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Genomic copy number variation underlies genetic disorders such as
autism, schizophrenia, and congenital heart disease. Copy number
variations are commonly detected by array based comparative
genomic hybridization of sample to reference DNAs, but probe and
operational variables combine to create correlated system noise
that degrades detection of genetic events. To correct for this we
have explored hybridizations in which no genetic signal is ex-
pected, namely “self-self” hybridizations (SSH) comparing DNAs
from the same genome. We show that SSH trap a variety of corre-
lated system noise present also in sample-reference (test) data.
Through singular value decomposition of SSH, we are able to de-
termine the principal components (PCs) of this noise. The PCs them-
selves offer deep insights into the sources of noise, and facilitate
detection of artifacts. We present evidence that linear and piece-
wise linear correction of test data with the PCs does not introduce
detectable spurious signal, yet improves signal-to-noise metrics, re-
duces false positives, and facilitates copy number determination.

comparative genomic hybridization ∣ copy number variation ∣ principal
component analysis ∣ singular value decomposition

Genomic copy number variation (CNV) creates a large source
of genetic variability between individuals (1, 2). The conse-

quences of this variation include major phenotypic differences
and highly penetrant genetic disorders (3–6). CNVs can be de-
tected by hybridizing genomic DNA to microarrays of nucleic
acid probes (1, 2). One common method is “two-color” compara-
tive genomic hybridization (CGH), in which two genomes—a
sample and a reference—are simultaneously hybridized to the
same array and reported as probe ratios formed from separate
fluorescent channel intensities (7). Extensive noise in hybridiza-
tion data, whether single or two channel, is often evident as strong
trends when ratios are viewed in the genome order, and compli-
cates analysis (8–11).

System noise is best assessed if isolated, in the absence of
confounding true signal. Hence we created and explored an ar-
chive of hybridizations comparing DNA in one channel to DNA
from the same genome in the other channel, from which no
genetic signal is expected. These hybridizations are known as self-
self hybridizations (12–14), referred to here as SSH. We use sin-
gular value decomposition (SVD) of the SSH data to determine
the principal components (PCs) of system noise (15). We present
evidence that the linear correction of test data with the SSH PCs
improves CGH: it reduces trends and long-range correlations in
the data and improves signal-to-noise metrics. This method does
not introduce detectable spurious signal, which would otherwise
result from using actual test data to form principal components.
With modifications, correcting test data with the PCs of isolated
noise is likely to be of general utility for other copy number mea-
surement platforms, including single channel and sequence based
counting methods.

In addition to enabling subtraction of system noise, the PCs
themselves provide critical insights into the sources of this noise.
On our detection platform, the loadings of the principal compo-
nents correspond to known probe variables, such as discrete phy-

sical location of the probes on the microarray surface and base
composition (9), as well as with proximity to genes. The joint ana-
lysis of test data and the PCs also reveals operational variables
(16). In particular, this analysis reveals some inadequacies of the
CGH data and its correction, and points to regions of the genome
prone to artifacts—perhaps due to chromatin structure.

We place our dataset into the public domain, consisting of a
group of 3,252 test (sample-reference) hybridizations from stu-
dies of families with children on the autistic spectrum (17) and
a group of 132 self-self hybridizations, both raw intensity and
processed data, performed on NimbleGen HD2 microarrays with
2.1 million probes. These data may be useful for further studies
on system correction.

Results
Ideas Behind the Mathematical Treatment. CGH ratio data can dis-
play trends in genomic regions shared by some hybridizations
and not by others (Author Summary, Fig. 1 A, B). When a pair of
hybridizations shares trends in one region, that pair typically
shares trends in many regions throughout the genome, that is,
that pair has long-range correlations. Long-range correlations in
genetic data from unrelated individuals violate expectation from
laws of independent segregation, barring an unexpectedly large
degree of ethnic stratification. In fact, the trends observed in test
data are often present even in self-self hybridizations, unequivo-
cal evidence that the trends are correlated system noise rather
than genetic signal (Author Summary, Fig. 1C).

Not all trend patterns are alike, but appear composed of rela-
tively independent components. One major trend is associated
with GC content (8), but it is not the only one. We sought to cor-
rect for correlated system noise in those hybridizations plagued
by it, while minimizing adjustment in hybridizations that are
not. A simple tool for accomplishing just this utilizes principal
component analysis (PCA). First, the major (low-dimensional)
orthogonal basis for the system noise are found. Second, we max-
imize the fit of any given sample ratio data to these basis elements

Author contributions: B.L. and M.W. designed research; Y.-h.L., V.G., and B.Y. performed
research; J.K., A.L., D.L., and B.Y. contributed new reagents/analytic tools; Y.-h.L., M.R.,
D.L., D.E., V.G., K.Y., M.W., and B.Y. analyzed data; and M.R., M.W., and B.Y. wrote
the paper.

