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X-ray microcomputed tomography (mCT) is an invaluable tool for visualizing plant root systems within their natural soil
environment noninvasively. However, variations in the x-ray attenuation values of root material and the overlap in attenuation
values between roots and soil caused by water and organic materials represent major challenges to data recovery. We report the
development of automatic root segmentation methods and software that view mCT data as a sequence of images through
which root objects appear to move as the x-y cross sections are traversed along the z axis of the image stack. Previous
approaches have employed significant levels of user interaction and/or fixed criteria to distinguish root and nonroot material.
RooTrak exploits multiple, local models of root appearance, each built while tracking a specific segment, to identify new root
material. It requires minimal user interaction and is able to adapt to changing root density estimates. The model-guided search
for root material arising from the adoption of a visual-tracking framework makes RooTrak less sensitive to the natural
ambiguity of x-ray attenuation data. We demonstrate the utility of RooTrak using mCT scans of maize (Zea mays), wheat
(Triticum aestivum), and tomato (Solanum lycopersicum) grown in a range of contrasting soil textures. Our results demonstrate
that RooTrak can successfully extract a range of root architectures from the surrounding soil and promises to facilitate future
root phenotyping efforts.

Roots represent the hidden half of plant biology
(Waisel et al., 2002) since soil makes them difficult to
image noninvasively. Understanding the development
of roots and their interaction with the soil environment
is vital to efforts toward food security. Roots provide
anchorage and facilitate acquisition of water and nutri-
ents from the soil. Growing roots explore their local
environment to exploit those resources and as such they
depend on a wide range of soil properties (Lynch, 1995).
However, the complex relationship between roots and
soil is not one sided. Plant roots have a large impact on
the surrounding soil’s physical and biochemical prop-
erties. They stimulate the growth and activity of micro-

organisms and hence affect the regulation of soil organic
matter decomposition (Gregory, 2006a). Furthermore,
roots help develop the stability of soil aggregates and
thus prevent soil erosion.

Many different methodologies have been used to
study the development of roots. Popular techniques
include the use of artificial growth media such as semi-
transparent nutrient agar (Clark et al., 1999; French et al.,
2009) or gellan gum (Clark et al., 2011). While this
overcomes the major problem of root visibility, it is not
representative of a plants’ natural environment. The
most common method used to study the root system of
plants grown in soil is root washing (Smit et al., 2000;
Gregory, 2006b). However, this often leads to the under-
estimation of fine roots through breakage, while infor-
mation about the spatial distribution of roots is lost.
Rhizotrons and minirhizotrons (Vamerali et al., 1999;
Johnson et al., 2001) have also been used extensively but,
while roots are grown in soil, rhizotrons artificially
restrict the direction of root growth to two dimensions.
In addition, observations are limited to the boundary
surface, showing only a small fraction of the entire root
system.

An alternative approach is the use of x-ray micro-
computed tomography (mCT), a nondestructive imag-
ing technique that can visualize the internal structure
of opaque objects. A mCT scanner acquires a series of
projections from different angles, measuring the at-
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tenuation of ionizing radiation passing through the
examined object. These projections are used for the
reconstruction of the CT data in three-dimensional
(3D) space. Data values are expressed in Hounsfield
units and are usually mapped to grayscale intensity
values for visualization purposes (Mooney, 2002).

