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The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array
of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to
manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide
association studies (GWAS) for kernel starch, protein, and oil in the maize nested association mapping population, composed
of 25 recombinant inbred line families derived from diverse inbred lines. Joint-linkage mapping revealed that the genetic
architecture of kernel composition traits is controlled by 21–26 quantitative trait loci. Numerous GWAS associations were
detected, including several oil and starch associations in acyl-CoA:diacylglycerol acyltransferase1-2, a gene that regulates oil
composition and quantity. Results from nested association mapping were verified in a 282 inbred association panel using both
GWAS and candidate gene association approaches. We identified many beneficial alleles that will be useful for improving
kernel starch, protein, and oil content.

Maize (Zea mays) is the world’s most important pro-
duction crop (faostat.fao.org): Its starch, protein, and oil
are essential in supplying adequate food and nutrition to
both humans and animals, andmaize starch has recently
become an important feedstock for ethanol production.
Altering starch content can lead to higher yields, spe-
cialty industrial applications, and improved sweet corn
varieties, while increased protein content and aug-
mented levels of essential amino acids improve nutri-
tional quality. Growing demand for healthy cooking oil
can be met by improved oil content and composition.

Substantial effort has been spent to develop maize
varieties thatmeetmarket demands formodified kernel
composition. Specialty maize germplasm with unique
kernel composition traits has been developed by ex-
ploiting mutations affecting kernel grain composition
and quality, including opaque2 (o2), which increases Lys
content (Mertz et al., 1964), amylose-free waxy1 (wx1;

Lambert, 2001), sugary1 (su1), sugary enhancer (SE), and
shrunken2 (sh2), which are responsible for sweet corn
(Schultz and Juvik, 2004), and linoleic acid1 (ln1) with an
altered fatty acid ratio (Poneleit and Alexander, 1965).
Use of specialty maize germplasm with unique kernel
composition has been limited, however, due to difficul-
ties in developing agronomically superior germplasm.
Future progress in kernel composition improvement
will depend on understanding and exploiting quanti-
tative trait loci (QTLs) for kernel composition traits.

The complex genetic architecture of starch, protein,
and oil content has been demonstrated in the inbred line
(IL) long-term selection experiment, in which more than
100 generations of recurrent selection has increased oil
and protein content to approximately 20% and 27%,
respectively (Moose et al., 2004). The continued pheno-
typic response of kernel composition provides convinc-
ing evidence that these traits are controlled by many
genes. This is further demonstrated by the numerous
starch, protein, and oil QTLs detected in studies involv-
ing lines derived from the IL long-term selection pop-
ulations (Goldman et al., 1993, 1994; Séne et al., 2001;
Laurie et al., 2004; Hill, 2005; Dudley et al., 2004, 2007;
Dudley, 2008; Clark et al., 2006; Wassom et al., 2008).
Little is known, however, about the causative genetic
factors underlying kernel composition QTLs.

Two publically available maize genetic resources,
the nested association mapping (NAM) population
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(McMullen et al., 2009) and the 282 IL association panel
(AP; Flint-Garcia et al., 2005), were developed for high-
power, high-resolution QTL analysis. The NAM popu-
lation was developed by crossing 25 diverse founder ILs
to the reference inbred B73 and producing 25 recombi-
nant inbred line (RIL) families. The presentNAMgenetic
map is based on 1,106 single nucleotide polymorphisms
(SNPs) assayed on 4,699 RILs. The power and resolution
of joint-linkage mapping in NAM was recently demon-
strated for maize flowering time (Buckler et al., 2009).
The unique structure of NAM also offers an opportunity
to further dissect QTLs using genome-wide association
studies (GWAS; Tian et al., 2011). Release of the first-
generation maize HapMap (Gore et al., 2009) enables
projection of 1.6million SNPs and indels identified in the
NAM founder lines onto the NAM RILs. Use of Hap-
Mapmarkers for GWAS successfully dissected leaf mor-
phology and northern and southern leaf blight QTLs to
the level of individual genes (Kump et al., 2011; Poland
et al., 2011; Tian et al., 2011). The 282 IL AP exploits the
rapid breakdown of linkage disequilibrium in diverse
maize lines, enabling very high resolution for QTL map-
ping via association analysis (Flint-Garcia et al., 2005).
The candidate gene association approach has been suc-
cessful in identifying genes controlling various quanti-
tative traits in maize (Thornsberry et al., 2001; Wilson
et al., 2004; Harjes et al., 2008; Krill et al., 2010; Yan et al.,
2010).
In this study, we evaluated the NAM population and

the 282 IL APs for starch, protein, and oil content. QTLs
were identified by joint-linkage analysis and further
resolved with GWAS in NAM. We report kernel starch,
protein, and oil composition genetic architecture is char-
acterized primarily by additive gene action. The fine
mapping resolution of NAM-enabled GWAS to resolve
an oil QTL on chromosome 6 to the genic level, revealing
an allelic series for acyl-coa:diacylglycerol acyltransferase1-2
(DGAT1-2), a gene involved in oil synthesis. The NAM
analysis was complemented by GWAS on the 282 inbred
AP using 55,000 SNPs. After multiple test correction,
none of the GWAS associations in the AP were signif-
icant. However, SNPs located in specific candidate genes
were significant when the candidate gene association
analysis approach was used.

