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Using first-principles calculations, we show that topological quan-
tum phase transitions are driven by external electric fields in thin
films of Sb2Te3. The film, as the applied electric field normal to its
surface increases, is transformed from a normal insulator to a to-
pological insulator or vice versa depending on the film thickness.
We identify the band topology by directly calculating the Z2 invar-
iant from electronic wave functions. The dispersion of edge states
is also found to be consistent with the bulk band topology in view
of the bulk-boundary correspondence. We present possible appli-
cations of the topological phase transition as an on/off switch of
the topologically protected edge states in nano-scale devices.

density functional theory ∣ topological edge state

The concept of the topological order in condensed matter phy-
sics has provided a new perspective to the understanding of

the origin of different phases and the exact quantization of Hall
conductance in the quantum Hall effect (1, 2). Recently, nontri-
vial topological orders have been predicted theoretically and con-
firmed experimentally in both two-dimensional (2D) and three-
dimensional (3D) systems with the time-reversal invariance (3–
11). These topologically nontrivial systems, called topological in-
sulators (TIs), have intriguing properties that they develop robust
conducting edge or surface states on the boundary with normal
insulators (NIs) or vacuum following the bulk-boundary corre-
spondence rule (12). These characteristic boundary states have
a topological origin and are potentially useful for the design of
nano-scale devices in spintronics or quantum computations.

Manifestation of the nontrivial topology of occupied bands in
a TI is attributed to the band inversion between occupied and
unoccupied bands by large enough spin-orbit coupling (13). If the
strength of the spin-orbit coupling should be reduced, the band
topology would recover a trivial configuration via gap closing
(14). Thus, modifying the spin-orbit strength can be a method
to control the topology and induce a quantum phase transition
between TI and NI phases. The band topology of a physical
system may also be changed, for example, by adjusting lattice
constants or internal atomic positions (15, 16). Based on this
mechanism, a strain-induced topological phase transition can be
driven if the original system is close to the phase boundary. In the
case of 2D TIs (i.e., quantum spin Hall systems), still another fac-
tor affecting the band topology is an electrostatic scalar potential
or an external electric field as an effective continuous model pre-
dicts that potential difference between upper and lower surfaces
can transform topologically nontrivial thin films of Bi2Se3 into
topologically trivial ones (17, 18). Actually, a model calculation
shows that external electric fields can drive the quantum phase
transition between TIs and NIs in HgTe quantum wells (19). It
has been predicted that thin films of tetradymite semiconductors
recently found to be 3D strong topological insulators can be 2D
TIs or NIs depending on the thickness (20). On the other hand,
because an external field is a convenient controlling parameter in
practical situations to change the band topology, one may ask
whether the band topology of thin films of 3D TIs can be changed
by external electric fields that break the spatial inversion symme-
try. Given that such a control between a TI and a NI phase is
possible, it is important to drive the transition with a relatively

moderate strength of the external field, because a system with
a too large critical field strength would be of no practical value
regarding the application to an on/off device of the robust con-
ducting boundary states at the Fermi level. This question is also
relevant to the effect of a substrate to the topology of a 2D sample
on it (21) because a substrate can induce electrostatic fields
perpendicular to the 2D material.

In this report, using first-principles calculations based on the
density functional theory we study topological phase transitions
driven by external electric fields in thin films of Sb2Te3. We show
that a Sb2Te3 film with trivial band topology (ν ¼ 0) can be trans-
formed into nontrivial phase (ν ¼ 1) and vice versa by applied
electric fields, where ν is the Z2 invariant of a 2D insulator with
the time-reversal symmetry (3, 22). Specifically, three quintuple
layers (QLs) of Sb2Te3 transform from a NI to a TI and four QLs
from a TI to a NI, respectively, if a suitable strength of the electric
field is applied perpendicular to the slab. To figure out the band
topology of each phase, we employ the direct computation meth-
od of the Z2 invariant on a lattice Brillouin zone (BZ) which
is based on the recent development in the lattice gauge theory
(23, 24). Also, we examine the edge state dispersion from the
edge Green’s functions (25, 26) and it is found to be consistent
with the Z2 invariants of the 2D bands.