The authors declare no conflict of interest.

*This Direct Submission article had a prearranged editor.

Freely available online through the PNAS open access option.

Data deposition: Raw and processed data files corresponding to all hybridizations in this
study have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.
nlm.nih.gov/geo (accession no. GSE23682).
1Present Address: Ontario Institute for Cancer Research, Toronto, Ontario, Canada
M5G 0A3.

2Present Address: Institute for Genome Science and Policy, Duke University, Durham,
NC 27708.

3To whom correspondence may be addressed. E-mail: wigler@cshl.edu.

See Author Summary on page 653.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1106233109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1106233109 PNAS ∣ January 17, 2012 ∣ vol. 109 ∣ no. 3 ∣ E103–E110

G
EN

ET
IC
S

A
PP

LI
ED

M
AT

H
EM

AT
IC
S

PN
A
S
PL

U
S

www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
www.ncbi.nlm.nih.gov/geo
http://www.pnas.org/content/109/3/653/1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106233109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106233109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106233109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106233109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106233109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106233109/-/DCSupplemental


by least squares, and take the residual as the true genetic signal.
To avoid mixing genetic signal with system noise in the principal
components, we derive the components of system noise from self-
self hybridizations (SSH), which contain no genetic signal. The
results of such correction are illustrated (Author Summary,
Fig. 1 D–F). This is what we call principal component correction
(PCC).

We observe components of the noise that are readily detected
by PCA but not corrected well by PCC. Therefore we tested one
variant of our standard procedure. Rather than treat all hybridi-
zation probes equally from a mathematical perspective, we parti-
tioned the probes into those sensitive to particular components of
system noise and then separately used PCC to correct the probes
within partitions. We call this “piecewise” principal component
correction (PPCC).

The mathematical details, including how we choose the num-
ber of principal components for PCC, how we determine probe
partitions for PPCC, and the special treatment of the sex chro-
mosomes, are found in the Material and Methods.

System Correction Using Self-Self Data. Ideally, there should be no
long-range correlation between probe ratios for SSH data beyond
what is expected from random process. But self-self ratio vectors
do contain more long-range correlations than expected, reflecting
the presence of correlated system noise. To view the extent of
these correlations and their correction by our method, we used
2,000 probes chosen randomly, and then computed the pairwise
Pearson correlations of these probe ratios across various datasets,
before and after PCC. For comparison to randomized data, we
also computed the distribution of correlations in data when the
probe values were permuted within hybridizations (Materials
and Methods). Upon correction we reduce the long-range correla-
tions in SSH data, nearly to what is expected by random process.
Histograms of the pairwise correlation values are shown (Fig. 1).

We next applied this method to sample-reference vectors,
which we term “test hybridizations” (TH). By the Mendelian
law of independent segregation, there should again be no long-
range correlation in test data beyond what is expected from

random process. After PCC, TH also had reduced long-range
correlations (Fig. 1).

To assess PCC further, we measured two types of noise in the
autosomal probes of TH before [local and Lowess normalization
(LLN)] and after (PCC) correction: the standard deviation (Fig. 2
A, C), and the autocorrelation, which is the Pearson correlation
of the ratio vector with itself shifted by one index (Fig. 2 B, D).
The first measures overall noise, and the second measures local
trends in the data. High autocorrelation would likely result in
false segmentation, whereas high overall noise would lead to false
negative segmentation. True genetic signal in the form of copy
number variation would contribute to both measures, so to com-
pute these measures we used a subset of the autosomal probes
that are not commonly polymorphic (with a frequency of <1%)
in the best set of hybridizations, the “quiet autosomal probes.”

When the reference is male, the median of the ratio on the X
chromosome in a female sample (excluding the pseudoautosomal
regions) is an obvious measure of signal strength. We scale the
standard deviation by this median X ratio. This adjustment is not
readily available for males, so the results shown in Fig. 2 A and C
are from females only. For comparison, we used the measures of
noise in data subject only to LLN (Materials and Methods). We
also assessed two other methods, based on the mean value of
each probe ratio over the SSH dataset: mean subtraction (MS,
Materials and Methods), and GC bin correction (GCC) for each
hybridization (18). When PCC was applied, 100% of test hybri-
dizations had decreased total noise and 91.51% had decreased
autocorrelation. The mean relative improvement ð100�ðbefore−
afterÞ∕beforeÞ of total noise is 11.2%, and the mean relative
improvement of the autocorrelation is 33.1%. Compared to
PCC, MS and GCC appear to decrease system noise and autocor-
relation only marginally (Fig. 2 C, D).