RESULTS

Phenotypic Assessment of NAM and AP
Kernel Composition

Starch, protein, and oil content was estimated by
near-infrared (NIR) spectroscopy for self-pollinated
seed samples of the NAM population and 282 inbred
AP grown in seven locations spanning 2 y. The Perten
Ethanol Calibration Package contains over 1,700 cali-
bration samples with the following ranges: 7.4%–37.6%
for moisture, 4.9%–15.3% for protein, and 2.2%–3.5%
for oil. The R2 values for the Perten calibrations are all
very high (.0.94) for samples within these ranges. The

proprietary Syngenta starch calibration sample set con-
tained 814 samples ranging from 48.3% to 67.9% starch,
and the R2 value was 0.94 for samples within that range.
After adjusting these calibration sample composition
values to a dry matter basis, the vast majority of our
NAM and AP samples fell within the range of the
calibration, with only 0.7%, 1.2%, and 0.9% of our values
falling outside that range for starch, protein, and oil,
respectively. All composition values were adjusted to a
dry matter basis.

The two NAM sweet corn families (IL14H and P39)
were excluded from analysis due to their extreme kernel
phenotypes. Starch, protein, and oil content among the
NAM founders ranged from 62.3% to 69.6%, 12.3% to
15.3%, and 3.5% to 5.5%, respectively, whereas the
NAM population displayed transgressive segregation
resulting in greater differences among the RILs (Table I;
Supplemental Table S1). Starch, protein, and oil content
among the inbreds in the 282 AP ranged from 59.6% to
70.3%, 11.5% to 17.5%, and 3.1% to 8.2%, respectively
(Table I). In both the NAM population and AP, highly
significant (P , 0.0001) negative phenotypic correla-
tions were detected between starch and both protein
(r = 20.66 and 20.56 for NAM and AP, respectively)
and oil (r = 20.41 and 20.33 for NAM and AP, respec-
tively), and a significant positive phenotypic correlation
was detected between protein and oil (r = 0.32 and 0.29
for NAM andAP, respectively). Broad-sense heritability
for these traits was high in both the NAM population
and AP, ranging from 83% to 91% (Table I).

NAM Joint QTL Linkage Analysis

Joint stepwise regression identified 21 starch, 26
protein, and 22 oil QTLs, which collectively explained
59%, 61%, and 70% of the total variation, respectively
(Fig. 1; Table I). All starch, protein, and oil QTLs were
shared among multiple families, with most QTLs
showing significant effects among three to six families.
Because the founder lines were crossed to a common
reference line (B73), additive allelic effects relative to
B73 can be accurately estimated. In joint-linkage map-
ping, we are mapping QTLs that are linked to the SNPs
being tested. While the SNP markers are biallelic, each
of the 23 populations was allowed to have an indepen-
dent allele by fitting a population-by-marker term in the
stepwise regression and final models. A total of 133
starch, 136 protein, and 114 oil alleles were significant
after false discovery rate (FDR) correction (P= 0.05; Fig. 2;
Supplemental Figs. S1 and S2; Supplemental Tables S5–
S7). All QTL additive allelic effects were small relative to
the amount of variation observed among founders, with
the largest allelic effects for starch, protein, and oil QTLs
being 0.65%,20.38%, and 0.21% dry matter, respectively.
Allelic series, or QTLs displaying both positive and
negative additive allelic effects, were identified in 31%
to 43% of the QTLs, depending on the trait.

We searched for the presence of epistatic interac-
tions in the NAM population by testing all pairwise
marker combinations. Eight significant epistatic inter-
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actions were observed for oil at the NAM level at the
5% FDR (Benjamini and Hochberg, 1995). However,
none of these oil interactions remained significant
when added to the full joint-linkage model. Analysis
of individual families yielded only two family-specific
epistatic interactions for protein that were significant
after FDR correction, but these were likewise not sig-
nificant in the context of the joint-linkage model.

The NAM design provides a powerful test of pleiot-
ropy among overlapping QTL intervals from multiple
traits by correlating the allelic effects across 23 families.
Joint-linkage mapping with 1,106 markers produced
starch, protein, and oil QTL support intervals averaging
9.1 to14.4 cM. The majority of the starch (90%), protein
(85%), and oil (73%) QTL intervals overlapped a second
kernel composition trait and were subsequently tested
for pleiotropy. The high level of pleiotropy was ex-
pected, as starch, protein, and oil make up the bulk of
the kernel’s dry matter. It is mathematically impossible
to achieve a kernel with.100% dry matter, and thus as
the percentage of one trait increases significantly, the
percentage of the other traits must decrease. If two traits
share a QTL due to pleiotropy, the allelic effects at that
locuswill be significantly correlated. Allelic effects were
significantly correlated (P # 0.001) when each pair of
traits was examined (Supplemental Table S8). Each QTL
was also analyzed independently, revealing 12 of 13
(92%) starch/protein, 1 of 8 (13%) starch/oil, 7 of 11
(64%) protein/oil, and 1 of 8 (13%) starch/protein/oil
were pleiotropic (P # 0.05; Supplemental Table S8).