Results and Discussion
Sb2Te3 is one of the tetradymite semiconductors that are recently
found to be 3D strong TIs, and has a rhombohedral crystal struc-
ture with the space group D5

3d or R3m (13). The material has a
layered structure where each layer has a triangular lattice with a
single atomic species (Sb or Te) and five such layers form one QL
unit (Fig. 1). Covalent bonding is dominant inside each QL, while
the coupling between QLs are predominantly van der Waals in-
teractions. Therefore, these materials can practically be handled
in units of QLs and we will consider a few QLs of Sb2Te3. Fig. 2A
shows the band structure of 3QLs of Sb2Te3. There is a small but
finite gap due to the interaction between upper and lower surface
states. In the present study of 2D TIs, we regard these surface
states as “bulk” states (as opposed to edge states) of 2D thin
films. The gap sizes of 1-6QLs are given in Table 1.

In determining the band topology of these 2D insulators with
the time-reversal symmetry, we note that even though the atomic
structure has the inversion symmetry, it is broken as we apply
an external electric field perpendicular to the slab. So, a simple
parity checking method at time-reversal invariant momenta
(TRIM) is not appropriate to identify the Z2 invariant (8). In-
stead, we follow the prescription proposed by Fukui and Hatsugai
(23) which does not require any additional point symmetry.
Basically, this method calculates the Z2 invariant ν using the
definition given by Fu and Kane (22)
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ν ¼ 1
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A −
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�
mod2; [1]

where A, F, and B− denote Berry connection, Berry curvature and
half the BZ, respectively. This integration is performed on a dis-
cretized lattice in the BZ and then the Z2 invariant ν is given by
the sum of the n-field in half the 2D BZ up to modulo 2; i.e.,

ν ¼ ∑
kj∈B−

nðkjÞmod2; [2]

where the n-field is an integer field defined at each plaquette
having four discrete lattice points in the BZ as its vertices.
The calculation has been done for occupied p-like bands because
other occupied bands are sufficiently separated in energy. Details
of the formalism can be found in refs. 23, 24, 27. The Z2 invar-
iants of a few QLs are given in Table 1. The films are 2D TIs or
NIs depending on the thicknesses mainly due to the subband
structure originated from the quantum confinement effect.

Before discussing the results of the Sb2Te3 thin film in
detail, we first present some generic features of topological phase
transitions. Here, we consider a phase transition by varying an
external adiabatic parameter (the external electric field E⊥ per-
pendicular to the film in our case). A necessary condition for a
topological phase transition in a 2D system is to have a gap-clos-
ing point between the topologically trivial (ν ¼ 0) and nontrivial
(ν ¼ 1) phases. At this gap-closing point, the two fibre bundles
(occupied and unoccupied bands) defined on the 2D torus

(2D BZ) merge together and they exchange their topological
invariants so that their topological invariants are changed after
gap reopening (28). In other words, this kind of topological phase
transition accompanies a (singular) gapless point to allow the
change of topological invariants (which must always be integers;
i.e., discrete values) under continuous deformation. The position
where the gap closing occurs in the BZ is dependent on the sym-
metry of the system. In an inversion-symmetric system, the gap
closing occurs at TRIMs (i.e., at ~k ¼ ~G∕2 with ~G a reciprocal lat-
tice vector) in the BZ, while the gap closes at points other than
TRIMs in an inversion-asymmetric system (29, 30). Because we
are considering thin films with external electric fields, our system
corresponds to the latter case.