X-ray mCTallows observation not only of plant roots,
but also of the surrounding soil matrix and associated
pore volume.Many researchers have shown thatmCT is
an efficient tool with which to visualize plant roots
growing in soil (Moran et al., 2000; Gregory et al., 2003;
Jenneson et al., 2003; Tracy et al., 2010), yet there is still a
lack of suitable methods to analyze the resulting data.
The limiting obstacle has been the overlap in x-ray
attenuation values of plant roots and the organic matter
in soil, along with the variations in attenuation of the
x-rays caused by water retained in roots and stored in
the soil pores. Together these have made the automatic
extraction of roots very difficult using current, global-
thresholding-based image analysis approaches. This
has been stressed by Heeraman et al. (1997), who
used a classification approach on a per-voxel basis for
the quantification of root material. Selected voxels
were assigned to different classes representing the com-
ponents contained in the scanned specimen, effectively
building a single model of the x-ray attenuation data
expected from each material. This model is then used to
interpret the remainder of the x-ray data. The approach
is, however, sensitive to noise and requires a clear
differentiation between an object’s grayscale values
and the values of its background. The same applies to
threshold-based methods, which have been extensively
used (Pierret et al., 1999; Lontoc-Roy et al., 2005, 2006;
Kaestner et al., 2006; Perret et al., 2007). Thresholding
alone rarely provides sufficiently accurate results. Thus,
it is often used in combination with additional opera-
tions. For instance, Pierret et al. (1999) and Kaestner
et al. (2006) both used different morphological opera-
tions for postprocessing to determine whether remain-
ing voxels should belong to the final outcome or not.
Lontoc-Roy et al. (2006) and Perret et al. (2007), in turn,
performed an explicit connectivity check to identify
voxels that have fallen within the threshold limits but
are not part of root system. The resulting methods
operate in a bottom-up fashion, starting with the
raw data and moving toward root descriptions through
a sequence of operations, each applied to the entire
sample.

Bottom up and top down define different data or
information processing strategies. In a top-down ap-
proach, a representation of an object is built from
previously available data and is used to control detec-
tion of further objects of the same class. A top-down, or
model-driven, process searches the incoming data for
elements that match some model of the target object or
class. In a bottom-up or data-driven approach, local
image-based criteria are used to define and succes-
sively refine groups of pixels that are likely to belong
to the same class. This is often implemented as a fixed
pipeline comprising multiple processing steps. The

RootTrace system of French et al. (2009), for example,
takes a top-down approach to the analysis of color
images of plant roots, while EZ-RHIZO (Armengaud
et al., 2009) takes a bottom-up approach. The bottom-
up approach is common in image analysis, but suffers
several drawbacks. For example, errors tend to accu-
mulate as each process introduces some inaccuracy.
These are typically addressed by introducing interac-
tive error correction tools. Manual correction, how-
ever, is often time consuming, as incorrectly classified
objects are frequently small and usually distributed
across the data set.

We present a new, top-down approach to the seg-
mentation of mCT scans of plant roots growing in soil.
We view the volumetric mCT data as a sequence of x-y
cross-sectional images aligned along the z axis. As the
image stack is traversed, root cross sections appear to
move around the image, those movements reflecting
the shape of the scanned root. Adopting this view of
the data allows methods and strategies developed for
use in the visual tracking of moving objects to be
applied to the problem of tracing plant roots in three
dimensions. The resultingmethod is less susceptible to
classification errors arising from overlaps in attenua-
tion values between roots and soil caused by the
presence of water and organic material: The tracking
framework focuses analysis on the root. The use of
multiple, local models of root grayscale, in the form of
histograms of the x-ray attenuation values found
within root segments, makes the approach robust to
variations in attenuation across the root system archi-
tecture. The technique requires only a single mouse
click to initialize tracking by indicating, in the first
image, the top of the root system.

Testing and validation of the approach are presented
and the resulting software, RooTrak, is shown to work
well on a range of root architectures from a variety of
plant species crucially grown in a range of contrasting
soil textures for the first time.

RESULTS AND DISCUSSION

Root Architecture Recovery Using Visual Tracking

The key feature of the proposedmethod is the level-set
segmentation technique (Sethian, 1999). The proposed
root tracking algorithm is based upon the level-set
method (Sethian, 1999). The level-set method represents
the boundary of a given shape as the intersection of some
functionFx,y,t with the plane t = 0. Points on the x-y plane
for which is negative lie inside the shape, while those
with positive values are outside. Changes are made to
the boundary curve, not by direct manipulation of the
points lying on it, but by changing, or evolving the level-
set function F. Level-set methods are widely used in
image processing and analysis, where the goal is usually
to evolve a level-set function until the associated bound-
ary, or front, fits over some target feature(s) in the input
image.