GWAS in NAM and 282 Inbred AP

The NAM design, combined with the increased
marker density provided by HapMap.v1 markers (Gore
et al., 2009), enables further dissection of the joint-linkage
mapping QTL intervals via GWAS. To perform GWAS,
1.6 million HapMap.v1 SNPs and indels identified in the
26 NAM parents were projected onto the NAM RILs
(Tian et al., 2011). Two GWASmethods were tested, each
run on a chromosome-by-chromosome basis accounting
for the presence of QTLs on the other nine chromosomes.
In the first analysis, a single forward regression model
was developed for each trait based on the complete RIL
data set (23 complete NAM families). The single forward
regressionmethod identified 33 starch, 31 protein, and 43
oil SNP associations (Supplemental Tables S9–S11). In
order to explore a wider range of models, a second
analysis was conducted based on 100 random subsam-
ples containing 80% of the RILs from each family. The
subsamplingmethod yielded 127 starch, 118 protein, and
135 oil SNP associations with resample model inclusion
probability (RMIP) $ 0.05 (Supplemental Tables S12–
S14). More than 80% of all associations from the single
regression analysis were also identified in the subsam-
pling analysis (Supplemental Tables S9–S11).

NAM GWAS results were compared to the NAM
joint-linkage QTL intervals. Between 47% and 100% of
the SNPs selected by the 100 subsample method over-
lapped with NAM joint-linkage QTL intervals, depend-
ing on the RMIP level and trait (Supplemental Fig. S3).

Table I. Means, ranges, difference within range, and broad-sense heritability estimates for percent starch, protein, and oil kernel composition best
linear unbiased predictors on a dry matter basis in the NAM population and 282 inbred AP

Number of QTLs detected in NAM by joint-linkage analysis for each trait with their respective R2 values explaining the amount of genetic variation
detected by the QTLs.

Trait Population Mean Range Difference
Broad-Sense

Heritability
QTLs R2

Starch NAM founders 66.3 62.3–69.6 7.3 —
NAM RILs 67.7 59.7–73.0 13.3 0.85 21 59.1
AP 66.5 59.6–70.3 10.7 0.88

Protein NAM founders 13.7 12.3–15.3 3.0 —
NAM RILs 13.6 10.8–17.7 6.8 0.83 26 61.0
AP 14.0 11.5–17.5 6.0 0.87

Oil NAM founders 4.4 3.5–5.5 2.0 —
NAM RILs 4.2 2.8–6.4 3.6 0.86 22 69.7
AP 4.4 3.1–8.2 5.2 0.91

Figure 1. Joint-linkage QTL analysis for kernel
starch, protein, and oil content in NAM. Gray
circles, Location of centromeres; vertical lines,
chromosome boundaries; horizontal units, centi-
Morgans (cM); vertical units, log of odds (LOD;
see also Supplemental Tables S2–S4).
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Between 54% and 62% of SNPs selected by both the
subsampling and single forward regression GWAS
methods overlapped the starch, oil, and protein NAM
joint-linkage QTL intervals, respectively (Fig. 3).
Although the joint-linkage genetic QTL intervals in

NAM were relatively small (average 9.1–14.4 cM),
several intervals encompassed over 100 Mb of DNA
sequence (Supplemental Tables S2–S4). In most cases,
intervals that encompass large genomic regions corre-
spond to low recombination regions, often representing
centromeric regions (Gore et al., 2009). GWAS analysis
with NAM was able to further dissect several of the
QTL intervals overlapping large genomic regions into
substantially smaller genomic intervals (Fig. 3).
Complementing the NAM analysis, we conducted

an association analysis of kernel composition traits in
an AP comprised of 282 ILs (Flint-Garcia et al., 2005)
genotyped with the MaizeSNP50 BeadChip (Illumina
Inc.). Removal of nonpolymorphic and low-quality
SNPs resulted in a dataset of 51,741 SNPs that were
used for GWAS employing the mixed linear model
(MLM) method (Q+K; Yu et al., 2006) to control for
population structure. None of the 51,741 genome-wide
associations were significant for any of the traits after
a multiple test FDR (P = 0.05) correction was applied
(Benjamini and Hochberg, 1995).

Underlying Genetic Architecture

The ultimate goal of our QTL study was to identify
genes underlying kernel composition traits. We iden-

tified NAM GWAS associations in several genes that
are known to be important enzymes in biochemical path-
ways that influence starch, protein, and oil kernel
content such as DGAT1-2 (RMIP 0.67), carbonic anhy-
drase (RMIP 0.59), Suc synthase (RMIP 0.36), pyruvate
kinase (RMIP 0.23), b-amylase2 (RMIP 0.20), nitrate
reductase (RMIP 0.07), and a-amylase (RMIP 0.06;
Buchanan et al., 2000; Supplemental Tables S12–S14).
Additionally, several significant GWAS associations
were located within transcription factors, zinc finger
binding proteins, kinases, and the histone H1 variant
H1.2, all of which regulate complex biochemical path-
ways (Supplemental Tables S9–S14).

We explored the relationship between the joint-
linkage oil QTLs on chromosome 6 (NAM marker
m708; PZA03461.1) and a gene previously identified to
affect oil content and the ratio of oleic:linoleic acids
(Zheng et al., 2008). The QTL was the most significant
joint-linkage QTL in our experiment and overlaps a
previously identified locus, ln1, confirmed to encode a
type I acyl-CoA:diacylglycerol acyltransferase located
at chromosome 6: 105,013,351 to 105,020,258 (B73
RefGen_v1; (Schnable et al., 2009), which is involved
in the Kennedy pathway for triacylglycerol biosynthesis
(Zheng et al., 2008). The authors of the latter study
identified a functional Phe insertion in the C terminus of
the protein that resulted in a high oil allele of DGAT1-2
with 0.29% additive genetic effect. The NAM joint-
linkage QTL on chromosome 6 overlapping DGAT1-2
showed a distinct allelic series ranging from20.05% to
0.21% (Fig. 4A). The 23 NAM founders used in this

Figure 2. Heat map displaying addi-
tive allelic effects for oil content QTLs
for the 23 NAM founders relative to
B73. The top horizontal axis lists the
chromosome and genetic map position
for each QTL peak, and the bottom
axis shows the NAMmap SNP selected
by stepwise regression. The vertical
axis displays the 23 inbred NAM
founder lines sorted in increasing per-
cent oil content on a dry matter basis.
Allelic effects are color coded based
on 0.05% increments.
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study were genotyped for the indel conferring the Phe
insertion, and the four founders (M162W, Oh7B, Ky21,
and Tx303) with the highest allelic effects also have the
high oil Phe insertion allele (Fig. 4B).

