiple correlation with the
response (realized noise) and the corresponding naive two-stage estimator of variance for s =
1, 2, 5, 10, keeping p = 1000 fixed. Clearly, the biases become much larger with s. For
comparison, we also depict similar distributions based on SIS, which selects s variables that
are marginally most correlated with the response variable. The results are depicted in Fig.
3(a). Although the biases based on the SIS method are still large, they are smaller than those
based on the stepwise addition method, as the latter chose the co-ordinated spurious
variables to optimize the prediction of the realized noise.

A similar phenomenon was also observed in classical model selection by Ye (1998). To
correct the effects of model selection, Ye (1998) developed the concept of a generalized
degree of freedom but it is computationally intensive and can only be applied to some
special cases.

To attenuate the influence of spurious variables that are entered into the selected model and
to improve the accuracy of estimation, we introduce a refitted cross-validation (RCV)
technique. Roughly speaking, we split the data randomly into two halves, do model selection
by using the first half of the data set and refit the model on the basis of the variables selected
in the first stage, using the second half of the data to estimate the variance, and vice versa.
The estimator proposed is just the average of these two estimators. The results of the RCV
variance estimators with s = 1, 2, 5, 10 are presented in Fig. 3(b). The corrections of biases
due to spurious correlation are dramatic. The essential difference between this approach and
the naive two-stage approach is that the regression coefficients in the first stage are
discarded and refitted by using the second half of the data and hence the spurious
correlations in the first stage are significantly reduced at the second stage. The variance
estimation is unbiased as long as the models selected in the first stage contain all relevant
variables, namely they have a sure screening property. It turns out that this simple RCV
method improves dramatically the performance of the naive two-stage procedure. Clearly,
the RCV can also be used to do model selection itself, reducing the influence of spurious
variables.
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To appreciate why, suppose that a predictor has a big sample correlation with the response
(realized noise in the null model) over the first half of the data set and is selected into the
model by a model selection procedure. Since the two halves of the data set are independent
and the chance that a given predictor is highly correlated with realized noise is small, it is
very unlikely that this predictor has a large sample correlation with the realized noise over
the second half of the data set. Hence, its influence on the variance estimation is very small
when refitted and estimating the variance over the second half will not cause any bias. This
argument is also true for the non-null models provided that the model selected includes all
important variables.

To gain better understanding of the RCV approach, we compare our method with the direct
plug-in method, which computes the residual variance based on a regularized fit. This was
inspired by Greenshtein and Ritov (2004) on the persistence of the lasso estimator. An
interpretation of their results is that such an estimator is consistent. However, a bias term of
order O{s log(p)/n} is inherent in the lasso-based estimator, when the regularization
parameter is optimally tuned. When the bias is negligible, the lasso-based plug-in estimator
is consistent. The plug-in variance estimation based on the general folded concave penalized
least squares estimators such as SCAD are also discussed. In some cases, this method is
comparable with the RCV approach.

The paper is organized as following. Section 2 gives some additional insights into the
challenges of high dimensionality in variance estimation. In Section 3, the RCV variance
estimator is proposed and its sampling properties are established. Section 4 studies the
variance-estimation-based penalized likelihood methods. Extensive simulation studies are
conducted in Section 5 to illustrate the advantage of the methodology proposed. Section 6 is
devoted to a discussion and the detailed proofs are provided in Appendix A.

2. Insights into challenges of high dimensionality in variance estimation
Consider the usual linear model

(2)

where y = (Y1, …, Yn)T is an n-vector of responses, X = (x1, …, xn)T is an n × p matrix of
independent and identically distributed IID variables x1, …, xn, β = (β1, …, βp)T is a p-
vector of parameters and ε = (ε1, …, εn)T is an n-vector of IID random noises with mean 0
and variance σ2. We always assume that the noise is independent of predictors. For any
index set M ⊂ {1, 2, …, p}, βM denotes the subvector containing the components of the
vector β that are indexed by M, XM denotes the submatrix containing the columns of X that

are indexed by M and  is the projection operator onto the linear space
that is generated by the column vectors of XM.

When p > n or p ≫ n, it is often assumed that the true model M0 = {j: βj ≠ 0} is sparse, i.e.
the number of non-zero coefficients s = |M0| is small. It is usually assumed that s is fixed or
diverging at a mild rate. Under various sparsity assumptions and regularity conditions, the
most popular variable selection tools such as the lasso, SCAD, adaptive lasso, SIS and
Dantzig selector have various good properties regarding model selection consistency.
Among these properties are the sure screening property, model consistency, sign
consistency, the weak oracle property and the oracle property, from weak to strong.
Theoretically, under some regularity conditions, all the aforementioned model selection
tools can achieve model consistency. In other words, they can exactly pick out the true
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sparse model with probability tending to 1. However, in practice, these conditions are
impossible to check and difficult to meet. Hence, it is often very difficult to extract the exact
subset of significant variables among a huge set of covariates. One of the reasons is the
spurious correlation, as we now illustrate.

Suppose that unknown to us the true data-generating process in model (2) is

where Xj is the n-dimensional vector of the realizations of the covariate Xj. Furthermore, let

us assume that  and ε follow independently the standard normal distribution. As
illustrated in Fig. 1(a), where p is large, there are realizations of variables that have high
correlations with ε. Let us say . Then, X9 can even have a better chance of
being selected than X2. Here and hereafter, we refer the spurious variables to those variables
that are selected to predict the realized noise ε and their associated sample correlations are
called spurious correlations.