The impact of PCC on segmentation—a common method for
determining regions of copy number variation—is found by exam-
ining the frequency with which certain regions of the genome
are segmented. In SSH data, the numbers of segments—which by
experimental design are false positives—were reduced more than
30-fold, from an average of 112 per hybridization to an average of
3 (Table S1). To monitor this sensitively in test data, we counted
events exceeding a low-amplitude threshold (Fig. 3A) before and
after correction. For each autosomal probe on the array, we
counted how often it was observed contributing to a segment with
a median ratio above a threshold of natural log(1.1). We plotted
segmentation counts at each probe from the set of 3,252 test
hybridizations as before (LLN, X-axis) vs. after (PCC, Y-axis) cor-
rection. The frequency of a large set of segments detected before
system correction was drastically reduced after PCC (Fig. 3A,
region “A”). We expect that these segments are false positives
arising from genomically clustered system noise. We have direct
confirmation of this by other methods (discussed later). The fre-
quency of a few common copy number polymorphisms decreased
modestly upon PCC (Fig. 3A, region B), and the probes from
these regions often overlap with regions in our reference genome
where the reference genome has copy number zero. We did not
see entirely new regions of segmentation that became common
only after PCC, as would likely be the case if false positives were
being introduced. On the other hand, the frequency of detection
of many common events actually increased upon PCC, which we
think happens as a result of improved signal-to-noise in some of
the noisier hybridizations (Fig. 3A, region C). The distribution of
number of segments, both deleted and duplicated, in all hybridiza-
tions is more “Gaussian” following PCC and PPCC (Fig. 3 C, D).

Another way to gauge the effectiveness of system correction is
by examining the clarity of underlying copy number states. For
any region of copy number polymorphism, variation should be
observed as discrete states within the human population corre-
sponding to integer increments of copy numbers. For most simple
polymorphic regions (few states), the quantal nature of states is
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Fig. 1. Correction of long-range correlations in probe ratios. A random set
of 2,000 probes with nonredundant mappings to the reference genome
(hg18 build) was selected. From these, two 2,000 X 132 matrices of log ratios
were created: one for 132 SSH and another for 132 randomly selected TH.
Pearson correlations between matrix rows were computed before LLN and
after applying PCC. The histogram also shows the distribution of correlations
for LLN matrixes with independent random permutation of values within
rows. The bin size for the histogram is 0.003.

E104 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1106233109 Lee et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1106233109/-/DCSupplemental/pnas.1106233109_SI.pdf?targetid=ST1


apparent before correction. However, for more complex situa-
tions (many states), multiple distinct states were readily observed
only after PCC. An example of one such region, chosen from a
subset of CNPs of >10% frequency in the sampled population, is
shown (Fig. 4). Without PCC, four peaks representing distinct
copy number states are apparent (lower panels “LN” and
“LLN”). After PCC, at least six discrete copy number states could
be cleanly distinguished (lower right panel “PCC”).

Finally, we can judge the extent of completeness of correction.
We initially examined correlations of a set of randomly chosen
2,000 probes (Fig. 1). The correlations in these probes appeared
very completely corrected. However, we found that certain