GWAS on the NAM population further suggests that
DGAT1-2 is responsible for the joint-linkage oil QTL on

chromosome 6. Two biallelic SNPs (105,014,855 and
105,019,473 bp) located in DGAT1-2 were associated
with oil content with RMIP scores of 0.31 and 0.67,
respectively (Fig. 4, C and D). Likewise, two SNPs
(105,019,334 and 105,019,473 bp) located in DGAT1-2
were associated with starch content with RMIP scores

Figure 3. Starch, protein, and oil GWAS in NAM
and the 282 inbred AP compared with the NAM
joint-linkage mapping analysis. The regions
shaded blue (starch), red (protein), and green
(oil) depict NAM joint-linkage QTL support inter-
vals, with their height indicating log of the odds
(LOD) score. Gray boxes along the horizontal
axis, Centromere positions. A, C, and E, NAM,
black diamonds indicate position and magnitude
of associations detected by the subsampling
method (RMIP $ 0.05; Supplemental Tables
S12–S14), and yellow diamonds show the posi-
tion and magnitude of associations selected by
both the 100 subsample and single forward re-
gression methods (RMIP; Supplemental Tables
S9–S11). B, D, and F, 282 Inbred AP, black
diamonds show the position and magnitude of
GWAS SNPs selected by MLM (Q+K) analysis at
P = 0.01.

Cook et al.
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of 0.51 and 0.11, respectively (Fig. 4, C and D). The two
oil SNPs had a positive estimated additive effect rela-
tive to B73 (0.13% and 0.18%), and both starch SNPs had
a negative estimated additive effect relative to B73
(20.32% and 20.38%; Fig. 4D). The negative effects for
starch and positive effects for oil correspond with the
significant pleiotropy (r = 20.59) detected between
overlapping starch (m707) and oil (m708) joint-linkage
QTLs in this region (Supplemental Table S8). The oil
SNP located at 105,019,473 bp and the starch SNP
located at 105,019,334 bp were also selected by the
NAM GWAS single forward regression analysis.
Association of the Phe:indel in DGAT1-2 was not

detectable by GWAS analysis, because the indel was
not present in the HapMap.v1 marker set. To verify
that the Phe:indel was associated with kernel compo-
sition in our diverse inbred panel, a candidate gene
association analysis approach was implemented using

the MLM (Q+K) method on the 282 inbred AP. Consis-
tent with previous results, the Phe:indel was signifi-
cantly associated with oil content (P = 9.99 E-04) but
was not significantly associated with either starch or
protein content (Fig. 4D). In addition, there were two
SNPs from the MaizeSNP50 BeadChip located in
DGAT1-2 at 105,013,351 and 105,019,334 bp. While
these SNPs associations were not significant after a
5% FDR correction in the context of a full genome scan,
they were associated with oil content with P-values of
1.17E-04 and 4.32E-05 when a candidate gene approach
was used (Fig. 4D). The additive allelic effects for these
SNPs were 0.18% and 0.19%, respectively (Fig. 4D).

Comparing the NAM joint-linkage QTL allelic effects
for the 23 founders to the genotypes of the significant
GWAS markers in DGAT1-2 associated with oil content
suggests the presence of an allelic series for DGAT1-2
(Fig. 4, A andB). The four lineswith the highest estimated

Figure 4. QTL and GWAS analyses for the chro-
mosome 6 oil QTL and candidate geneDGAT1-2.
A, NAM additive percentage oil content on a dry
matter basis allelic effect estimates for the m708
QTL interval overlapping the DGAT1-2 genomic
position. Red bars, NAM founders possessing
a significant high oil allele; blue bar, NAM
founder with a significant low oil allele relative
to B73. B, NAM founder genotypes for all markers
displaying significant associations in DGAT1-2.
C, DGAT1-2 gene model showing the position of
markers with significant associations. Note that
DGAT1-2 is on the negative DNA strand. D, NAM
GWAS and candidate gene association analysis
for DGAT1-2. M2 is the Phe:indel previously
determined to be the functional polymorphism
for oil content at this locus (Zheng et al., 2008).
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oil allelic effects (Tx303, Ky21, Oh7B, and M162W) have
non-B73 genotypes at all five significantmarkers detected
by GWAS and candidate gene association analysis. Two
founders with intermediate oil allelic effects, CML228
and Ki3, have non-B73 genotypes at only two markers
located in the N terminus of DGAT (105,019,334 and
105,019,473 bp; Fig. 4, A and B). All other founder lines
have the B73 haplotype for DGAT1-2.