Continuing with the above example, the naive two-stage estimator will work well when the
model selection is consistent. Since we may not obtain model consistency in practice and
have no way to check even if we obtain it by chance, it is natural to ask whether the naive
two-stage strategy works if only sure screening can be achieved in the first stage. In the
aforementioned example, let us say that a model selector chooses the set {X1, X2, X9}, which
contains all true variables. However, in the naive two-stage fitting, X9 is used to predict ε,
resulting in substantial underestimate of σ2 = var(ε). If both variables X1 and X2 are selected,
all spurious variables are recruited to predict ε. The more spurious variables are selected, the
better ε is predicted, and the more serious underestimation of σ2 by the naive two-stage
estimation.

We say that a model selection procedure satisfies the sure screening property if the selected
model M ̂ with model size ŝ includes the true model M0 with probability tending to 1.
Explicitly,

The sure screening property is a crucial criterion when evaluating a model selection
procedure for high or ultrahigh dimensional problems. Among all model consistent
properties, the sure screening property is the weakest and the easiest to achieve in practice.

We demonstrate the naive two-stage procedure in detail. Assume that the selected model M ̂

in the first stage includes the true model M0. The ordinary least squares estimator  at the
second stage, using only the selected variables in M ̂, is

(3)

where In is the n × n identity matrix. How does this estimator perform? To facilitate the
notation, denote the naive estimator by . Then, estimator (3) can be written as
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where . Let us analyse the asymptotic behaviour of this naive two-stage
estimator.

Theorem 1—Under assumptions 1 and 2 together with 3 and 4 or 5 and 6 in Appendix A,
we have the following results.

a. If a procedure satisfies the sure screening property with ŝ ≤ bn where bn = o(n) is
given in assumption 2, then  converges to σ2 in probability as n → ∞.
Furthermore,

where ‘→ ’ stands for ‘convergence in distribution’.

b. If, in addition, log(p)=n = O(1), then γ ̂n = OP[√{ŝ log(p)=n}].

It is perhaps worthwhile to make a remark about theorem 1.  plays an important role in the
performance of . It represents the fraction of bias in . The slower γ ̂n converges to 0, the
worse  performs. Moreover, if  converges to a positive constant with a non-negligible
probability, it will lead to an inconstant estimator. The estimator cannot be root n consistent
if ŝ log(p)/√n → ∞. This explains the poor performance of , as demonstrated in Figs 2 and

3. Although theorem 1 gives an upper bound of γn, it is often sharp. For instance, if 
and ε are IID standard normal distributions and ŝ = 1, then γ ̂n is just the maximum absolute

sample correlation between ε and . Denote the jth sample correlation by
, j = 1, …, p. Applying the transformation T(r) = r/√(1 − r2), we obtain a

sequence  with IID Student t-distribution with n – 2 degrees of
freedom. Simple analysis on the extreme statistics of the sequences {ξnj} and {γ ̂nj} shows
that, for any c > 0 such that log(p/c) ≤ n + 2, we have

(4)

which implies the sharpness of theorem 1 in this specific case. Furthermore, when log(p) =
o(n1/2),

with the limiting distribution is given by
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(5)

where

See Appendix A.5 for details.

3. Variance estimation based on refitted cross-validation
3.1. Refitted cross-validation

In this section, we introduce the RCV method to remove the influence of spurious variables
in the second stage. The method requires only that the model selection procedure in stage 1
has a sure screening property. The idea is as follows. We assume that the sample size n is
even for simplicity and split randomly the sample into two groups. In the first stage, an
ultrahigh dimensional variable selection method like SIS is applied to these two data sets
separately, which yields two small sets of selected variables. In the second stage, the
ordinary least squares method is used to re-estimate the coefficient β and variance σ2.
Different from the naive two-stage method, we apply ordinary least squares again to the first
subset of the data with the variables selected by the second subset of the data and vice versa.
Taking the average of these two estimators, we obtain our estimator of σ2. The refitting in
the second stage is fundamental to reduce the influence of the spurious variables in the first
stage of variable selection.

To implement this idea of RCV, consider a data set with sample size n, which is randomly
split into two even data sets (y(1), X(1)) and (y(2), X(2)). First, a variable selection tool is
performed on (y(1), X(1)) and let M ̂1 denote the set of variables selected. The variance σ2 is

then estimated on the second data set (y(2), ), namely

where . Similarly, we use the second data set (y(2), X(2)) to select

the set of important variables M ̂2 and the first data set (y(1), ) for estimation of σ2,
resulting in

We define the final estimator as
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(6)

An alternative is the weighted average defined by

(7)

When |M ̂1| = |M ̂2|, we have .

In this procedure, although M ̂1 includes some extra unimportant variables besides the
important variables, these extra variables will play minor roles when we estimate σ2 by
using the second data set along with refitting since they are just some random unrelated
variables over the second data set. Furthermore, even when some important variables are
missed in the first stage of model selection, they have a good chance of being well
approximated by the other variables selected in the first stage to reduce modelling biases.
Thanks to the refitting in the second stage, the best linear approximation of those selected
variables is used to reduce the biases. Therefore, a larger selected model size gives us, not
only a better chance of sure screening, but also a way to reduce modelling biases in the
second stage when some important variables are missing. This explains why the RCV
method is relatively insensitive to the model size selected, demonstrated in Fig. 3 and in Fig.
6 in Section 5.1. With a larger model being selected in stage 1, we may lose some degrees of
freedom and hence obtain an estimator with slightly larger variance than the oracle estimator
at finite sample. Nevertheless, the RCV estimator performs well in practice and is
asymptotically optimal when ŝ = o(n). The following theorem gives the property of the RCV
estimator. It requires only a sure screening property, which was studied by Fan and Lv
(2008) for normal multiple regression, Fan and Song (2010) for generalized linear models
and Zhao and Li (2010) for the Cox regression model.