probes were more affected by specific components of system
noise than other probes, and the mere detection of a system noise
component does not mean these components can be corrected by
PCC. To explore this, we computed the Pearson correlations of
the ratios of these “extreme” probes (i.e., those with the highest
and lowest 0.1% of loadings for each PC) over the entire set of
parents. We intentionally excluded data from offspring from
these calculations to eliminate correlated (inherited) genetic sig-
nal. We made histograms of correlations, before and after PCC
(Fig. S1). Correlations in the ratios for the extreme probes of all
but the ninth PC were corrected following PCC, with extensive
correction for the first, third, fourth, and fifth components.
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Fig. 2. Comparison of PCC to other normalization schemes.
(A) The standard deviation of log ratios for “quiet autoso-
mal probes” of 1,349 female hybridization were scaled by
the mean values of stable X chromosome regions before
(green) and after (blue) noise correction, sorted by increas-
ing standard deviation before PCC. (B) Autocorrelation
was calculated for the log ratios of these probes from
3,252 hybridizations before (green) and after (blue) PCC,
again sorted by increasing autocorrelation before correc-
tion. (C) Histograms for relative percent decrease of stan-
dard deviation for four different noise corrections: PCC,
GCC, MS, or PPCC. The bin size is 1% decrease. (D) Histo-
grams for relative percent gain/loss of autocorrelation of
“quiet probes” for four different noise corrections: PCC,
GCC, MS, and PPCC. (PPCC refers to piecewise principal com-
ponent correction; MS and PPCC are described in detail in
the Materials and Methods.) In this panel, the bin size is
3%. Quiet probes are defined as autosomal probes for
which the frequency of amplifications and deletions com-
bined does not exceed 1% within the population. Amplifi-
cations and deletions are defined here as segments
exceeding� logð1.1Þ. Relative percent gain/loss for quantity
X is defined as (100�ðXbefore − XafterÞ∕XbeforeÞ%, where
Xbefore is the value after Lowess and local normalization
(LLN).
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Fig. 3. Comparison of normalization methods in sample-
reference hybridizations. Data for probes on all autosomes,
before and after PCC or PPCC, were segmented from 3,252
hybridizations, median segmented ratio values assigned to
each probe, and values above a 1.1 ratio threshold were
counted. (A) Amplification count, with LLN (X axis) vs.
PCC (Y axis). Circled region A represents a large set of seg-
ments detected before PCC, which are mostly not detected
as segments after PCC; circled region B indicates a subset of
very common copy number polymorphisms that are de-
tected somewhat less frequently following PCC. Circled re-
gion C shows the common copy number polymorphisms that
are detectedmore frequently following PCC. (B) Same as (A),
except PCC (X axis) is compared to PPCC (Y axis). The circled
region represents a small set of probes that are less fre-
quently segmented for which the correction is improved.
(C, D) Histograms of the number of segments with mean ra-
tio value exceeding 1.1 (duplications) and less than 1∕1.1 in
ratio mean value (deletions). Bin size for number of seg-
ments is fixed in logarithmic scale.
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The ratios of the extreme probes of the ninth component were
unusual in that they showed very high correlation, which was
not strongly reduced upon PCC (Fig. 5). This is a matter of con-
cern, because the probes of extreme loadings in the ninth PC are
clustered in genome order, as we present in the next section.

Association of the Principal Components with Probe Properties. Ex-
amining the properties of the principal components, in particular
their associations with known operational and system variables,

reveals the richness and structure of system noise within the
NimbleGen HD2 2.1 million probe platform.

We examined the association of the extreme probes in each
PC with four probe properties: the location of probes on the
microarray surface; the nucleotide composition of the probes; the
clustering of the probe coordinates in the genome; and the posi-
tion of the probes in relation to known functional units of the
genome. Extreme probes from the fifth through eighth and from
the tenth through fourteenth PC exhibit spatial clustering on the
array surface (Fig. S2). The extreme probes from the first, second,
and fifth PCs have especially significant compositional bias com-
pared to random sets of probes (Table S2). For the first and fifth
components, the base composition of probes with extreme positive
loadings is strongly enriched for CþG and depleted for A þ T,
and the reverse is true for the probes with extreme negative load-
ings. For the second component, probes with extreme high load-
ings are depleted in A and enriched for T relative to the probes
with extreme low loadings, with C and G being unaffected.

Extreme probes from the first, third, fourth, and ninth compo-
nents showed clustering in the genome. This is reflected in the
strong autocorrelation of the PCs themselves, with the first (0.35)
and ninth (0.33) autocorrelations the strongest, compared to the
autocorrelation of other components such as the second (0.05,
Table S3). Clustering leads to spurious segmentation. Hence, these
four components are of greatest interest to us, as they can be
responsible for false positive segmentation. As is well known,
the CþG base composition is not randomly distributed in the gen-
ome (19–21). The autocorrelation of the first component almost
certainly reflects the CþG bias of the genome (Fig. 6A).