DISCUSSION

Joint-linkage analysis on the NAM population re-
vealed that variation in starch, protein, and oil kernel
content is controlled by at least 21 to 26 QTLs, each
with relatively small effects. We compared our NAM
QTL results with previous biparental QTL studies
where we could determine the physical location of the
markers. Previous QTL studies detected a wide range
(0 to .50) in the number of kernel composition QTLs
(Goldman et al., 1993, 1994; Séne et al., 2001; Dudley
et al., 2004, 2007; Laurie et al., 2004; Clark et al., 2006;
Dudley, 2008; Wassom et al., 2008). We found that less
than one-half of these previously reported QTLs were
detected in NAM (Supplemental Table S15). Several
factors could be responsible for differences in position
and quantity of QTLs detected in NAM versus these
studies, including variation in allelic frequency, map-
ping resolution influenced by the magnitude of linkage
disequilibrium in a population, marker density, envi-
ronmental effects, and QTL analysis methods. The ma-
jority of the previous QTL studies used parental lines
with extreme kernel composition phenotypes derived
from the IL long-term selection program (Goldman
et al., 1993, 1994; Laurie et al., 2004; Hill, 2005; Clark
et al., 2006; Dudley et al., 2004, 2007; Wassom et al.,
2008). The IL high- and low-oil and high- and low-
protein populations were driven apart via artificial
selection, and these populations likely accumulated
additional variation controlled by small effect QTLs
(Moose et al., 2004). This is in contrast to the NAM
population, where the parents were chosen to repre-
sent overall natural variation in maize rather than
variation specific to kernel composition, resulting in
less extreme kernel composition variation and there-
fore fewer QTLs (Yu et al., 2008). While NAM was
successful in capturing a representative sample of
QTLs for kernel composition in naturally diverse
germplasm, the 24 founders analyzed in this study
do not possess all the phenotypic variation present in
maize for kernel composition traits.

Epistatic additive 3 dominance or dominance 3
dominance interactions cannot be measured with the
RIL structure of NAM; however, NAM has excellent
power to detect additive 3 additive epistasis. We
report that additive 3 additive epistatic interactions
are not important for kernel composition traits in
NAM; thus, the genetic architecture of starch, protein,
and oil kernel content in the NAM population is
characterized primarily by additive gene action. The

lack of epistasis for kernel composition genetic archi-
tecture is consistent with other traits studied in NAM:
flowering time, leaf morphology, and northern and
southern leaf blight resistance (Buckler et al., 2009;
Kump et al., 2011; Poland et al., 2011; Tian et al., 2011).
In contrast, previous biparental kernel composition
QTL studies reported minimal to substantial levels of
epistasis (Goldman et al., 1993; Laurie et al., 2004;
Dudley, 2008; Wassom et al., 2008). Variation in num-
ber of epistatic interactions among studies is not un-
common and has been observed for numerous traits
and species (Barton and Keightley, 2002; Holland,
2007; Hill et al., 2008; Phillips, 2008). Interestingly,
two kernel composition studies that used either RILs
or S2 lines derived from the same source exhibited
contrasting levels of epistasis for oil content (Laurie
et al., 2004; Dudley, 2008). The study using RILs found
variation in oil was predominantly explained by ad-
ditive effects, leaving little variation for detection of
epistatic effects (Laurie et al., 2004). In contrast, the
study using S2 progeny had a higher level of oil
variation described by dominant genetic effects and
also detected substantial, nonadditive, epistatic inter-
actions (Dudley, 2008).

One of the greatest challenges in developing varieties
with desirable kernel quality characteristics in major
crops [i.e. maize, wheat (Triticum aestivum), rice (Oryza
sativa), soybeans (Glycine max), barley (Hordeum vulgare),
etc.] is the strong phenotypic correlations among kernel
quality traits that can be attributed to pleiotropic inter-
actions (Simmonds, 1995; Ge et al., 2005; Panthee et al.,
2005). Studies using parental lines derived from the IL
long-term selection program (Goldman et al., 1994;
Dudley et al., 2004, 2007; Clark et al., 2006; Wassom
et al., 2008) suggest that kernel composition is regulated
by a complex genetic network, resulting in strong
phenotypic and pleiotropic interactions, and that it
will be difficult to develop maize germplasm with
high starch, protein, and oil kernel characteristics. Our
analysis in NAM confirms that these traits are signifi-
cantly correlated both phenotypically and genetically
across diverse germplasm (Supplemental Table S8).

The NAM population was specifically constructed for
high-resolution QTL dissection (Yu et al., 2008) and has
proven valuable for GWAS (Kump et al., 2011; Poland
et al., 2011; Tian et al., 2011). Inter- and intra-chromosomal
linkage disequilibrium among SNPs in the NAM
founders was reduced during NAM population devel-
opment through random chromosome assortment and
recombination, thereby reducing spurious unlinked
associations and increasing mapping resolution. Anal-
ysis of linkage disequilibrium in NAM indicated
GWAS resolution will vary but in specific cases ap-
pears sufficient to identify causal genes (Kump et al.,
2011; Poland et al., 2011; Tian et al., 2011). We de-
monstrate the use of GWAS to identify DGAT1-2 as a
strong candidate gene for a 23.5-cM oil QTL (m708;
PZA03461.1) corresponding to an approximately 25-
Mb genomic region on chromosome 6. GWAS identi-
fied two oil and two starch associations in DGAT1-2, a

