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Recent studies have provided insights into the modular structure of
genetic regulatory networks and emphasized the interest of quan-
titative functional descriptions. Here, to provide a priori knowl-
edge of the structure of functional modules, we describe an
evolutionary procedure in silico that creates small gene networks
performing basic tasks. We used it to create networks functioning
as bistable switches or oscillators. The obtained circuits provide a
variety of functional designs, demonstrate the crucial role of
posttranscriptional interactions, and highlight design principles
also found in known biological networks. The procedure should
prove helpful as a way to understand and create small functional
modules with diverse functions as well as to analyze large
networks.

Large gene networks are increasingly thought of as being built
from smaller subnetworks (1–3) or ‘‘modules.’’ It is thus

important to understand the structure and dynamics of small
functional building blocks. Recently, this has been pursued in
new ways by using both experimental (4–9) and computer
approaches (10). For instance, statistical analyses have been used
to determine recurring motifs of interactions (11) in transcrip-
tional networks. However, both the direct problem of finding the
function associated with a given motif of interactions and the
inverse problem of finding gene networks performing given
functions are not straightforwardly solved for several reasons. In
most cases, the knowledge of only a partial subset of the existing
interactions renders the determination of a module and its
function difficult. Even when fully known, the geometry of the
interactions between proteins and genes constrains but does not
determine network behavior. Whether a network possesses a
single functioning state, can be induced to switch between
different states, or oscillates in time depends on the quantitative
interactions between its components (12, 13) as, for instance,
recently shown for the biologically important case of the NF-�B
module (14).

The inverse question can be illustrated by the design of a
bistable switch, arguably one of the simplest functional elements.
As classically conceived, this element is built out of reciprocal
repression between two genes encoding transcription factors
(15), as sketched in Fig. 1. In simple terms, when gene a is
actively transcribed, the allied protein A is abundant and re-
presses the transcription of gene b. B is thus expressed at a low
level. A symmetric possibility is that gene b is active and B
abundant, whereas a is repressed and A is present at a low
concentration. A recently successful synthetic realization (5)
demonstrates that indeed such a network of interactions can
sustain two coexisting states. Mathematical analysis, however,
shows that the laws of chemical interactions render it more
complicated than naı̈vely thought (16): repression described by
simple Michaelis–Menten kinetics is not sufficient to produce a
working switch, and high-order Hill functions are required with,
for instance, protein dimers or higher multimers interacting with
DNA. When considering an existing gene network or the design
of a new one, it would be useful to know whether a bistable switch
can be made only out of two mutually repressing transcription
factors or whether other interaction networks, less easily con-

ceived, could serve the same purpose, perhaps even in a better
and more robust way.

To provide theoretical insight into this question, we wondered
whether it is feasible to determine a priori the possible designs
of a small genetic network performing a given basic function. To
sample the variety of working possible schemes, we have de-
signed an evolutionary procedure in silico that we describe
below. Computer-simulated evolution was previously used to
optimize the kinetic parameters of a chemical circuit of fixed
topology (17). The more general goal of the present procedure
is to obtain a network of genes and proteins implementing a
chosen function without imposing a priori any particular design.
Here, we illustrate the general procedure by using it to create
bistable switches and oscillating networks.

The Evolutionary Procedure in Silico
The algorithm proceeds in successive rounds of growth and
selection of a collection of independent networks (typically �100
‘‘cells’’), a general strategy in evolutionary computation (18).
Growth consists of the enlargement of the network collection by
the addition of mutated copies of the existing networks. Selec-
tion takes place as follows: first, a score is attributed to each
network in the enlarged collection depending on how well its
dynamics approaches what is required. Second, a fraction of the
networks is chosen based on the score attribution, and the
remaining ones are deleted to reduce the collection to its original
size before the next growing phase. This general algorithm
requires a number of specific choices, and we precisely describe
those that we have made.