The autocorrelation for the ninth component was of greatest
interest to us because the autocorrelation was strong, and the
ratios of the extreme probes were not corrected well by PCC
(Fig. 5). This component does not have an exceptional composi-
tional bias. It does not follow the CþG composition of the gen-
ome (Fig. 6A). Unlike the other components, the distribution of
the loadings has a long one-sided tail (Table S3). The probes from
this tail have a distinctive distribution in the genome (Fig. 6 B–D);
they tend to cluster near those transcriptional start sites of genes
that also contain CpG islands (22). We define a probe cluster as
a maximally contiguous set of at least three probes within the top
1.5% of loading values, and we define the probe-cluster interval
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as that spanning the first and last probes. With these definitions,
there were 3,415 cluster intervals for the extreme 1.5% probes of
component nine: 57% overlap the 5′ end of a gene; 68% overlap
CpG islands; and 54% overlap both. Such a level of overlap is
highly unexpected based on simulations: we randomly created
3,415 new probe-clusters from our probe set and recomputed the
percentage of overlap with the 5′ ends of genes. In 100 simula-
tions, the overlap ranged from 5 to 7%. The observed overlap,
57%, lies so far outside this range that its p-value is far below
that inferred by simulation (10−2). Extreme probes of the other
components did not form many probe clusters associated with the
5′ ends of genes (Table S4).

Association of Operational Variables with Principal Components. The
production of hybridization data depends upon several opera-
tional variables: the cell source; preparation and transport of
samples; the synthesis of microarrays; the hybridization and wash
conditions; and the settings and conditions of microarray scan-
ning. A single variable, the “sample queue index,” captures much
of this information in the order of processing and the placement
of samples within microwell plates. For samples delivered in 96
(8-by-12) well plates, we define the queue index as the sum of the

plate (or batch) number in order received, processed and shipped,
(from 0 to 40) times 96, plus the row number (from 0 to 7) times 8,
plus the column number (from 1 to 12) for each sample.

To measure the strength of the association of each component
with each test ratio vector, we computed the Pearson correlations
on a subset of extreme probes before (LLN) and after PCC, and
plotted these correlations as a function of the queue index for all
fourteen components (Fig. S3). The influence of each component
is a rough function of the batch, and corrected by PCC—for all
but the ninth component.

The correlation of the ninth component shows an unusual pat-
tern. Its strength has a periodicity of 12 with respect to the queue
index (Fig. 7 A, B). A periodicity of 8 emerges when the index is
computed by plate row rather than column. To see the depen-
dence on placement of samples in the 8-by-12 microwell format
most clearly, the correlations in each sample plate were normal-
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Fig. 6. Loadings from components 1 and 9 in genome order, in relation to
Gþ C nucleotide content and gene transcription units. (A) We examined the
scaled (by 103) loadings of components 1 (red) and 9 (green) in genome order
from a representative gene-rich region. The blue is the Cþ G content of each
probe (shifted and scaled), showing the rough overlap of the loadings of
component 1 and the Cþ G content of the probes. (B) The coincidence of
peaks of loadings in component 9 is illustrated with respect to genes in the
same region. Green lines indicate loadings of component 9; blue and red re-
present forward- and reverse-strand genes, respectively; and the arrows in-
dicate the direction of transcription and gene boundaries. Black asterisks
show the genomic positions of CpG islands. (C, D) The same relationships
shown in (B) are displayed in different regions and at different scales. Probes
with high loading from the ninth component are clustered about the 5′ ends
of genes, especially genes with nearby CpG islands. All information is derived
from the hg18 build and UCSC Genome Browser (http://genome.ucsc.edu/)
with coordinates on chromosome 1 as indicated on the X-axis.
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Fig. 7. Correlation of component 9 with microwell sample coordinates.
Variation in correlation of component 9 with extreme (1.5% most positive
and negative) probes over 3252 hybridizations has a periodicity of 12 with
respect to the queue index (A and B), before (LLN) and after PCC, but not
after PPCC. For (C), correlations computed for LLN data were adjusted in each
96-well plate to have a mean of zero and a standard deviation of 1. The
adjusted values were then averaged over the same row and column coordi-
nates from the 41 8-by-12 microwell plates in which the samples used for the
hybridizations were stored and shipped. These values are displayed in micro-
well coordinates, with red for highly positive and blue for highly negative
correlations.
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ized to a mean of zero and standard deviation of one, and then
the normalized correlations from microwells with identical row
and column numbers were averaged. This computation is pre-
sented as a heat map in which each well value is represented
as a disc in its proper plate position (Fig. 7C). It is clear that the
ninth component captures variability in these hybridizations that
are a function of well coordinates, in which the distance from the
long and short edges of the plate are the critical variables. No
other noise component displays this pattern.