Cook et al.
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gene previously shown to influence oil content via a
Phe insertion and is responsible for the ln1 mutation
(Zheng et al., 2008). While DGAT1-2 was not shown to
affect starch content in Zheng et al. (2008), joint-linkage
QTL analysis in NAM revealed that the oil QTL (m708;
PZA03461.1) overlapping DGAT1-2 was significantly
pleiotropic with starch (m707; PZB01658.1) and protein
(m707; PZB01658.1; Supplemental Table S8). Detection
of two GWAS SNPs with positive allelic effects on oil
and two GWAS SNPs with negative effects on starch in
DGAT1-2 further substantiates pleiotropic effects on
kernel composition.
We complemented our studies in the NAM popula-

tion with an AP of 282 ILs, using both candidate gene
association and GWAS approaches to verify NAM
GWAS hits. Results from GWAS using the MaizeSNP50
BeadChip produced no significant associations after
performing a multiple hypothesis test correction. How-
ever, candidate gene association analysis proved effec-
tive, as we were able to detect a significant association
between oil content and the Phe insertion previously
identified in DGAT1-2 for increased oil (Zheng et al.,
2008). Two additional SNPs on the MaizeSNP50 Bead-
Chip located in the DGAT1-2 gene were significantly
associated with oil content using the candidate gene
approach.
Results from performing GWAS on both the NAM

population and the AP demonstrate that NAM may
be better suited for detecting associations with small
effects than the AP.While NAM is genetically diverse, it
captures only 80% of the diversity in the AP; thus, true
associations with rare alleles present in the AP are
undetected due to a lack of power. This is supported by
the lower overlap between the NAM joint-linkage re-
sults and the GWAS AP hits (Supplemental Fig. S4) as
compared to the NAM GWAS hits (Supplemental Fig.
S3). Many associations detected by GWAS on the AP are
undoubtedly real, as evident by the DGAT1-2 example.
However, the need for multiple test correction requires
highly significant associations, and as the number of
SNPs available for GWAS approaches millions, it will
become increasingly difficult to detect significant asso-
ciations in an AP of the present population size using
GWAS, especially for QTLs with small effects.
Other than DGAT1-2, we were surprised that we

did not detect additional NAM GWAS associations
with other classical kernel composition genes such as
o2, pyruvate orthophosphate dikinase, amylose-free wx1
(=starch-granule-bound nucleotide diphosphate-starch gluco-
syl transferase), su1 (=isoamylase-type starch-debranching
enzyme), prolamine box binding factor1 (pbf1), sh2 (=ADPG-
ppase), and zein protein genes despite substantial SNP
coverage within or around these genes (Mertz et al.,
1964; Thompson and Larkins, 1989; Vicente-Carbajosa
et al., 1997; Lambert, 2001; Schultz and Juvik, 2004;
Hennen-Bierwagen et al., 2009). We did detect GWAS
associations in several genes that are known to be im-
portant enzymes in biochemical pathways that influ-
ence starch, protein, and oil kernel content [i.e. carbonic
anhydrase (RMIP 0.59); Suc synthase (RMIP 0.36); pyru-

vate kinase (RMIP 0.23); b-amylase2 (RMIP 0.20); nitrate
reductase (RMIP 0.07); and a-amylase (RMIP 0.06)].
Interestingly, the majority of the significant GWAS
associations located within annotated genes were ele-
ments that regulate complex molecular pathways such
as transcription factors, zinc finger binding proteins,
kinases, and the histone H1 variant H1.2 (Supplemen-
tal Tables S9–S14). Transcription factors and zinc finger
binding proteins, such as o2, WRINKLED1 (ZmWRI1),
and pbf1, have already been shown to be key regula-
tors of kernel composition pathways, and kinases
are essential for signal transduction and regulation
of feedback loops (Vicente-Carbajosa et al., 1997;
Manicacci et al., 2009; Pouvreau et al., 2011). Histone
variants, such as the H1.2 gene that we found to be
associated with oil (RMIP; 0.63), are not well charac-
terized for kernel composition; however, chromatin
remodeling has been implicated in regulation of kernel
composition, and histone variants have been shown to
be involved with gene-specific transcription regula-
tion (Ascenzi and Gantt, 1997; Vicente-Carbajosa et al.,
1997; Locatelli et al., 2009; Miclaus et al., 2011). We
propose the prevalence of GWAS associations in reg-
ulatory elements with small effects is related to the
delicate balance necessary for an inbred breeding pro-
gram; breeders must manipulate multiple pleiotropic
traits while simultaneously improving the overall ag-
ronomic performance of a new IL. For example, while
the null mutant allele of o2 results in a dramatic increase
in Lys content, it would likely be selected out of the
breeding population due to its substantial negative
agronomic effects (Gibbon and Larkins, 2005). Selection
of subtle changes in multiple regulatory elements is a
more likely mode of action in a breeding program.

Our DGAT1-2 results provide valuable confirmation
that GWAS in the NAM population is capable of iden-
tifying genes influencing kernel composition QTLs. A
broad inference about the accuracy of NAM GWAS for
kernel composition is limited, however, by the small
number of genes that have been verified to control
natural variation in kernel composition. For example,
we cannot rule out the possibility that the eight addi-
tional significant GWAS SNPs identified in the chromo-
some 6 oil QTL interval (m708; PZA03461.1) that are not
located in the DGAT1-2 gene are in valid candidate
genes, because their function is currently unknown.
Likewise, lack of known genetic factors regulating quan-
titative variation in kernel composition (as opposed to
the classical mutants with large effects) limits our ability
to explore significant GWAS SNPs located outside the
QTL intervals. Further analysis of additional significant
GWAS associations will help determine if the associa-
tions are the result of the biallelic GWAS methods
having more power to detect weak QTL effects versus
the multi-allelic QTLmethods under some conditions or
if they are false positives due to linkage disequilibrium
within chromosomes combined with insufficient SNP
coverage in the causative gene (Gore et al., 2009; Kump
et al., 2011; Tian et al., 2011). Significant SNPs should not
be ignored, as they could represent real QTLs, but
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should be approached with caution, as they may be ab-
errations due to extended linkage disequilibrium. Char-
acterization of candidate genes such as the regulatory
elements previously discussed that are responsible for
kernel composition QTLs will provide valuable infor-
mation that can be used to “train” GWAS to detect genes
associated with kernel composition traits.