Mairhofer et al.

562 Plant Physiol. Vol. 158, 2012



In our novel variation of the level-set method, the
level-set function evolves on the basis of the Jensen-
Shannon (JS) divergence (Lin, 1991). JS divergence
provides a measure of the similarity of two data distri-
butions, in this case two histograms of mCT density
values. The first of these is a previously constructed
model of the distribution of densities expected within a
root segment. The second is the distribution found
around the front created by a level-set function evolv-
ing to fit to an x-y slice of a mCT data volume. Pixels
around this boundary are therefore required to be
consistent with a model of the distribution of x-ray
attenuation values expected from root material.
Once the level-set method has fitted a front to the

current slice, identifying the boundary of a section
through a root, attention turns to the next image. Since
both the position and boundary shape of a root object
can vary through the stack, the level-set function needs

to evolve from the previous state to fit the new root
segment. A new level-set function is derived from the
previous one, and the level-set method applied again.
This process is applied to each image, moving down
the z axis of the stack, simultaneously identifying and
tracking moving root sections and so tracing out the
3D root architecture. Root branching is handled by the
level set’s ability to adapt to topological changes in
the front. Interested readers desiring more details of
the level-set method and the modifications made here
will find a comprehensive description in the Supple-
mental Material S1, available online.

Updating the Root Appearance Model

The JS divergence (Lin, 1991), on which the evolu-
tion of the level-set function is based, uses an estimate
of the probability density function of the root x-ray

Figure 1. The left image shows histograms of the grayscale intensity of a single root as it appears in each slice of a mCT volume
(maize). The middle image shows threshold boundaries based on the grayscale intensities of the first root object. If this criterion
were applied the root would only be partially extracted. The right image shows the data that would be considered root if a
decision criterion based on theminimum andmaximum grayscale intensity of the sample were used. Other materials are likely to
be extracted as well.

Table I. X-ray mCT scanner settings and image data properties

Experimental set up: plant species, soil textural type, and x-ray mCT scanner settings. Plants were grown in an environmentally controlled growth
room with 16-/8-h light cycle (*, greenhouse). All plants were imaged in soil with water content approximately at field capacity.

Plant Species Wheat Wheat Wheat Maize* Tomato Tomato

Soil textural type Sand Sand Sand Loamy sand Clay loam Loamy sand
Voltage 130 kV 130 kV 130 kV 80 kV 110 kV 110 kV
Current 90 mA 90 mA 110 mA 160 mA 180 mA 180 mA
Filter 1 mm aluminum 1 mm aluminum 1 mm aluminum None 0.1 mm copper 0.1 mm copper
No. of projections 1,440 1,440 1,440 1,200 1,200 1,200
Resolution (per voxel) 28.75 mm 28.75 mm 28.75 mm 44.23 mm 23.91 mm 23.91 mm
Detector exposure time 1,000 ms 1,000 ms 1,000 ms 250 ms 1,000 ms 1,000 ms
Binning mode 1 3 1 1 3 1 1 3 1 2 3 2 1 3 1 1 3 1
Signal averaging 4 (1 skip) 4 (1 skip) 4 (1 skip) 6 (3 skip) 1 (0 skip) 1 (0 skip)
Images in stack after reconstruction 1,800 1,800 2,000 771 1,313 1,698
Image dimension after reconstruction