In our present implementation, a genetic network is defined
by a number of genes and proteins† and chemical reactions
described by deterministic rate equations. Possible chemical
reactions are listed in Fig. 2 and consist of promotion or
repression of gene transcription by proteins, along with post-
transcriptional interactions. Posttranscriptional interactions
have been included in two forms: two proteins can interact to
produce another one (modeling formation of a complex catalytic
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Fig. 1. Sketch of a bistable switch with reciprocal transcriptional repression
between genes a and b.
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degradation), or one protein can be modified (modeling phos-
phorylation or other posttranslational modifications).

The algorithm starts with a collection of independent net-
works. These starting networks simply comprise two genes and
their allied proteins, with randomly drawn production and
degradation rates and no other reactions present. Then, alter-
nate phases of growth and selection are performed to evolve the
network collection and obtain networks achieving the specified
function.

Growth Phase
The collection size is doubled by addition of a mutated copy of
each network in the collection. The mutated copy differs by a
fixed number of mutations from its parent network (two muta-
tions gave satisfying results, and this is the choice made for the
results presented below). The mutations are randomly drawn in
succession from the five different following possibilities:

(i) The degradation rate of a protein is modified.
(ii) A kinetic constant of one reaction is modified.
In these first two cases, the constant is chosen at random

among the existing ones and is multiplied by a random number
uniformly drawn between 0 and 2.

The three other possibilities of mutations involve adding a new
reaction from among those listed in Fig. 2:

(iii) A new gene is created, and the reaction corresponding to
the production and degradation of the allied protein (Fig. 2i) is
added to the network.

(iv) A new interaction between a protein and a gene promoter
is introduced (Fig. 2ii). We randomly choose a protein and a gene
or an existing gene�protein complex (bound complexes of gene
promoters with proteins may have been previously created) and
create a new entity describing their bound complex. Three
reactions are added to the network: the binding of the protein to
the gene promoter (or to the existing complex), the reverse
reaction, and the modified production rate of the protein allied
to the gene in the new complex state.

(v) Finally, a posttranscriptional reaction can be added. The
choice of whether the reaction involves a single previously
introduced protein or two proteins is made at random. In the
single-protein case, a protein (or protein complex) is randomly
drawn from among the existing ones. A new entity corresponding
to a modified (e.g., phosphorylated) version of this protein is
introduced (Fig. 2iii) together with the rate of the posttranscrip-
tional modification and the degradation rate of the modified
protein. When a protein complex is drawn, the reaction can
alternatively be a partial degradation, with one protein of the
complex chosen as the degradation product (Fig. 2iv). In the
two-protein case, two proteins (or protein complexes) are drawn
at random, and the reaction is chosen among possibilities v, vi,
and vii of Fig. 2. It can be

Y a dimerization (Fig. 2v). A new entity describing a bound
complex of the two chosen proteins is introduced together
with its rates of formation and degradation;

Y catalytic degradation (Fig. 2vi) with the degraded species
chosen between the two selected proteins with equal proba-
bility; or

Y a partial catalytic degradation (Fig. 2vii) if one of the drawn
entities is a protein complex. In this case, one of the proteins
forming the complex is chosen as the reaction end product.

In cases iii–v, when a new reaction is added, its kinetic
constants are randomly drawn. We assume the cellular volume
to be unity so that concentrations and numbers of molecules are
equivalent. The time unit is taken to be the minute. For
simplicity, all kinetic constants are initially drawn randomly
between 0 and 1 in these units, with uniform probability.‡ Kinetic
constants obtained for the final selected circuits depend also on
the imposed scoring function and are within the physiological
range for the two cases investigated below. Further knowledge of
physiological constraints in given cases could be incorporated by
restricting the range of possible initial values and of mutation
changes (cases i and ii).