Piecewise Correction for the Ninth Component. PCC leaves much of
the correlation between the log ratios of the extreme probes of
the ninth component uncorrected (Fig. 5). The ninth component
strongly affects a sufficient number of probes to be detectable as
a principal component, but an insufficient number in any given
ratio vector to force correction against the contravening introduc-
tion of white noise caused by the correction. Because these
probes are clustered in the genome, they can (and do) give rise
to spurious segmentation that remains uncorrected. As an exam-
ple, we found several recurrent segments in LLN data from
chronic lymphocytic leukemia (CLL) that were all highly corre-
lated in leukemias (Fig. S4). The probes from these regions are
among the extreme probes of component nine. Evaluating the
genomes on other platforms (tiling microarrays from Agilent)
and by PCR and DNA sequence analysis did not confirm the seg-
mentation results. PCC failed to correct the data.

To address this we tested a nonlinear treatment of the data. We
ranked all probes by their loadings in the ninth component and
grouped probes in batches of 50,000 by their rank, thus partition-
ing the 2.1 million probe set. The probes with high loadings in
the ninth component are thus heavily represented in one batch
of probes. We applied PCC to each batch of probes separately
(Materials and Methods). Corrected batches were assembled pie-
cewise to form the whole genome. We call this method piecewise
principal component correction (PPCC). The results of PPCC
were similar to PCC (Fig. 2 C, D; Fig. 3B), and the extreme
probes from the ninth component were better corrected (Fig. 5
and Fig. 7A). But the correlations between the probes still persist.
Possible reasons for this are discussed below.

Discussion
We have been engaged in genetic studies of children affected with
disorders (autism, congenital heart disease, and pediatric cancer)
born to otherwise healthy parents. We search these children for
genomic copy number variants not seen in either parent because
new variation seen in the child provides strong clues to the genet-
ic origins of the disorders (17, 23–25). Such de novo events are
truly rare, so it has been critical for us to minimize false positive
discovery rates. CGH often contains probe-clustered and corre-
lated noise, or trends, that produce false positives through
spurious segmentation, so we have been highly motivated to cor-
rect for these artifacts. We report here a method for correcting
genome copy number data by taking the residuals to the linear
combinations of the principal components of the noise that best
fit the data.

Computing residuals to the principal components derived from
the test data is problematic, because those principal components
also contain genetic signal, namely the copy number differences
between the genomes of the subject and reference genome. Thus,
using test data corrupts the corrections. To solve this, we hypothe-
sized that major system noise is also present in self-self hybridi-
zations. In self-self hybridizations, we expect no genetic signal,
and any analysis of variability should reflect only system noise.
We designed our data collection with self-self hybridizations lib-
erally inserted into the production pipeline. Much of the system
noise that afflicts sample-reference hybridizations is also found in
the self-self hybridizations, and therefore we could use the latter
to correct for noise in the former. We chose principal component

analysis rather than factor analysis because the former does not
require any a priori probabilistic model, whereas factor analysis
does. Statistical methods other than principal component analysis
could certainly be employed to achieve and possibly improve cor-
rection, and we expect to explore this avenue in future work.

As strong validation of our approach, the properties of the
major principal components reflect known system and opera-
tional variables. For example, the extreme probes in several com-
ponents reflect the layout of probes on the array, consistent with
the expectation that some variation arises from fabrication and/or
physical processing of the arrays. Also, extreme probes from the
first two components have striking biases in their base composi-
tions. The extreme probes of the first component are biased by
CþG content. This was expected, given the strong influence of
CþG density on autocorrelation observed in earlier CGH ex-
periments on a number of platforms (26, 27). Because the effi-
ciency of hybridization varies with CþG content of the probes,
the first component may reflect imprecisely controlled hybridiza-
tion and washing conditions. This component is also responsible
for major trends in the data, as expected from the presence of
CþG rich isochores distributed throughout the genome (19, 20,
28). The probes of the second component have a bias in A at one
extreme and in Tat the other. The second component is the most
invariant of all the components with respect to the operational
variable of time, and hence it may arise from a physiochemical
interaction of the nucleotides with the fluorophores.

Overall metrics of noise, especially autocorrelation, improve
with our method. Nevertheless, correction is not complete. There
are still hybridizations that show excess segmentation, and hybri-
dizations that are outright failures. More troubling, however, is
the noise from the unique ninth component. This component
has a unique segmentation signature: the segments are narrow,
and probes with extreme loadings often map to intervals contain-
ing both the 5′ ends of genes and associated CpG islands. These
probes are not themselves especially rich in CþG. Perhaps a fea-
ture of the chromatin structure surrounding certain regions
leaves a footprint when DNA is prepared or handled. Indeed, the
magnitude of the association of the ninth component is depen-
dent on the coordinates of the sample in its 96-well plate.
Although the samples are not initially prepared in 96-well order,
they are shipped and subsequently processed retaining that order.
Thus this variation may reflect either freezing and thawing, or
drying, as these physical parameters relate to the footprint from
chromatin structure.