(pixels)
864 3 864 864 3 864 876 3 872 678 3 668 1,388 3 1,404 1,404 3 1,380
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attenuation values as reference. The easiest way of
defining such a model is to select a representative set
of voxels corresponding to root material before pro-
cessing begins and use their grayscale intensity values
to create a model that is employed throughout the
segmentation. Unfortunately, this approach is not viable
as the intensity values can change across the root system
architecture (and along individual root branches) as the
soil and root moisture content and soil organic miner-
alogy matrix changes. Figure 1 shows the intensity
distribution of a single root obtained at different soil
depths. Setting decision criteria based on the appear-
ance of a root object in a single slice is unlikely to result
in the entire root system being extracted. On the other
hand, if criteria are based upon the minimum and
maximum grayscale intensity present at any location of
the root system, a wide range of nonroot material will
be incorrectly marked as root material. This highlights
why methods based on global information, such as
thresholds or a single root appearance model (e.g.
Heeraman et al., 1997) cannot extract roots accurately:
It is necessary to update the root model while tracking
root branches through the mCT volume. In addition,
each object has also to be differentiated from others
found within the same image slice.

The root model used to drive the evolution of the
interface is built from the grayscale values of those
voxels identified as root material in the previous
image. It is assumed that those values do not change
excessively between two consecutive images, but vary
smoothly through the stack (Fig. 1). A special case is
the very first image, for which no previous root model
exists. Here, the root model is taken from the pixels
underlying the user-defined start points. The precise
location of start points in the first image does not
usually affect the overall segmentation, as long as they
are each placed inside a root object.

Each object being tracked must be aware of its
grayscale intensity distribution and therefore, to dif-
ferentiate between multiple root objects, the classical
two-pass connected component algorithm (Rosenfeld,
1970) is used to build an intensity distribution model
for each root section every time a new image is loaded.
By doing so, different root objects are distinguished
and so are their interfaces. Thus it is possible to evolve
the level-set function using different models for each
root object.

Updating the root model is an inevitable step, yet it
conceals potential problems. Noise or small areas of
nonroot material might be included in the probability
density distribution. These errors can accumulate and
result in a model that is no longer an appropriate
representation of the tracked root. Should this happen,
the level-set method will segment the current slice
incorrectly. This will manifest itself as a sudden change
in the perceived shape of the root cross section. An
additional test is therefore performed. The assumption
is made that in normal situations the shape of a root
object changes only slightly, if at all, between two
consecutive images. At the high resolutions achieved

when using mCT, we believe this holds; images are
typically separated by ,50 mm. A Fourier shape
descriptor technique (Gonzalez and Woods, 2001) is

Figure 2. Root sections recovered from using RooTrak. Highlighted
regions represent identified plant roots. The very first image frame in each
sequence shows the stem of the plant, shortly before entering the soil
where the plant’s root system starts. A, Wheat in sand—frame: 10 (0.28
mm), 310 (8.91mm), 610 (17.53mm). B,Wheat in sand—frame: 10 (0.28
mm), 310 (8.91 mm), 610 (17.53 mm). C, Wheat in sand—frame: 10
(0.28mm), 610 (17.53mm), 1,210 (34.78mm). D,Maize in loamy sand—
frame: 10 (0.44 mm), 110 (4.84 mm), 210 (9.24 mm). E, Tomato in clay
loam—frame: 10 (0.24mm), 260 (6.24mm), 510 (12.24mm). F, Tomato in
loamy sand—frame: 10 (0.24 mm), 260 (6.24 mm), 510 (12.24 mm).
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adopted to compare root sections. Only when the
shapes extracted from consecutive slices are consid-
ered similar is the root model update accepted, other-
wise the tracker continues with the previous model.
This is a conservative strategy; RooTrak will not per-
form a model update that may have caused a signif-
icant change in the perceived shape of the root.

Evaluation of RooTrak

Samples from different plant species grown in dif-
ferent soil textural types were scanned using a high-
resolution x-ray mCTsystem (Nanotom, Phoenix x-ray,
GE Measurement and Control Systems). The time
taken to scan a sample depends on the system settings
and operation mode, and in this case varied between
approximately 15 min (fast scan mode—used for to-
mato [Solanum lycopersicum]) and approximately 60
min (normal scan mode—used for wheat [Triticum
aestivum]). While fast scans typically require less time
as the sample revolves continuously while scanning,
the quality of the images produced decreases (through

increased noise). The time taken to process the result-
ing CT data depends on image size, number of images,
and amount of root material (i.e. approximately 15min
for the tomato grown in loamy sand and approxi-
mately 60 min for the wheat sample). The plants and
soil types used in the experiment, as well as the
scanner settings for imaging the samples are listed in
Table I.