The respective probabilities pa, . . . , pe of the five mutation
possibilities are fixed in each set of simulations. Good results
were obtained with comparable probabilities for the different
possibilities.§

Selection Phase
Once the network collection has been enlarged by the addition
of mutated copies of existing networks, each network is evalu-
ated. This step consists of integrating the set of coupled differ-
ential equations corresponding to the network reactions [using
a Runge–Kutta algorithm (20)]. This dynamical evolution serves
to evaluate a scoring function and allows for the ranking of the
networks. The choice of the scoring function depends on the
function to be selected and is detailed below for the two cases

‡This corresponds, for instance, to drawing initial protein degradation rates between 0 and
1 min�1 and initial forward rates of second-order reactions between 0 and �1 nm�min for
a typical bacterial volume.

§Switches like those of Fig. 3 A and B were obtained for a large set of different mutation
rates. However, to obtain in the same set of simulations switches as those of Fig. 3 and
switches based on reciprocal inhibition (Figs. 6 and 7), the probability pe should be taken
�20 times smaller than pd .

Fig. 2. List of possible reactions. The schematic representations are used to
represent the reactions in Figs. 3–5. In the allied rate equations, Greek letters
(�, �, �, �) denote kinetic constants; A:B denotes the bound complex of protein
A and B; and a:P denotes gene a with protein P bound on its promoter.
Reaction ii is illustrated here only for the case of an already existing bound
complex between a protein P and the promoter of a gene a. The same reaction
is also possible between a protein and a ‘‘naked’’ promoter (i.e., without P).
Only the term corresponding to the displayed reaction has been written on the
right side of the equations, giving the evolution of protein concentrations. In
a given network of reactions, all such terms should be added to obtain the
evolution of a particular species (e.g., the evolution of a protein A produced
from gene a and only undergoing a posttranscriptional modification would be
obtained by combining i and iii: d[A]�dt � �A�a� � �A�A� � �M�A�).
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investigated here. Based on the networks’ ranking, the top-
scoring half of the collection is kept and the other half deleted.¶
At the end of the selection phase, the network collection has
regained its original size and is ready for the next round of
growth and selection.

For the cases investigated below, this evolution procedure
produces networks achieving the required function within �100
generations for switches and a few hundred generations for
oscillators.

Results and Discussion
Bistable Switches. In this case, the in silico evolution was directed
toward obtaining a network with two possible stable states
differing in particular in the concentrations [A], [B] of proteins
A and B. In the first stable state, the desired concentration [A]1
of protein A was high, and the concentration [B]1 of protein B
was low, whereas in the second one, [A]2 was low and [B]2 high.
Each network was started at time 0 with initial concentrations
corresponding to one of the desired states, for instance with [A]1
and [B]1. The network dynamical evolution was then computed
from time 0 to time T and the concentrations of proteins A and
B monitored to assess how close they stayed to their desired
values. A pulse of B was then added at time T to try to switch the
network to the second desired state [A]2, [B]2. The network
evolution was then followed from T to 2T and the concentrations
of proteins A and B monitored again. A score was then assigned
depending on how well the system under consideration had
approached the two desired states in the two dynamical periods
[that is, depending on the proximity to zero of the sum of the
integral from time 0 to time T of ([A]�[A]1)2�([B]�[B]1)2 in the
first phase and of the integral from time T to 2T of
([A]�[A]2)2�([B]�[B]2)2 in the second phase]. The time inter-
val T was typically taken to be �100 min. The procedure was also
run for different values of the imposed concentrations, with
‘‘high’’ concentrations ([A]1, [B]2) going from a few tens to
several hundreds of molecules and ‘‘low’’ ([A]2, [B]1) concen-
trations from one to a few tens of molecules. The magnitude of
the switching pulse of B was taken to be of the same order as the
desired stable high concentration of B ([B]2) to avoid selecting
networks with only a weakly stable first fixed point. Implemen-
tation of this procedure resulted in the creation of a variety of
networks showing the required dynamical behavior. The net-
works were usually endowed with a multiplicity of accessory
reactions that served to optimize the chosen scoring function but
that also simply reflected evolutionary ‘‘trials’’ [this feature is
related to the phenomenon of ‘‘code bloat’’ in evolving programs
(18)]. To mitigate this phenomenon, a term depending on the
number of reactions was added to the score function to penalize
reaction multiplication and to direct evolution toward network
simplification once a satisfying set of reactions had been found.
The final networks were systematically pruned by deleting
reactions from the most recently added to the oldest to leave a
core set of reactions giving rise to the bistable behavior.