Theorem 2—Assume that regularity conditions 1 and 2 in Appendix A hold and E[ε4] <
∞. If a procedure satisfies the sure screening property with ŝ1 ≤bn and ŝ2 ≤ bn, then

(8)

Theorem 2 reveals that the RCV estimator of variance has an oracle property. If the
regression coefficient β* is known by oracle, then we can compute the realized noise

 and obtain the oracle estimator

(9)

This oracle estimator has the same asymptotic variance as .

There are two natural extensions of the aforementioned refitted cross-validation techniques.
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a. K-fold data splitting: the first natural extension is to use a K -fold data splitting
technique rather than twofold splitting. We can divide the data into K groups and
select the model with all groups except one, which is used to estimate the variance
with refitting. We may improve the sure screening probability with this K -fold
method since there are now more data in the first stage. However, there are only n/
K data points in the second stage for refitting. This means that the number of
variables that are selected in the first stage should be much less than n/K. This
makes the ability of sure screening difficult in the first stage. For this reason, we
work only on the two fold RCV.

b. Repeated data splitting: there are many ways to split the data randomly. Hence,
many RCV variance estimators can be obtained. We may take the average of the
resulting estimators. This reduces the influence of the randomness in the data
splitting.

Remark 1—The RCV procedure provides an efficient method for variance estimation. The
technical conditions in theorem 2 may not be the weakest possible. They are imposed to
facilitate the proofs. In particular, we assume that P {φmin(bn) ≥ λ0} = 1 for all n, which
implies that the variables selected in stage 1 are not highly correlated. Other methods
beyond least squares can be applied in the refitted stage when those assumptions are
possibly violated in practice. For instance, if some selected variables in stage 1 are highly
correlated or the selected model size is relatively large, ridge regression or penalization
methods can be applied in the refitted stage. Moreover, if the density of the error ε seems
heavy tailed, some classical robust methods can also be employed.

Remark 2—The paper focuses on variance estimation under the exact sparsity assumption
and sure screening property. It is possible to extend our results to nearly sparse cases. For
example, the parameter β is not sparse but satisfies some decay condition such as Σk |βi| ≤ C
for some positive constant C. In this case, we do not have to worry too much whether a
model selection procedure can recover small parameters. In this case, so long as a model
selection method can pick up a majority of all variables with large coefficients in the first
stage, we would expect that the RCV estimator performs well.

3.2. Applications
Many statistical problems require knowledge of the residual variance, especially for high or
ultra high dimensional linear regression. Here we briefly outline a couple of applications.

a. Constructing confidence intervals for coefficients: a natural application is to use
estimated ŝRCV to construct confidence intervals for non-vanishing estimated
coefficients. For exam-ple, it is well known that the SCAD estimator has an oracle
property (Fan and Li, 2001; Fan and Lv, 2011). Let β ̂M ̂ be the SCAD estimator,
with corresponding design matrix XM ̂. Then, for each j ∈ M ̂, the 1 − α confidence
interval for βj is

(10)

in which cj is the diagonal element of the matrix  that corresponds to the
jth variable. Our simulation studies show that such a confidence interval is accurate
and has a similar performance to the case where σ is known.

The confidence intervals can also be constructed on the basis of the raw materials
in the RCV. For example, for each element in M ̂≡ M ̂1 ∩ M ̂2, we can take the
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average of the refitted coefficients as the estimate of the regression coefficients in

the set M ̂, and  as the corresponding estimated covariance matrix,

where  is computed on the basis of the first half of the data at the

refitting stage and  is computed on the basis of the second half of
the data. In addition, some ‘cleaning’ techniques through p-values can be also
applied here. In particular, Wasserman and Roeder (2009) and Meinshausen et al.
(2009) studied these techniques to reduce the number of falsely selected variables
substantially.

b. Genomewide association studies: let Xj be the coding of the jth single-nucleotide
polymorphism and Y be the observed phenotype (e.g. height or blood pressure) or
the expression of a gene of interest. In such a quantitative trait loci study, one
frequently fits the marginal linear regression

(11)

on the basis of a sample of size n individuals, resulting in the marginal least squares
estimate β ̂j. The interest is to test simultaneously the hypotheses H0, j: βj = 0 (j = 1,
…, p). If the conditional distribution of Y given X1, …, Xp is N {μ(X1, …, Xp), σ2},
then it can easily be shown (Han et al., 2010) that (β ̂1, …, β ̂p)T ~ N{(β1, …, βp)T,
σ2S/n}, where the (i, j) element of S is the sample covariance matrix of Xi and Xj
divided by their sample variances. With σ2 estimated by the RCV, the P-value for
testing individual hypothesis H0, j can be computed. In addition, the dependence of
the least squares estimates is now known and hence the false discovery proportion
or rate can be estimated and controlled (Han et al., 2010).