Figure 2 shows sample frames extracted from the
mCT data summarized in Table I. Root material iden-
tified by RooTrak is highlighted, and the differences
between soil types are clear from the surrounding
intensity values. The root descriptions obtained by
RooTrak are given as stacks of image segments. How-
ever, it is difficult to get a clear idea of the extracted
root system by traversing the sequence of images. A
volume-rendering technique, known as volume ray
casting and based on the method described in Krüger
and Westermann (2003) was therefore implemented.

Figure 3 shows a visualization of the root system
architecture of a variety of plant species in 3D space,
using the above-mentioned volume-rendering tech-

Figure 3. 3D visualization using volume ray casting of data extracted by RooTrak. A, Wheat in sand (a = 0.06; b = 0.32;
Supplementary Video S1). B, Wheat in sand (a = 0.64; b = 0.36; Supplementary Video S2). C, Wheat in sand (a = 0.64; b = 0.36;
Supplementary Video S3). D, Maize in loamy sand (a = 0.92; b = 0.42; Supplementary Video S4). E, Tomato in clay loam (a =
0.61; b = 0.47; Supplementary Video S5). F, Tomato in loamy sand (a = 0.68; b = 0.45; Supplementary Video S6).
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nique. RooTrak is able to visualize the contrasting
fibrous and herring-bone root systems of monocot and
dicot species, respectively. It is worth noting that the
soils used in this study are typical United Kingdom
field soils and not artificial media such as washed
sands that have been used in many previous studies.
Importantly we observed no difference in RooTrak
root segmentation efficiency depending on soil type,
which might have been expected since soil water
content, a previously reported limitation of this tech-
nique, is a function of soil texture. It should be noted
that roots do not appear perfectly tubular all the time.
This is due to the direction in which the cross section is
taken and the complexity of branching structures, but
also because of the nature of data representation. A
voxel can sample two or more different components
and as such the resulting intensity value is an average
of all included values. The resolution at which data are
captured or displayed also has a great influence, be it
the two-dimensional image stack of mCT data or the
3D visualization of an object. Down-sampled data

usually looks smoother than high-resolution data, as
details disappear. Note that the quality of the rendered
data can vary significantly between different visuali-
zation techniques, introducing visual artifacts or leav-
ing out important details, yet the 3D structure and
complexity of the extracted root system architecture is
still captured. It should be stressed that extraction of
the descriptions shown in Figure 3 each required only
a single mouse click from the user.

To determine the success of RooTrak, its output
should be compared to that obtained from other
methods. Unfortunately, none of the previously reported
software tools discussed here have been made publicly
available. However, to form a point of comparison for
the proposed tracking method, global thresholding was
applied to each of the samples shown in Figure 3.
Threshold boundaries were selected manually (compare
with Lontoc-Roy et al., 2005, 2006), the operator trying to
include as much root material as possible while at the
same time reducing the amount of nonroot material
extracted. Global thresholding is a very basic operation
and therefore, in addition, a connectivity constraint
based on a 26 neighborhood (compare with Lontoc-
Roy et al., 2006; Perret et al., 2007) was applied. We
believe that together these operations form a common
denominator of previous root extraction methods from
mCT data, though they do not correspond exactly to any
given published technique. Root voxels were counted to
compare the volumes extracted by both methods. The
results are listed in Table II. Figure 4 provides a visual
representation of a wheat plant root system extracted
using global thresholding with connectivity checking
and RooTrak, alongside an image of the root system
obtained by washing the plant free from the surround-
ing soil after the mCT scan. The result of global thresh-
olding is typical: While the root architecture is present in
the segmentation result, it is masked by a great many
incorrectly labeled voxels. In Figure 4 these voxels may
seem to be disconnected from the plant root system.