Three of these ‘‘core’’ networks are depicted in Fig. 3 together
with the values of the kinetic constants. A sample of others is
displayed in Figs. 6–12, which are published as supporting
information on the PNAS web site. They show a number of
noteworthy features. Most interesting, the obtained networks
have various designs and are quite different from the ‘‘classical’’
one shown in Fig. 1. Fig. 3A displays a frequently found motif.
Protein A represses gene b at the transcriptional level as in the

classical case. However, protein B simply acts through compl-
exation with A, the complex AB being unable to repress gene b.
Thus if A is high, b is repressed, but if B is high, all of the As are
titrated and complexed, and B remains high. In contrast to the
case of Fig. 1, simple rate equations are now sufficient to make
the design work. Fig. 3B provides an equally simple scheme but
quite strikingly, without any transcriptional repression. Activa-
tion by B of its own gene naturally provides the high B state. In
this state, complexation of A with B leads at the same time to a
low level of free (uncomplexed) A. However, another state is
also possible when the concentration of B is low, because it is
transcribed at a low basal level without autoactivation, and an
increase in B concentration is prevented by complexation with
the abundant free A. Fig. 3C provides an example of a more
complicated scheme with three genes that again crucially in-
volves posttranscriptional interactions. Of note, our evolutionary
algorithm produced several variations on the classical switch of
Fig. 1 with reciprocal repression at the transcription level (Figs.
6 and 7) but less frequently than alternative designs. This
probably results from the larger number of elementary reactions
needed to really make the design work.

Parameter values for the networks of Fig. 3 A and B are given
in Fig. 3 (values for the network of Fig. 3C are given in Supporting
Text, which is published as supporting information on the PNAS
web site) for imposed high concentrations ([A]1, [B]2) of only a
few tens of proteins. Parameter values are provided in Figs. 8 and
9 for the same networks with several hundred proteins in the high
concentration species. This indicates that the networks are able
to perform the required function for a wide range of parameters.
We further checked that the bistable behavior of the obtained
networks did not depend on the precise kinetic parameters
produced by the algorithm. A quantitative and simple measure
of network sensitivity to parameter variation is obtained by
varying one parameter at a time, maintaining all of the others
fixed; the results are shown in Fig. 3. Evolution using determin-
istic dynamics for network evolution as used here tends to give
some kinetic constants close to one end of their permitted
interval of variation (marginally satisfying the constraints), but
the bistable behavior holds for a range of kinetic parameters.
Admissible variations range from 30% to 50% for the few very
sensitive parameters, to �10-fold.

The importance of noise in biological circuits has been em-
phasized (21) and has been the subject of several recent exper-
imental studies (22–24). A detailed modeling of stochastic steps
in transcription and translation is beyond the scope of the
present investigation. Nonetheless, to further assess the robust-
ness of the selected networks and to test their resistance to noise,
we simulated the switch networks of Fig. 3 A and B with the
stochastic dynamics corresponding to their rate equations, as
detailed in Supporting Text. When the high-concentration species
in the stable states have several hundred proteins, the finite
particle number induces some fluctuations in the number of
proteins but does not notably affect the networks’ switch func-
tion (Fig. 13, which is published as supporting information on the
PNAS web site). The networks still perform quite clearly as
switches with only a few tens of particles in the high-
concentration species despite much stronger fluctuations (Fig.
14, which is published as supporting information on the PNAS
web site). So, the selected designs perform reassuringly well in
the presence of noise. Under strong fluctuation conditions, the
network of Fig. 3A switches spontaneously once every few hours
between the two stable states (Fig. 14A). It can thus appear less
robust to noise fluctuations than the design of Fig. 3B, which
displays much rarer spontaneous switches (Fig. 14B). This is not
an intrinsic weakness of the Fig. 3A scheme, however, because
for other kinetic parameters, its stability is comparable to that of
Fig. 3B (data not shown).