Now, we examine thin films of Sb2Te3 when external fields
are present. 3QLs of Sb2Te3 is an example in which a phase tran-
sition occurs from a NI to a TI. As shown in Table 1, 3QLs are
topologically trivial (ν ¼ 0) when E⊥ ¼ 0. Because Sb2Te3 is a 3D
TI, it has topological surface states or Dirac cones on its surface
and they are known to be at Γ̄ in the BZ. In the case of thin films,
there exists an interaction between the Dirac cone states at upper
and lower surfaces, which opens up a small band gap at Γ̄. There-
fore, the conduction band minimum (CBM) states consist of anti-
symmetric states while the valence band maximum (VBM) states
consist of symmetric states. When E⊥ > 0, on the other hand, the
upper (lower) surface Dirac cone states shift upward (downward)
in energy and the band structure shows a Rashba-like splitting
pattern where two Dirac cones centered at different energy va-
lues interact to open a small gap near the Fermi energy (Fig. 2B).
Here, our intention is to change the band characters of the CBM
states and VBM states to drive a topological phase transition.
However, a small E⊥ cannot affect the Z2 invariant of the system,
unless a singularity or a gap-closing point is encountered (29, 30),
because a topological invariant is robust under continuous defor-
mation (it is a global property in the whole BZ). Fig. 3A shows the
band structure of 3QLs with E⊥ ¼ 0.03 V∕A, and the Z2 invar-
iant turns out to be 0 according to our lattice Z2 computation
(Fig. 3E). However, if we further increase E⊥, the Z2 invariant
becomes 1 after we pass the gap-closing point. In Fig. 3 C and
F, the band structure and the n-field configuration of 3QLs with
E⊥ ¼ 0.15 V∕A show that the system is now in a topologically
nontrivial phase (ν ¼ 1). The critical electric field Ec for the
topological phase transition is calculated to be 0.06 < Ec <
0.075 V∕A in 3QLs. On the other hand, a phase transition occurs
from a TI to a NI in 4QLs of Sb2Te3. The 4QL film is in the ν ¼ 1
phase when E⊥ ¼ 0, but turns to the ν ¼ 0 phase when
E⊥ ¼ 0.2 V∕A. Ec is estimated to be 0.125 < Ec < 0.15 V∕A
in this case. To determine Ec more precisely in the Z2 calculation,
much finer k meshes are needed for convergence. Because the
role of the electric fields is to “invert” the VBM and CBM states
regardless of the initial band topology, the phase transition can
be driven in both ways (from a NI to a TI in 3QLs and vice versa
in 4QLs). We also note that 3QLs and 4QLs remain semiconduct-
ing for E⊥≦0.2 V∕A although higher external fields could make
the systems semimetallic.

The n-field configuration (Fig. 3 E and F) is gauge-dependent
while the sum mod 2 in half the BZ is not, because the latter gives
the Z2 invariant of the system which is a physical quantity that
should be gauge-independent. We performed the calculation
using an arbitrary gauge (i.e., the one from the eigenvectors de-
termined by the numerical diagonalization at each k point) and
any other choice of the gauge should give the same Z2 invariant.

Fig. 1. Atomic structure of Sb2Te3 3QLs. An external electric field ~E⊥ perpen-
dicular to the slab induces structural inversion asymmetry to the system.

Fig. 2. (A) Band structure of Sb2Te3 3QLs near the Fermi level. (B) Schematic
picture that explains the interaction between the Dirac cones at upper and
lower surfaces of a thin film. When E⊥ ¼ 0, the two Dirac cones are degen-
erate due to the inversion symmetry and turning on the intersurface inter-
action (green arrow) opens a small gap. If E⊥ > 0, the Dirac cone at upper
(lower) surface of the film moves upward (downward) in energy due to
the different electrostatic potential, which results in a Rashba-like split.

Table 1. The Z2 invariants (ν) and estimated gap sizes of a few QLs
of Sb2Te3

1QL 2QLs 3QLs 4QLs 5QLs 6QLs

ν 0 0 0 1 1 1
gap(meV) 389 107 9 14 11 4
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The topological invariant obtained in the discretized BZ con-
verges to that of the continuum when the size of the k mesh is
large enough (i.e., the size of each plaquette is sufficiently small)
(23, 24). The convergence of the n-field calculation is confirmed
by further increasing the kmesh size and our results are also con-
sistent with the positions of the gap-closing points and the edge
state configurations.

The band topology of a 2D system can also be identified by
investigating the dispersion of edge states. A 2D TI has topolo-
gically protected edge states characterized by the fact that they
cross the Fermi level at an odd number of points in half the
BZ; i.e., they connect the conduction bulk states and valence bulk
states. The topological edge states are robust against local disor-
der (they remain gapless due to the Kramer’s degeneracy and
cannot be localized due to the absence of backscattering) as long
as the time-reversal symmetry is maintained. In contrast, a 2D NI
has topologically trivial edge states that cross the Fermi level
an even number of times in half the BZ. The edge states can
be localized and a gap might open if some disorder is present
(4, 12, 31).

To depict the dispersion of electronic states at the edge of
Sb2Te3 thin films, we first construct a tight-binding Hamiltonian
with maximally localized Wannier functions (MLWFs) from the
results of the first-principles calculation (32, 33). Then the
Green’s functions are obtained using a highly convergent iterative
method and we calculate the local density of states (LDOS) for
both the edge principal layer and the bulk principal layer from
them (25, 26). This method is employed to describe an edge of
the semiinfinite 2D system and it provides the clear connectivity
between the edge states and the bulk states. In Fig. 4A, the LDOS