Hybridizations can have reasonably low noise, yet still have
distorted ratios in certain chromosomal regions leading to spur-
ious segmentation-even after PCC. Until we realized this, we
were puzzled by a set of apparent small copy number events in
leukemias that we could not validate using other methods of
copy number measurement such as quantitative PCR and tiling
microarrays. Eventually, we realized that these segments were all
derived from the extreme probes of the ninth component. We can
improve the correction of these probes by partitioning probes
according to their loadings in the ninth component, performing
principal component correction on each partition separately,
then reassembling the whole genome piecewise (PPCC). By con-
centrating probes that are noisy with respect to one component,
we can correct them better for that component.

Still, the correction for component 9 is not totally satisfactory.
That may be in part because there is a variable biological factor
at play, such as chromatin structure leaving an imprint on the
DNA extracted from samples. This problem could become even
more vexing if samples (and the reference) are drawn from dif-
ferent tissue sources. Nevertheless, our experience with the use of
self-self hybridizations on the HD2 platform led us to ascertain
certain genomic characteristics associated with false positives. As
mentioned earlier, most artifacts of the ninth component have a
unique signature. Based on this, a manual curation of the families
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from the SSC (17) significantly reduced the false positive rate
(judged by orthogonal validation on tiling arrays) relative to other
studies of similar scope (24, 29). It is worth noting that we do not
see ninth component-like artifacts on data from the Illumina
IMv1 and IMv3 Duo microarray platforms, which utilize a very
different labeling and hybridization scheme. This component may
be specific to our protocol. Nevertheless, it is likely that applying
PCC to self-self data from other platforms and protocols would
reveal novel artifacts that arise from differences in the underlying
technologies.

The method for correcting copy number data that we propose
adds some additional expense to experiments, but the cost of
adding a few self-self hybridizations is minimal—less than 5% of
the total number of hybridizations. Moreover, our results are com-
parable or better than the common expedient of adding duplicate
color-reversed hybridizations (30), which essentially doubles the
cost of a study. Work in progress indicates that the method of
projecting to principal components can be used to suppress noise
even when data derives from a single channel, using repetitions of
a single reference to derive the components of the system noise.
This can halve again the cost of assay. We expect that reducing
system noise by adjusting for the principal components of that
noise should be generally applicable to copy number data gathered
from any platform, including DNA sequencing. In preliminary
work, we observe long-range correlations with multiple indepen-
dent components in copy number measurements from other plat-
forms, which we intend to explore fully in future work.

Materials and Methods
Origin of Test and Self-Self Ratio Vectors. Our dataset consists of a group
of 3,252 test (sample-reference) hybridizations and a group of 132 self-self
hybridizations. The latter group was comprised of 83 self-self hybridizations
of our standard human male reference genome and 49 self-self hybridiza-
tions of other sample genomes, chosen at random. All test hybridizations
were performed with the same male reference DNA and the same choice
of dye labels: Cy3 for the sample and Cy5 for the reference. The self-self
group consists of hybridizations with various batches of reference DNA or
sample in both channels. The self-self hybridizations were randomly inter-
spersed among a larger set of CGH experiments performed over a period
of approximately 1 y. Blood samples were collected at a variety of centers
throughout the United States. Sample and reference DNAs were prepared
either fromwhole blood or from EBV-immortalized B-cells at the Rutgers Uni-
versity Cell and DNA Repository (RUCDR). DNAs were prepared robotically,
then distributed and stored in 96-well plates. We track the reference batch
number and the sample queue indices (microwell plate, column and row).
All hybridizations were performed by NimbleGen in their Icelandic facility.
DNAs were labeled by random priming incorporating a fluorescent cytosine
nucleotide derivative. The platform was a NimbleGen HD2 CGH microarray
with 2.1 million probes, the positions of which were randomized across the
array surface. Composition and locations of probes on the array were kept
fixed throughout the period of data collection.

We do not perform background subtraction. Rather, we employ other
steps in data processing that are commonly used in the field, namely local
and Lowess normalization (LLN) of probe intensities (14, 31).We will refer
to the natural logarithm of ratios of such normalized probe intensities—
when placed in genome order—as LLN “ratio vectors.” When we remove
the data from the X and Y chromosomes, we refer to the remaining data
as autosomal ratio vectors.