¶It might be thought that a milder selection procedure that would keep a proportion of
bad-scoring circuits would be more efficient in some cases. This was tried by selecting the
networks stochastically, based on the score attribution (high-scoring networks being
retained with higher probability than low-scoring ones). For the particular examples
studied here, this did not significantly change the convergence rate: the innovation rate
is slow enough that significant improvements spread to all cells in a few generations.
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Oscillating Networks. To test the generality of the strategy beyond
the creation of bistable switches, we set out to look for networks
oscillating in time. The selection in this case was aimed at
obtaining oscillations at the imposed period T in the concen-
tration of protein A. This was simply achieved by choosing a
priori two different arbitrary concentrations [A]1 and [A]2. The
score of a particular network was then attributed based on how
well it approached [A]1 at half-integer periods (T�2, 3T�2,
5T�2, . . . ) and [A]2 at integer periods (T, 2T, 3T, . . .) over the
course of 10 periods. This simple score assessment method was
found to be more efficient at directing selection than alternative
more sophisticated ways that were tried (based for instance on
computing the amplitude of the desired Fourier mode of the time
record of [A]).

One evolution leading to the creation of an oscillatory network
is shown in Fig. 4. The final network oscillatory dynamics and
that of five of its ancestors are displayed, together with the score
function evolution. Addition of interactions and modifications of

kinetic constants led to the occurrence of oscillations and fast
score improvement around generation 260. The ‘‘core’’ oscillat-
ing network is shown in Fig. 5 and is based on the interaction of
three genes and allied proteins (the kinetic constants for this
network are provided in Fig. 15, which is published as supporting
information on the PNAS web site). Several other oscillating
networks were obtained that crucially involved posttranscrip-
tional interactions (see Fig. 16, which is published as supporting
information on the PNAS web site), similarly to the previously
described switch networks. Because our selection procedure was
based on protein concentrations, oscillations at the transcription
level were not required. Indeed, the procedure also created a
network with constant transcription rates and biochemical os-
cillations occurring purely at the protein level (Fig. 17, which is
published as supporting information on the PNAS web site).

Comparison with Known Biological Networks and Discussion. It is
quite interesting to confront the created networks with some

Fig. 3. Three obtained bistable switches. Each diagram represents a network composed from individual reactions drawn from those listed in Fig. 2. In A and
B, the values of the kinetic constants of all elementary reactions are provided together with the range of variation in which the network keeps its bistable
character (a range of x�y means that the corresponding constant can be multiplied by any number between x and y, maintaining all others fixed). For instance,
in A, the evolution of protein A concentration reads, d[A]�dt � 0.20�0.0085[A]�0.72 [A] [B]�0.19 [A]�0.42[b:A]. The different states of a gene (without or with
proteins bound on its promoter) are assumed to sum to one (thus [b] � [b:A] � 1). The kinetic constants for the network shown in C are provided in Fig. 12.
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documented biological examples. The switch of Fig. 3A embodies
a functioning principle that is, in a simplified way, quite analo-
gous to that of the classic lac operon and was, in fact, also
envisaged in ref. 15. The production of B by the gene b can be
thought of as a shortcut version of the augmentation of allolac-
tose (B) resulting from transcription of the lac operon (b) (via

production of �-galactosidase and a membrane permease).
Allolactose in turn binds to an operon repressor protein, a role
played by A in Fig. 3A, and lifts the repression of the operon
transcription, analogous to the effect of complexation of B
and A.