c. Model selection: popular penalized approaches for variable selection such as the
lasso, SCAD, adaptive lasso and elastic net often involve the choice of a tuning or
regularization parameter. A proper tuning parameter can improve the efficiency and
accuracy for variable selection. Several criteria, such as Mallows’s , AIC and
BIC, are constructed to choose tuning parameters. All these criteria rely heavily on
a common parameter: the error variance. As an illustration, consider estimating the
tuning parameter of the lasso (see also Zou et al. (2007)). Let λ be the tuning
parameter with the fitted value μ ̂λ = Xβ ̂λ. Then AIC and BIC for the lasso are
written as

and

It is easily seen that the variance σ2 has an important impact on both AIC and BIC.
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4. Folded-concave penalized least squares
In this section, we discuss some related methods on variance estimation and their
corresponding asymptotic properties. The oracle estimator of σ2 is

A natural candidate to estimate the variance is R̂(β ̂), where β ̂is the lasso or SCAD estimator
of β*. Greenshtein and Ritov (2004) showed the persistent property for the lasso estimator
β ̂L. Their result, interpreted in the linear regression setting, implies that R(β ̂L) → R(β*) = σ2

in probability, where R(β) = E[Y − Xβ]2. In fact, it is easy to see that their result implies that

In other words, R̂(β ̂L) is a consistent estimator for the variance.

Recall that the lasso estimator is defined as

(12)

To make R̂(β ̂L) consistent, Greenshtein and Ritov (2004) suggested λn = o[{n/log(p)}1/2]
asymptotically. Wasserman and Roeder (2009) showed that the consistency still holds when

λn is chosen by cross-validation. Therefore, we define the lasso variance estimator  by

(13)

where ŝL = #{j: β̂L)j ≠0}.

We shall see that  usually underestimates the variance owing to spurious correlation, as
the lasso shares a similar spirit to that of the stepwise addition (see the algorithm LARS by
Efron et al. (2004)). Thus, we also consider the leave-one-out lasso variance estimator

(14)

where  is the lasso estimator using all samples except the ith. In practice, K-fold (K
equals 5 or 10) cross-validated lasso estimator is often used and shares the same spirit as that
of equation (14). We divide the data set into K parts, say , …, , and define
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(15)

where  is the lasso estimator using all data except those in  with tuning parameter λ.
This estimator differs from the plug-in method (13) in that multiple estimates from training
samples are used to compute residuals from the testing samples. We shall see that the

estimator  is typically closer to R(β ̂L) than to R̂(β ̂L), but it usually somewhat
overestimates the true variance from our simulation experience. The following theorem
shows the rate of convergence for the lasso estimator.

Theorem 3—Suppose that assumptions 1–4 and 7 in Appendix A hold. If the true model
size s = o(nα0) for some α0 < 1, then, we have

If s log(p)/√n → 0, we have

The factor s log(p)/n reflects the bias of the penalized L1-estimator. It can be non-negligible.
When it is negligible, the plug-in lasso estimator also has the oracle property. In general, it is
difficult to study the asymptotic distribution of the lasso estimator when the bias is not
negligible. In particular, we cannot obtain the standard error for the estimator. Even for
finite p, Knight and Fu (2000) investigated the asymptotic distribution of lasso-type
estimators but it is too complicated to be applied for inference. To tackle this difficulty, Park
and Casella (2008) and Kyung et al. (2010) used a hierarchical Bayesian formulation to
produce a valid standard error for the lasso estimator, and Chatterjee and Lahiri (2010)
proposed a modified bootstrap method to approximate the distribution of the lasso estimator.
But it is unclear yet whether or not their methods can be applied to a high or ultra high
dimensional setting.

Recently, Fan and Lv (2011) studied the oracle properties of the non-concave penalized
likelihood method in the ultrahigh dimensional setting. Inspired by their results, the variance
σ2 can be consistently and efficiently estimated. The SCAD penalty ρλ(t) (Fan and Li, 2001)
is the function whose derivative is given by

where a = 3.7 is often used. Denote by
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(16)

and let β ̂SCAD be a local minimizer of Qn,λn(β) with respect to β. Thus, the variance σ2 can
be estimated by

where ŝ = #{j: (β ̂SCAD)j ≠0}.

The following theorem shows the oracle property and rate of convergence for the SCAD
estimator.

Theorem 4—Assume that log(p) = O(nα0) and the true model size s = O(nα0), where α0 ∈
[0, 1). Suppose that assumptions 1, 3 and 4 (or 5 and 6) and 8 and 9 in Appendix A are
satisfied. Then,

a. (model consistency) there is a strictly local minimizer β ̂n = (β ̂1, …, β ̂p)T of Qn,λn(β)
such that

with probability tending to 1 and

b. (asymptotic normality) with this estimator β ̂n, we have

Theorem 4 reveals that, if λn is chosen reasonably,  works as well as the RCV estimator

 and better than . However, it is difficult to achieve this oracle property sometimes.

5. Numerical Results
5.1. Simulation study

In this section, we illustrate and compare the finite sample performance of the methods that
were described in the last three sections. We applied these methods to three examples: the
null model and two sparse models. The null model (example 1) is given by

(17)

where X1, X2, …, Xp are IID random variables, following the standard Gaussian distribution.
This is the sparsest possible model. The second sparse model (example 2) is given by
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(18)

with different b representing different levels of signal-to-noise ratio. The covariates that are
associated with model (18) are jointly normal with equal correlation ρ, and marginally N(0,
1).