Table II. Measured volume using global thresholding with
26-neighbor connectivity constraint and RooTrak

Measured volume using global thresholding with a 26-neighbor
connectivity constraint and RooTrak. The volume was calculated by
counting the number of voxels and multiplying by the voxels’ size
cubed.

Plant Species
Thresholding +

Connectivity (Volume)
RooTrak (Volume)

mm3

Wheat 573.69 120.88
Wheat 558.75 76.94
Wheat 693.07 147.53
Maize 3,600.64 378.37
Tomato 270.24 22.58
Tomato 836.29 33.92

Figure 4. Results produced from the wheat scan by global thresholding with a 26-neighborhood connectivity constraint (A) and
RooTrak (B). C, Image of washed root for comparison.
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This, however, comes from the rendering process; in
reality all voxels are connected to each other due to the
applied connectivity constraint.

Extracting Quantitative Information about Root System

Architecture Using RooTrak

Once the root system is successfully extracted from
the surrounding soil, the resulting volumetric repre-
sentation of root system architecture can be analyzed
to quantify root characteristics. Extensive lists of mea-
surable traits are presented in Iyer-Pascuzzi et al.
(2010) and Clark et al. (2011). Some of these measures
can be extracted directly from RooTrak segmentations
and have been computed to obtain biologically mean-
ingful parameters. Root volume can be estimated from
a simple count of the number of root voxels, and gives
an idea of the total mass of the root system. Root
surface area can be calculated by representing the
isosurface of the segmented root system as a mesh of
triangles, using an algorithm known as Marching
Cubes (Lorensen and Cline, 1987). The surface area is
then determined by summing the areas of all triangles
in the mesh. This approximates the area that is in
direct contact with the soil environment. The convex
hull of the root system is obtained using the QuickHull
(Barber et al., 1996) algorithm and its volume esti-
mated using Monte Carlo Integration (Rubinstein,
1981). The convex hull of a root system can be used
to compare and distinguish root systems from differ-
ent plants (Iyer-Pascuzzi et al., 2010). The depth of the
root system is calculated by counting the number of
vertical voxels between the first and the last voxel of
the extracted root system. Using Welzl’s algorithm for
the minimum enclosing circle (Welzl, 1991), it is pos-
sible to determine the root system’s maximum width,
reflecting the maximum horizontal distance a root
system traveled when exploring its environment for
resources. In addition, the centroid of the root voxels is

determined, which is the geometric center of an object
and corresponds to its center of mass, if the mass per
unit volume is constant throughout. Figure 5 shows
some of these measurements applied to RooTrak’s
segmentation of the root system of the wheat plant
shown in Figure 3A.

CONCLUSION

We have presented a new strategy for the extraction
of root systems from x-ray mCT images. The RooTrak
approach exploits visual-tracking techniques, employ-
ing multiple models of the appearance of root material
in mCT data. Models constructed from root sections
identified in one frame are used to seek root material
in the next. The technique relies upon a novel combi-
nation of level-set tracking with the JS divergence. A
key advantage of the level-set approach is its ability to
deal appropriately with targets (in this case root sec-
tions) splitting and merging, while the JS test com-
pares model and image data in a principled fashion.
The resulting root extraction method requires minimal
user interaction and is able to adapt to local variations
in x-ray attenuation.

RooTrak was tested on a variety of plant species with
monocot and dicot root architectures growing in dif-
ferent soil textural types that represent a large portion
of all United Kingdom soil types. Nevertheless, the
proposed local, adaptive tracking method (instead of
global voxel classification) was shown to be suitable for
this task. Our algorithm was able to extract both coarse
and fine roots, limited only by the resolution of the
scanner.