of the edge principal layer in 3QLs of Sb2Te3 is given, and it
shows no edge states near the 2D bulk energy gap. On the con-
trary, for 3QLs with E⊥ ¼ 0.15 V∕A, there exist topological gap-
less edge states that connect the bulk valence and conduction
regions constituting a “one-dimensional (1D) Dirac cone” cen-
tered at Γ̄ (Fig. 4B). Even though the specific edge dispersion
is dependent on the atomic configuration at the edge, the number
of crosses at the Fermi level (modulo 2) does not change because
it is determined by the Z2 invariant of the (2D) bulk band struc-
ture. For comparison, we present the LDOS for a bulk principal
layer in this case (Fig. 4C), which shows that the gapless states in
Fig. 4B are indeed the edge states. These configurations of edge
states are consistent with the lattice computations of the Z2 in-
variants in view of the bulk-boundary correspondence. In the case
of 4QLs, there is one (two) edge state in half the 1D BZ before
(after) the phase transition.

The value of Ec depends on the system. In 2QLs of Sb2Te3, the
gap size is relatively large and the phase transition does not occur
up to E⊥ ¼ 0.4 V∕A. If we want to utilize this type of phase tran-
sition as an on/off switch of topologically robust edge states, it is
crucial to increase the gap size for stability of operation but, at the
same time, decrease Ec for practicality. Thus, various types of
materials and other external parameters (stress, etc.) should be
considered as well to find an optimal system. In contrast, if we
want a material whose band topology must not be changed easily
(say, by the influence of the substrate potential in experiment), a
large value of Ec would be desirable.

Conclusion
In conclusion, we have shown that topological quantum phase
transitions occur under external electric fields in thin films of
Sb2Te3. Particularly, 3QLs and 4QLs are predicted to have mod-
erate values of the critical electric field for the phase transition.
As the field strength increases, the 3QLs film shows a transition
from a NI to a TI while the 4QLs film shows one from a TI to a
NI. The edge state configurations are confirmed to be consistent
with the bulk topology in accordance with the bulk-boundary
correspondence, and a single 1D Dirac cone appears in the case
of 3QLs after the phase transition. This type of the topological
phase transition might be useful for practical control of the to-
pologically robust conducting channels at the edges.

Materials and Methods
Electronic structures were obtained using first-principles calculations based
on the PBE-type (34) generalized gradient approximation to the density func-
tional theory as implemented in the Quantum-Espresso package (35). We em-
ployed fully relativistic pseudopotentials including spin-orbit coupling and a
plane-wave basis with the cutoff energy of 34 Ry. For the atomic structure,

Fig. 3. Band structure of Sb2Te3 3QLs (A) before the topological phase tran-
sition, (B) near the gap-closing point and (C) after the phase transition.
E⊥ ¼ 0.03 V∕A, E⊥ ¼ 0.067 V∕A for (A), (B), and (C), respectively. (D) The to-
pology of 3QLs and 4QLs as E⊥ is varied. (E) The n-field configuration with
E⊥ ¼ 0.03 V∕A for 3QLs. The white (black) circles denote +1 (−1). The empty
plaquettes correspond to 0. The sum of the n-field in half the BZ (yellow
region) is even (hence, ν ¼ 0) in this case. (F) The n-field configuration with
E⊥ ¼ 0.15 V∕A for 3QLs showing nontrivial topology (ν ¼ 1).

Fig. 4. LDOS of the edge principal layer in 3QLs of Sb2Te3 with (A)
E⊥ ¼ 0.0 V∕A and (B) E⊥ ¼ 0.15 V∕A. (C) LDOS of the bulk principal layer
in 3QLs with E⊥ ¼ 0.15 V∕A to compare with (B). Topological edge states
or a “1D Dirac cone” [guided by the black dotted line in (B)] is present at
Γ̄ in the topologically nontrivial phase.

Kim et al. PNAS ∣ January 17, 2012 ∣ vol. 109 ∣ no. 3 ∣ 673

A
PP

LI
ED

PH
YS

IC
A
L

SC
IE
N
CE

S



experimental bulk lattice constant was used (36). We dealt with thin films of
Sb2Te3 in the supercell slab geometry with sufficient vacuum regions (for ex-
ample, 20 Å in the case of 3 QLs) to avoid the spurious (unwanted) electro-
static interactions between periodic images. Band structures were confirmed
to be converged with respect to the vacuum size. The external electric field
was described by a saw-tooth-like potential in the Hamiltonian. The lattice
computation of the Z2 invariant was done using the wave functions on a
discretized BZ. Also, for the edge state dispersion, Wannier90 package

was partly used to calculate the edge Green’s function in terms of
MLWFs (37).
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