The third sparse model (example 3) is more challenging, with 10 non-trivial coefficients, {βj
|j = 1, 2, 3, 5, 7, 11, 13, 17, 19, 23}. The covariates are jointly normal with cov(Xi, Xj) =
0.5|i − j|. The non-zero coefficients vector is

where b varies to fit different signal-to-noise ratio levels. The random error follows the
standard normal distribution.

In each of these settings, we test the following four methods to estimate the variance:

a. oracle estimator (9), which is not a feasible estimator whose performance provides
a benchmark (method 1);

b. a naive two-stage method, denoted by N-SIS, if SIS is employed in the model
selection step (method 2);

c. RCV variance estimator (6), (method 3);

d. one-step method via penalized least squares estimators (method 4). We introduced
this method in Section 4 and recommended two formulae to estimate the variance:
a direct plug-in, P, method like formula (13) and a cross-validation, CV, method
like formula (15).

In methods 2–4, we employed (I)SIS, SCAD or the lasso as our model selection tools. For
SCAD and the lasso, the tuning parameters were chosen by fivefold or 10-fold cross-
validation. For (I)SIS, the predetermined model size is always taken to be 5 in the null
model and n/4 in the sparse model, unless specified explicitly. The principled method of
Zhao and Li (2010) can be employed to choose the model size automatically.

5.1.1. Example 1—Assume that the response Y is independent of all predictors Xis, which
follow an IID standard Gaussian distribution. We consider the cases when the numbers of
covariates vary from 10, 100 to 1000 and the sample sizes equal 50, 100 and 200. The
simulation results are based on 100 replications and are summarized in Table 1. In Fig. 4,
three boxplots are illustrated to compare the performance of the various methods for the case
n = 50, 100, 200 and p = 1000. From the simulation results, we can see that the improved
two-stage estimators RCV-SIS and RCV-LASSO are comparable with the oracle estimator
and much better than the naive estimators, especially in the case when p ≫ n. This coincides
with our theoretical result. RCV improves dramatically the naive (natural) method, no
matter whether SIS or the lasso is used.

5.1.2. Example 2—We now consider model (18) with (n, p) = (200, 2000) and ρ = 0 and ρ
= 0.5. Moreover, we consider three values of coefficients b = 2, b = 1 and b = 1/√3,
corresponding to different levels of signal-to-noise ratio √12, √3 and 1 for each case when ρ
= 0. The results that are depicted in Table 2 are based on 100 replications (The results for b
= 1 are presented in Fig. 5 and have been omitted from Table 2). The boxplots of all
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estimators for the case ρ = 0.5 and b = 1 are shown in Fig. 5. They indicate that the RCV
methods behave as well as the oracle, and much better than the naive two-stage methods.
Furthermore, the performance of the naive two-stage method depends highly on the model
selection technique. The one-step methods perform well also, especially P-SCAD and CV-
SCAD. P-LASSO and CV-LASSO behave slightly worse than SCAD methods. These
simulation results lend further support to our theoretical conclusions in earlier sections.

To test the sensitivity of the RCV procedure to the model size ŝ and covariance structure
among predictors, additional simulations have been conducted and their results are
summarized in Figs 6 and 7. From Fig. 6, it is clear that the RCV method is insensitive to
model size ŝ, as explained before theorem 2. Fig. 7 shows that the RCV methods are also
robust with respect to the covariance structure. In contrast, N-LASSO always underestimates
the variance.

To show the effectiveness of σ ̂RCV in the construction of confidence intervals, we calculate
the coverage probability of the confidence interval (10) based on 10 000 simulations. This
was conducted for β1, β2 and β3 with b = 1/√3, 1, 2 and ρ = 0 and ρ = 0.5. For brevity we
present only one specific case for β1 with b = 1 in Table 3.

5.1.3. Example 3—We consider a more realistic model with 10 important predictors,
detailed at beginning of this section. Since some non-vanishing coefficients are very small,
no method can guarantee that all relevant variables are chosen in the model selected, i.e.
have a sure screening property. To quantify the severity of missing relevant variables, we

use the quantity variance of missing variables, , to measure, where S is the set
of important variables that are not included in the model selected and βS is their regression
coefficients in the simulated model. For RCV methods, the variance of missing variables is
the average of the variances of missing variables for two halves of the data. Fig. 8
summarizes the simulation results for (n, p) = (400, 1000), whereas Fig. 9 depicts the results
for (n, p) = (400, 10000) when the penalization methods are not easily accessible. The naive
methods seriously underestimate the variance and are sensitive to the model selection tools,
dimensionality and signal-to-noise ratio among others. In contrast, the RCV methods are
much more stable and only slightly overestimate the variance when the sure screening
condition is not satisfied. The one-step methods, especially plug-in methods, also perform
well.