The size of the smallest possible root that can be
extracted using RooTrak is primarily data dependent.
If very fine roots are visible in the image stack, then
they can reasonably be expected to be recovered by the
presented tracking method. Thus, the smallest size
depends on the resolution at which the sample is

Figure 5. Visualization of quantified root characteristics on an extracted wheat root system. A, Convex hull. B, Maximum root
system depth. C, Maximum root system width. D, Centroid and its vertical center line.
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scanned. Modern x-ray mCT scanners have the capa-
bility of imaging data with a resolution ,0.5 mm, thus
making it theoretically possible to detect even root
hairs. Such a high resolution, however, comes with the
cost of a limited sample size, which otherwise would
exceed the data volumes that can be handled by today’s
technology. A cubic sample of 1-cm side length, scanned
using a resolution of 0.5 mm, would consist of 20,0003

voxels, requiring several terabytes of storage, not to
mention the great amount of time needed for pro-
cessing.

Global thresholding with 26-neighbor connectivity
was applied to the collected dataset and the resulting
segmentations compared to those provided by RooTrak.
Thresholding and connectivity constraints resulted in a
much larger volume of the sample being considered
root material, compared to the volume obtained by the
proposed technique. The reason for this is that the
variation in mCT data values associated with root ma-
terial (Fig. 1) forces the user to specify that quite a wide
range of gray values be considered root to avoid pro-
ducing only a partial segmentation. When thresholds
are set to encompass all values that arise from root
material at some point in the data volume, they invari-
ably capture nonroot voxels at other locations. This
emphasizes the advantages of the top-down, adaptive
segmentation strategy that arises from adopting a
visual-tracking approach.

Image quality, such as variations in contrast and the
amount of noise perturbing the image, plays an im-
portant role in the extraction of roots. There are several
factors that can influence the quality of images. These
include the composition of the sample (plant species,
soil type), its condition (compaction level, soil mois-
ture content), and the wide range of possible scanning
settings (x-ray energy, number of projection images).
The success of the method is not guaranteed, but our
testing has demonstrated, as with most image analysis
procedures, that the better the image quality, the more
reliable the (root) segmentation process.

In summary, our results demonstrate that RooTrak
can successfully, and with minimal user intervention,
extract a range of root architectures from the sur-
rounding soil. RooTrak supports the computation of a
range of quantitative measures and promises to facil-
itate future root phenotyping for trait-based crop
breeding efforts.

MATERIALS AND METHODS

Plant Growth

Wheat (Triticum aestivum), maize (Zea mays), and tomato (Solanum lycoper-

sicum) were germinated in petri dishes and after 2 d planted in plastic columns

filled with sand, loamy sand, or clay loam sieved to,2mm. All plants grew in

environmental controlled growth rooms with 16-/8 light cycle at a temper-

ature of 26�C and were scanned 10 d after germination. The only exception is

the maize plant used in the experiment. The maize grew in a greenhouse

under natural photoperiods and was scanned 21 d after germination. The

water status of the samples at the point of imaging was approximately at field

capacity.

Imaging

All mCT data were acquired at the University of Nottingham using a

Nanotom, Phoenix x-ray scanner. Scanning resolution varied between 23.91

and 44.23 mm, voltage from 80 to 130 kV, and current from 90 to 180 mA. At

least 1,200 projections were used in each case. Details of each scan are

provided in Table I.

Access to RooTrak Software

The RooTrak software and sample data sets may be obtained from www.

rootrak.net.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Material S1. Detailed description of the level-set method

and its modification for visual tracking as implemented and used by the

RooTrak software tool.

Supplemental Video S1. Video showing the segmentation of a wheat root

from sand (Fig. 3A) using RooTrak.

Supplemental Video S2. Video showing the segmentation of a wheat root

from sand (Fig. 3B) using RooTrak.

Supplemental Video S3. Video showing the segmentation of a wheat root

from sand (Fig. 3C) using RooTrak.

Supplemental Video S4. Video showing the segmentation of a maize root

from loamy sand (Fig. 3D) using RooTrak.

Supplemental Video S5. Video showing the segmentation of a tomato root

from clay loam (Fig. 3E) using RooTrak.

Supplemental Video S6. Video showing the segmentation of a tomato root

from loamy sand (Fig. 3F) using RooTrak.
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