We have identified many favorable alleles for improv-
ing starch, protein, and oil content in maize relative to
B73. While B73 had the highest starch content of the
NAM founders, it does not contain all the favorable
alleles at the QTLs we identified. In fact, substituting the
most favorable allele at 12 QTLs is predicted to increase
the starch content of B73 from 69.6% to 79.2%. Evenmore
striking is the potential to increase the oil content of B73
from 3.6% to 7.2% by selecting favorable alleles at 17
QTLs. Themost favorable alleles are dispersed among 10
of the NAM parents in the case of starch and among 12
of the NAM parents for oil. Thus, a large, inter-mated
population of the NAM parents would be required in
order to bring together all these favorable alleles in a
breeding program focused on kernel composition.

In conclusion, the successful resolution of kernel com-
position genetic architecture demonstrates the power of
NAM. Analysis of the DGAT1-2 gene demonstrates
NAM mapping resolution capable of identifying signif-
icant associations between traits and functional genes.
Many of the significant GWAS SNP associations we
detected are located in uncharacterized genes (Supple-
mental Tables S9–S14); hence, better gene annotation of
the B73 reference genome and additional experiments
will be required to determine if these genes indeed in-
fluence kernel composition. As the marker coverage on
the NAM RIL population increases and the location of
recombination events is improved, the ability to detect
additional functional polymorphisms will also improve.
Results from this study can be directly used for the
development ofmaize germplasmwith improved kernel
composition traits.

MATERIALS AND METHODS

Materials and Phenotypic Analysis

Development of the NAM population has been previously described

(Buckler et al., 2009; McMullen et al., 2009). The present study utilized 4,699

RILs genotyped with 1,106 SNPs. Similarly, the 282 IL AP was selected to

represent the genetic diversity found in world wide collections of publically

available germplasm (Flint-Garcia et al., 2005).

The NAM population and AP were planted in seven locations: five

locations in 2006 (Clayton, NC; Columbia, MO; Aurora, NY; Homestead, FL;

and Ponce, PR) and two locations in 2007 (Columbia, MO and Aurora, NY).

Each location was arranged in an augmented lattice and consisted of a single

replicate of NAM RILs, the AP, and appropriate check entries (Buckler et al.,

2009). Two plants of each entry were self-pollinated to avoid zenia effects, and

NIR spectroscopy analysis was performed on whole kernels with a Perten

Diode Array 7200 (DA7200) instrument (Perten Instruments). The wavelength

range assessed by the DA 7200 is 950 to 1650 nm. Each sample was poured into

the sample cup, scanned 4 times, mixed and repacked into the sample cup,

and scanned 4 more times. The two sets of scans were averaged by the

Simplicity software. Starch, protein, oil, and moisture contents were predicted

for each sample using a combination of the Perten Ethanol Calibration

Package for moisture, protein, and oil, and the Syngenta Seeds, Inc. propri-

etary calibration for starch. All composition data were converted to a dry

matter basis. While the raw NIR scans are not available due to the DA 7200

software and the proprietary nature of the seed industry, the raw NIR

estimates are provided in Supplemental Data S1.

Starch, protein, and oil best linear unbiased predictors across environ-

ments were calculated for each line with ASREML version 2.0 software

(Gilmor et al., 2005) and were used as phenotypic inputs for subsequent

genetic analysis. A detailed description of the phenotypic data analysis

conducted in ASREML has been published (Hung et al., 2011). The two sweet

corn families (IL14H and P39) were excluded from all subsequent analyses.

Joint-Linkage Mapping

Genotyping and construction of the NAMmap (McMullen et al., 2009) and

joint-linkage mapping (Buckler et al., 2009) have been previously described.

Briefly, for joint-linkage mapping, appropriate P-values (starch = 1.6 3 1025,

protein = 3.9 3 1025, and oil = 3.3 3 1025) were determined by 1,000

permutations and were used to conduct joint stepwise regression, where the

model contained a family main effect and marker effects nested within

families. The stepwise regression model was refined by a refitting procedure

in order to produce a final model. Significant alleles were determined by a t

test comparison of their parental means versus the B73 allele at P = 0.05. QTL

support intervals were calculated by adding a single flanking marker for the

QTL at a step of 0.1 cM to the full model and testing for significance at the 0.05

level (Tian et al., 2011).

To test for the presence of epistasis, all possible pairwise marker combi-

nations were tested across the NAM panel using a modification of EPISTASY

(Holland, 1998) and significance determined by false discovery rate (FDR; P =

0.05; Benjamini and Hochberg, 1995). In addition, epistasis was evaluated for

each individual family.

Pleiotropy was evaluated by correlating starch, protein, and oil allele

effects for QTLs with overlapping support intervals. Overlapping QTLs with

a significant Pearson correlation coefficient (P , 0.05) were considered to be

pleiotropic across traits.