5.2. Real data analysis
We now apply our proposed procedure to analyse recent house price data from 1996–2005.
The data set consists of 119 months of appreciation of the national house price index HPI,
which is defined as the percentage of monthly log-HPI changes in 381 core-based statistical
areas (CBSA) in the USA. The goal is to forecast housing price appreciation (HPA) over
those 381 CBSAs over the next several years. Housing prices are geographically dependent.
They depend also on macroeconomic variables. Their dependence on macroeconomic
variables can be summarized by the national HPA. Therefore, a reasonable model for
predicting the next period HPA in a given CBSA is

(19)

where XN stands for the national HPA,  are the HPAs in those 381 CBSAs and ε is a
random error independent of X. This is clearly a problem with the number of predictors
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more than the number of covariates. However, conditional on the national HPA XN, it is
reasonable to expect that only the local neighbourhoods have non-negligible influence, but it
is difficult to predetermine those neighbourhoods. In other words, it is reasonable to expect
that the coefficients  are sparse.

Our primary interest is to estimate the residual variance σ2, which is the prediction error of
the benchmark model. We always keep the variables XN and X1, which is the lag 1 HPA of
the region to be predicted. We applied SCAD using the local linear approximation (Zou and
Li, 2008), which is the iteratively reweighted lasso, to estimate coefficients in model (19).
We summarize the result, ŝ, as a function of the selected model size s, to examine the
sensitivity to the selected model size. Reported also is the percentage of variance explained,
which is defined as

where Ȳ is the sample average of the time series. For illustration, we focus only on one
CBSA in San Francisco and one in Los Angeles. The results are summarized in Table 4 and
Fig. 10, in which the naive two-stage method is also included for comparison.

First, as shown in Fig. 10, the influence of the naive method on the selected model size is
much larger than that of the RCV method. This is due to the spurious correlation as we
discussed before. The RCV estimate is reasonably stable, but it is also influenced by the
selected model size when it is large. This is understandable given the sample size of 119.

In the case of San Francisco, from Fig. 10(b), the RCV method suggests that the standard
deviation should be around 0.52%, which is reasonably stable for s in the range of 4–8. By
inspection of the solution path of the naive two-stage method, we see that, besides XN and
X1, first selected is the variable X306, which corresponds to CBSA San Jose–Sunnyvale–
Santa Clara (San Benito County and Santa Clara County). The variable X306 also enters both
models when s≥3 in the RCV method. Therefore, we suggest that the model selected
consists of at least variables X1, X2 and X306. As expected, in the RCV method, the fourth
selected variables are not the same for the two split subsamples. The variance explained by
regression takes 79.83% of total variance.

Similar analysis can be applied to the Los Angeles case. Fig. 10(d) suggests that the standard
deviation should be around 0.50% (when s is between 7 and 10). From the solution path, we
suggest that the model selected consists of at least variables XN, X1 and X252, which
corresponds to CBSA Oxnard–Thousand Oaks–Ventura (Ventura County). The variance
explained by regression takes 90.23% of the total variance.

6. Discussion
Variance estimation is important and challenging for ultrahigh dimensional sparse
regression. One of the challenges is the spurious correlation: covariates can have high
correlations with the realized noise and hence are recruited to predict the noise. As a result,
the naive (natural) two-stage estimator seriously underestimates the variance. Its
performance is very unstable and depends largely on the model selection tool that is
employed. The RCV method is proposed to attenuate the influence of the effect of spurious
variables. Both the asymptotic theory and the empirical result show that the RCV estimator

Fan et al. Page 16

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is the best among all estimators. It is accurate and stable, and insensitive to the model
selection tool and the size of the model selected. Therefore, we may employ fast model
selection tools like SIS for computational efficiency for the RCV variance estimation. We
also compare the RCV method with the direct plug-in method. When choosing tuning
parameters of a penalized likelihood method like the lasso, we suggest using a more
conservative cross-validation rather than aggressive BIC. However, the lasso method can
still yield a non-negligible bias for variance estimation in ultrahigh dimensional regression.
The SCAD method is almost as good as the RCV method, but it is computationally more
expensive than RCV-SIS.
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Appendix A: Notation and conditions
We first state the following assumptions, which are standard in the literatures of high
dimensional statistical learning. For convenience, define

and

where λmin (A) and λmax (A) denote the smallest and largest eigenvalues of a matrix A
respectively.

For a vector v, we use the standard notation ||v||p = (Σi|vi|p)1/p and ||v||∞ = maxi{|vi|}. For a
matrix B, we use three different norms. ||B||2, ∞ is defined in assumption 8 below; ||B||2
denotes the usual operator norm, i.e. ||B||2 = max||v||2≤1||Bv||2; ||B||∞ = maxi, j{|Bij|} is the
usual sup-norm.

Assumption 1
The errors ε1, …, εn are IID with zero mean and finite variance σ2 and independent of the
design matrix X.
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Assumption 2
There is a constant λ0 > 0 and bn such that bn/n → 0 such that P{φmin(bn) ≥ λ0} = 1 for all n.

Assumption 3
There is a constant L such that maxi, j |Xij| ≤ L, where Xij is the (i, j) element of the design
matrix X.

Assumption 4
E[exp(|ε1|/a] ≤ b for some finite constants a, b > 0.

We have no intention to make the assumptions the weakest possible. For example,
assumption 3 can be relaxed to maxi, j |Xij| ≤ L{log(n)}ξ for any ξ > 0 or further relaxation.
The aim of assumptions 3 and 4 is to guarantee that γ ̂n in theorem 1 is of the order √{ŝ
log(p)/n}.

Theorem 1 still holds under the random design with the assumptions below.

Assumption 5
The random vectors x1, …, xn are IID and there is a constant α such that E[exp{(|Xij|/ρ)α}] ≤
L for all i and j and some constants α > 1, and ρ, L > 0, where Xij is the (i, j)th element of X.