We segment ratio vectors into distinct regions of constant copy number
by minimizing variation and using Kolmogorov-Smirnov (KS) statistics to
determine if the segmentation passes the threshold of significance (32). The
observations we discuss are essentially unchanged if we use other segmenta-
tion procedures such as circular binary segmentation (11).

System Correction with the Self-Self Archive.We view the ratio data as a point
in a 2.1-million dimension vector space. The basic idea is to derive the PCs
from self-self data, and then correct the test data by subtracting from each
its orthogonal projection to the hyperplane determined by the PCs. More
specific details are as follows.

The matrix Yk
i represents the local and Lowess normalized log ratios.

Pseudo code for the local and Lowess normalization is presented in the
Supplemental Information. Probe index i ranges from 1 to N (N ¼ 2;161;679)

and hybridization index k ranges from 1 to M þ L, where M ¼ 3;252 is the
number of test hybridizations and L ¼ 132 is the number of self-self hybridi-
zations. In vector form we can write

Yk ¼ Gk þ Sk þ εk; [1]

where Gk , Sk , and εk are unobserved vectors in the N dimensional linear
vector space W . Gk is the genetic signal vector representing copy number
differences between the sample and the reference, a piecewise constant
function of the probe index i for each hybridization k. Sk is the major system
noise vector; and εk is residual noise. To determine Sk we use singular value
decomposition in self-self hybridizations, where Gk is zero. For these hybri-
dizations the singular value decomposition of the N by L submatrix A, com-
posed from columns Yk;k ¼ M þ 1;…;M þ L is

A ¼ UDVT; [2]

whereU is anN by Lmatrix with orthonormal columns,D is an L by L diagonal
matrix with nonnegative singular values on the diagonal; and V is an L by L
matrix with orthonormal columns, and VT is its transpose. Singular values
decrease sharply, which indicates that most of the variation in self-self hybri-
dizations is concentrated in a lower dimensional subspace spanned by the
first few columns U0 (major principal components) of matrix U. To avoid verb-
osity, we will use notation U0 for both the submatrix of U and the space
spanned by its columns. To correct Yk for system noise, we subtract from
Yk its orthogonal projection to this subspace. Algebraically this is presented
by equation

~Yk ¼ Yk − U 0U 0TYk: [3]

We next posit that the components of system noise captured by the self-
self hybridizations (and described by the principal components) are also
shared in test hybridizations, and correct system variability in the latter by
subtracting from them their projection onto the subspace U0. As a practical
matter, to compute the coefficients of the orthogonal projection to U0 in
terms of the principal components, we use only the probes from the auto-
somal region of the genome in part U0TYk of Eq. 3. This circumvents the dis-
tortion in the projection that would be caused by large areas of the genome
with known differences in copy number between the sample and the refer-
ence when the sample is from a female (the unavoidable consequence of
using a male reference genome).

To determine the number of major principal components—those with the
largest singular values—we compared the singular values from self-self ratio
vectors to vectors formed from them by within-row-permutation of the N by
L matrix A of self-self vectors, where N is the number of probes and L is the
number of SSHs. This permutation obliterates the correlations between
probe ratios arising from system noise but maintains the mean and standard
deviation for each probe ratio within the SSH archive. The comparison sug-
gested taking the first 14 principal components defining submatrix of matrix
(see “singular values” in Table S1 and Fig. S5). Another method, the Scree
plot, suggested using the same number of major principal components (33).

Mean Subtraction (MS). After all SSH are normalized (removed mean and
divided by standard deviation), we compute vector X of log ratio averages
across SSH. MS correction is taking the residual after projecting Yk to X.
Formally,

~Yk ¼ Yk − XXTYk: [4]

Piecewise Principal Component Correction (PPCC). PCC leaves much of the cor-
relation between the log ratios of the extreme probes of the ninth compo-
nent uncorrected (Fig. 5). To address this, we explored a nonlinear version of
our method. We took a two-stage approach. First, we computed PC as indi-
cated in the previous section. Then we ranked all probes by their loadings in
the ninth component and grouped probes in batches of 100,000 by their
rank, thus partitioning the 2.1 million probe set. The probes with high load-
ings in the ninth component are thus heavily represented in one batch of
probes. We applied PCC (Eq. 3) to each batch of probes separately, with their
autosomal part equal to the intersection with autosome probes of the whole
genome and their X and Y part equal to the intersection with probes on
X and Y chromosomes. Corrected batches are assembled piecewise to form
the whole genome. We call this method piecewise principal component
correction (PPCC). MATLAB code for both PCC and PPCC is included in the
Supplemental Materials.
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