GWAS

As described in previous reports, GWAS were conducted on the NAM

population by projecting founder SNP genotypes from the maize (Zea mays)

HapMap (Gore et al., 2009) onto the NAM RILs (Yu et al., 2006; Tian et al.,

2011). Briefly, HapMap SNP projections were based on SNP physical

position and genotype of the flanking genetic map markers. Phenotypic

residuals for each RIL were calculated on a chromosome basis by fitting

a model that included QTLs from the other nine chromosomes. Forward

regression analyzing one chromosome at a time was used to identify

significant GWAS SNPs. Significance thresholds for entry into the model

were determined by 1,000 permutations for each chromosome and ranged

from 9.00 3 1027 to 1.23 3 1027 for starch, 1.58 3 1026 to 2.23 3 1027 for

protein, and 1.34 3 1026 to 3.27 3 1027 for oil.

A second GWASmethod used subsampling in order to explore a wider range

ofmultiple SNPmodels (Huang et al., 2009; Valdar et al., 2006, 2009) and has been

successfully applied to GWAS in maize (Kump et al., 2011; Tian et al., 2011). A

random subsample of 80% of the RILs from each family selected without

replacement was subjected to forward regression, as described above. This

procedurewas repeated for 100 subsamples for each chromosome. SNPs detected

as significant in at least five subsamples (RMIP$ 0.05) are presented. The RMIP

statistic is equivalent to the BPP statistic used in previous NAM GWAS studies.

The median of the additive effects and P-values across the 100 analyses was used

to represent the allelic effect and P-value of the associated SNP.

The 282 inbred AP was genotyped with the Illumina MaizeSNP50

BeadChip (Ganal et al., in press), an Infinium-based assay (Peiffer et al.,

2006), containing approximately 56,000 SNP markers dispersed across the

maize genome. The assay was performed according to the manufacturer’s

specifications (Illumina, Inc.), and alleles were called using the Illumina

Genome-Studio V2010.3 software with a locally modified cluster file. Re-

moval of nonpolymorphic and low-quality SNPs resulted in a dataset of

51,741 SNPs used to conduct GWAS in TASSEL 2.1, removing sweet corn

and popcorn lines and SNPs with minor allele frequencies , 0.05 and

employing the MLM (Q+K) method (Yu et al., 2006; Bradbury et al., 2007).

Candidate Gene Association Analysis

Candidate gene association analysis (Thornsberry et al., 2001) was per-

formed on the 282 inbred AP using the MLM (Q+K) method (Yu et al., 2006)

Cook et al.
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in the TASSEL 2.1 software package (Bradbury et al., 2007). Sanger sequencing

was performed as previously described (Yamasaki et al., 2005) to genotype the

DGAT1-2 Phe:indel. Associations were considered significant at P # 0.05.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Heat map displaying additive allelic effects

for starch and protein content QTLs for the 23 NAM founders relative

to B73.

Supplemental Figure S2. Distribution of allele effect size derived from

joint-linkage mapping in NAM for starch, protein, and oil content

relative to B73.

Supplemental Figure S3. Significant SNPs from the NAM subsampling

GWAS method overlapped with NAM joint-linkage QTL intervals.

Supplemental Figure S4. Significant SNP overlap from 282 inbred associa-

tion panel genome scan overlappedwith NAM joint-linkage QTL intervals.

Supplemental Table S1. Means and ranges for percentage starch, protein,

and oil kernel composition best linear unbiased predictors in each NAM

family and parental lines.

Supplemental Table S2. NAM joint-linkage mapping analysis summary

for percentage starch content.

Supplemental Table S3. NAM joint-linkage mapping analysis summary

for percentage protein content.

Supplemental Table S4. NAM joint-linkage mapping analysis summary

for percentage oil content.

Supplemental Table S5. NAM joint-linkage mapping analysis QTL allelic

effects summary for percentage starch content.

Supplemental Table S6. NAM joint-linkage mapping analysis QTL allelic

effects summary for percentage protein content.

Supplemental Table S7. NAM joint-linkage mapping analysis QTL allelic

effects summary for percentage oil content.

Supplemental Table S8. Pleiotropy among percentage starch, protein, and

oil kernel content QTLs.

Supplemental Table S9. NAM GWAS stepwise forward regression asso-

ciations overlap with NAM joint-linkage QTL intervals and NAM

multiple SNP model GWAS for percentage starch.

Supplemental Table S10. NAM GWAS stepwise forward regression asso-

ciations, overlap with NAM joint-linkage QTL intervals, and NAM

multiple SNP model GWAS for percentage protein.

Supplemental Table S11. NAM GWAS stepwise forward regression asso-

ciations, overlap with NAM joint-linkage QTL intervals, and NAM

multiple SNP model GWAS for percentage oil.

Supplemental Table S12. NAM multiple SNP model GWAS associations

(RMIP $ 0.05) and overlap with NAM joint-linkage QTL intervals for

percentage starch content.

Supplemental Table S13. NAM multiple SNP model GWAS associations

(RMIP $ 0.05) and overlap with NAM joint-linkage QTL intervals for

percentage protein.

Supplemental Table S14. NAM multiple SNP model GWAS associations

(RMIP $ 0.05) and overlap with NAM joint-linkage QTL intervals for

percentage oil.

Supplemental Table S15. Overlap between NAM joint-linkage QTLs and

previously identified biparental QTLs.

Supplemental Data S1. Raw NIR kernel composition estimate data from

seven grow-outs of the NAM and association panel.
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