Assumption 6
ε1 satisfies the condition that E[exp{(|ε1|/a)θ}] ≤ b for some finite positive constants a, b, θ >
0 and 1/α + 1/θ ≤ 1, where α is defined by assumption 5.

For instance, when Xij and εi are sub-Gaussian (α = θ = 2) for each i and j, assumptions 5
and 6 are satisfied.

The following assumption 7 is imposed for proving theorem 3. For fixed design matrix X,
the corresponding condition was also imposed in Meinshausen and Yu (2009) and some
discussions of weaker conditions were shown in Bickel et al. (2009).

Assumption 7
There are constants 0 < kmin ≤ kmax < ∞ such that

and

The following two additional assumptions are stated for proving theorem 4. These
conditions correspond to conditions 4 and 5 in Fan and Lv (2011). Without loss of

generality, assume that the true value  with each component of β01 non-zero
and β02 = 0. Let X1 and X2 be the submatrices of n × p design matrix X with columns
corresponding to β01 and β02 respectively.
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Assumption 8
There are constants 0 < c1, c2 < ∞ such that

and

as n → ∞, where ||B||2, ∞ = max||v||2≤1 ||Bv||∞.

Assumption 9

Denote . Assume that dn ≤ n−γ log(n) with . Take λn ∝ n−(1−α0)/2

log(n) and λn ≪ dn, where α0 is defined in theorem 4.

Remark 3
The norm ||B||2, ∞ is somewhat abstract. It can easily be shown that

where s is the number of columns of B, which is a crude upper bound. Using this and the
argument in the proof of theorem 4, if

and λn ≥ n−(1−3α0)/2 log(n) and λn ≪ dn, then the conclusion of theorem 4 holds.

A.1. Proof of theorem 1
Part (a) of theorem 1 follows the standard law of large numbers and central limit theorem.
Now we prove the second part under assumptions 1–4.

By assumption 2,

(20)
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Let Xj denote the jth column vector of the design matrix X. For a large constant c, consider

the event . Under the event , it follows from equation
(20) that

Together with the fact n−1 ||ε||2 → σ2, we obtain

Hence it suffices to show that P( ) → 1 as n → ∞ for some constant c. Observe that, by
assumptions 3 and 4, for each j,

Using Bernstein’s inequality (e.g. lemma 2.2.11 of van der Vaart and Wellner (1996)), we
have

(21)

For sufficient large c, we have 4ba2L2c−2n−1 + 2aLc−1 √log(p/n) < 1 since log(p/n) is
bounded. Therefore, the power in equation (21) goes to −∞ as p → ∞. It follows that

.

Next we show that the second part of the theorem still holds under assumptions 5 and 6
instead of assumptions 3 and 4. It is sufficient to verify that P( ) → 1 as n → ∞ for some
constant c. The key step is to establish the inequality

(22)

for each j = 1, …, p.

Note that
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for α > 1 and random variables X and Y. Thus, for any t ≥ 1 and each i and j,

If X is a non-negative random variable with its distribution F(t) and tail probability P(X > t)
≤ C exp(−t) for some constant C > 0 and each t ≥ 1, then by integration by parts

As a result, it follows that, for each i and j,

Thus, for each positive integer j and m ≥ 2,

Theorem 1 is proved.

A.2. Proof of theorem 2
Define sequences of events  = {M0 ⊂ M ̂1},  = {M0 ⊂ M ̂2} and  =  ∩ . On the
event , we have

and
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where ε(1) and ε(2) correspond to y(1) and y(2) respectively. Decompose now
 on the event  as

We now prove that .

First, consider the quadratic form S = ξTPξ where P is a symmetric m × m matrix, ξ = (ξ1,
…, ξm)T and ξi (i = 1, …, m) are IID. Assume that E[ξ1] = 0,  and the fourth
moment . Let Pij be the (i, j)th element of the matrix P. Then,

and

where the last inequality holds since .

Observe that . Hence, on the event , we have

and
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Using the Markov inequality, it follows that, under the event ,

Combining with the assumptions ŝ1/n → P 0 and P( ) → P 1, we obtain that

As a result,

Similarly, we conclude that

Therefore, using the last two results, we have

which implies that

The proof of theorem 2 is completed.

To prove theorem 3, we shall use the following lemma. The results were stated and proved
in Meinshausen and Yu (2009) and Bickel et al. (2009).

Lemma 1
Consider the lasso selector β ̂L defined by equation (12) with λn. Under assumptions 1–4 and
7, for λn ∝ σ√log(p)/n, there is a constant M > 0 such that, with probability tending to 1 for n
→ ∞,
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and

A.3. Proof of theorem 3

 can be decomposed as

The classical central limit theorem yields R1 = OP(n1/2). Note that

By equation (21) and lemma 1, it follows that

In addition, by the third conclusion in lemma 1, |R3| = OP {s log(p)}. Therefore, the
conclusion holds.

A.4. Proof of theorem 4

Let  with  be the oracle estimator. The key step is to show
that, with probability tending to 1, the oracle estimator β ̂o is a strictly local minimizer of
Qn,λn(β) defined by equation (16). To prove it, by theorem 1 of Fan and Lv (2011), it
suffices to show that, with probability tending to 1, β ̂o satisfies

(23)

(24)
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(25)

where  and .

Let  and . Consider the events

and

Observe that . Then, we obtain  and hence, under
the event 

for some constant c not depending on n. Note that, in the above inequalities, we use that
facts s = O(nα0) and λn ∝ n−(1−α0)/2 log(n).

Since  with  and dn ≫ λn, as addressed in assumption
9, we have, under the event ,

for sufficiently large n. As a result, this leads to ρ̃λn (β ̂1) = 0 and κλn(β ̂1) = 0 and hence
implies that conditions (23) and (25) hold under the event .

Now turn to prove the inequality (24). Under the event  ∩ , we have

Fan et al. Page 26

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(26)

for sufficiently large n. This shows that inequality (24) holds for sufficiently large n under
the event  ∩ . By taking c = √ log{log(n)}, similar arguments to those for theorem 1
lead to

as n → ∞. Thus, we have proven that β ̂o is a strictly local minimizer of Qn,λn (β) with large
probability tending to 1. Consequently, β ̂SCAD = β ̂o.

Now consider the asymptotic distribution of . Observe that .
Under the event  ∩ ,

Hence, we have that

which also implies that . The proof is complete.

A.5. Proof of results (4) and (5)
Let Φ(·) and Fn−2(·) be the cumulative density functions of the standard Gaussian and
Student’s t-distribution with n − 2 degrees of freedom. For large u,

Therefore, u=√log(p/c) satisfies Fn−2(u) < Φ(u) < 1 − c/p. The classical result that 
are IID tn−2-distributions entails that

which, by the choice of u, is further bounded from below by
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Note that  is strictly increasing. It follows that

Result (4) follows from the fact that, when u2 ≤ n + 2,

We now derive the limiting distribution (5). For each x > 0,

Therefore, it suffices to show

(27)

Let ν = n − 2. The following inequalities are helpful to verify the limit (27)

(28)

where

Substituting t = dp + x/√{2 log(p)} into the inequalities (28), it is easy to verify that, under
the condition log(p) = o(n1/2),
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This proves limit (27) and hence result (5).
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Fig. 1.
(a) Densities of the maximum absolute sample correlation γn for various p and (b) densities
of the corresponding estimates  given by equation (1) (all calculations are based on 500
simulations and the sample size n is 50): |, true variance 1;——, p = 10; – – –, p = 100; · - · -
·, p = 1000; —o—, p = 5000
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Fig. 2.
(a) Densities of spurious multiple correlation with the response for various numbers of
spurious variables s and (b) densities of the naive two-stage estimators of variance (all
calculations are based on the stepwise addition algorithm with 500 simulations, n = 50 and p
= 1000): |, true variance 1; ——, s = 1; – – –, s = 2; · - · - ·, s = 5; —o—, s = 10
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Fig. 3.
(a) Densities of the variance estimators based on the naive two-stage approach for various
numbers of spurious variables and (b) densities of RCV estimators of variance (all
calculations are based on 500 simulations using SIS as a model selector and the sample size
n is 50; they show that the biases of the naive two-stage estimator are correctable): |, true
variance 1;——, s = 1; – – –, s = 2; · - · - ·, s = 5; —o—, s = 10
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Fig. 4.
Boxplots of  when data are generated from the null model (17) with p =1000 and (a) n =
50, (b) n = 100 and (c) n = 200 (the number of simulations is 100): ——, true variance 1
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Fig. 5.
Comparison of various methods for variance estimation in model (18) with n = 200 and p =
2000 (ρ = 0.5 and b = 1): presented are boxplots of  based on 100 replications
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Fig. 6.
Sensitivity of model size ŝ on variance estimation for (a) ρ = 0 and b = 1 and (b) ρ = 0.5 and
b = 1 (presented are the medians of naive and RCV two-stage estimators when n = 200 and p
= 2000 among 100 replications): ●, oracle; ○, N-SIS; △, N-LASSO; ●, RCV-SIS; ▲, RCV-
LASSO
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Fig. 7.
Effect of covariance structure on variance estimation for (a) b = 1 and (b) b = 2 (presented
are the medians of naive and RCV two-stage estimators when n = 200 and p = 2000 among
100 replications for various ρ): ●, oracle; ○, N-SIS; △, N-LASSO; ●, RCV-SIS; ▲, RCV-
LASSO

Fan et al. Page 36

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
(a) Medians of various variance estimators when n = 400 and p = 1000 among 100
replications for example 3 (●, oracle; ○, N-SIS; △, N-LASSO; ●, RCV-SIS; ▲, RCV-
LASSO; □, P-LASSO;*, CV-LASSO) and (b) medians of variance of missing variables of
various model selection methods (●, oracle; ○, SIS; □, ISIS; △, LASSO; ●, RCV-SIS; ■,
RCV-ISIS; ▲, RCV-LASSO)
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Fig. 9.
(a) Medians of various variance estimators when n = 400 and p = 10000 among 100
replications (●, oracle; ○, N-SIS; □, N-ISIS; ●, RCV-SIS; ■, RCV-ISIS) and (b) medians of
variance of missing variables of various model selection tools (●, oracle; ○, SIS; □, ISIS; ●,
RCV–SIS; ■, RCV-ISIS)
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Fig. 10.
Estimated standard deviation of benchmark one-step forecast of HPA in San Francisco and
Los Angeles for various model sizes: (a) San Francisco, naive method; (b) San Francisco,
RCV method; (c) Los Angeles, naive method; (d) Los Angeles, RCV method
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