The principle of Fig. 3B appears to be used in the switch
underlying Xenopus oocyte maturation from a G2-arrested phase
after exposure to progesterone. Conversion from the graded
progesterone signal is thought to take place in the Mos�MEK1�
p42 mitogen-activated protein (MAP) kinase (MAPK) cascade
(25, 26). Mos can be thought of as playing the role of B in Fig.
3B, with positive feedback in the MAPK cascade arising via
p42-induced Mos mRNA polyadenylation (27) and Mos stabi-
lization (28), instead of the simple self promotion of b by protein
B. The role of A appears to be played by the �-subunit of casein
kinase II that binds to Mos and inhibits it (29).

The molecular switch controlling development of competence
in B. subtilis under some starvation conditions seems to be even
more directly related to the switch of Fig. 3B. Development of
competence, that is, the ability to bind and internalize exogenous
DNA, is under the control of a master competence gene comK
that, like b in Fig. 3B, activates its own transcription. In non-
competent cells, MecA binds to ComK and inhibits its activity,
an inhibition that is further induced by formation of a ternary
complex with ClpC. Thus, MecA and CplC together play a role
similar to that of A in Fig. 3B in the building of the competence
switch (30).

The functioning principle of the oscillator of Fig. 5, where the
complexation of the CC dimer with the heterodimer AB pre-
vents activation of gene a by the C multimer, is quite reminiscent
of that used by circadian oscillator gene networks. Using Dro-
sophila network terminology as an example (31), this negative
feedback loop acting on transcriptional activation via com-
plexation can be compared to the transcriptional deactivation of
period (per) and timeless (tim) genes after PER�TIM com-
plexation with the Clock�Cycle (dCLK�CYC) transcriptional
activating dimer. The circuit differs from that of any documented
circadian network, but the analogy is close enough to suggest
alternative models of circadian networks (P.F., unpublished
data) which, contrary to some existing ones, do not make crucial
use of high Hill coefficients (32) or delays coming from chains
of phosphorylation (33).

The evolutionary algorithm described here is able to create a
variety of small networks with prescribed behaviors that display
both known and original designs. The selected networks make
crucial use of posttranscriptional interactions and kinetics of
interactions. Their functions could not be understood at all by
focusing only on transcriptional interactions, a lesson of general
value and a warning for future bioinformatics analyses.

Experimental procedures have recently been developed to
reach goals related to that of the present work. In ref. 6,
combinatorial synthesis was used to generate small networks of
transcription encoding genes with various topologies. Subse-
quent screening allowed the extraction of networks performing
a variety of simple tasks. As in the present study, no a priori
design was imposed, and the same task was found to be realized
by networks with different topologies. Ref. 7 used successive
rounds of directed evolution to adjust kinetic rates in a rationally
designed network and obtain a functional circuit. The evolved
mutants present changes both in protein–DNA and protein–
protein interactions. These studies appear quite complementary
to the present one. On the one hand, the in silico route is
certainly more flexible and less labor-intensive than the exper-
imental ones. In the present investigation, we have, for instance,
included without difficulty a much greater variety of interactions
than in ref. 6 and evolutionary steps well beyond those accessible
to ref. 7. In silico results are also easier to analyze than
experimental ones, because a complete description of the cre-

Fig. 4. Dynamics of six networks at different stages in the evolutionary
process leading to the creation of an oscillatory network. The score evolution
is shown (Bottom).

Fig. 5. The ‘‘core’’ oscillating network extracted from the evolutionary
process shown in Fig. 4. The kinetic constants for this network are provided in
Fig. 15. In Fig. 4, the rapid score decrease and emergence of oscillations at
generation 260 are associated with the creation of the complex ABCC.
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ated networks is available (in contrast, for instance, to some of
those obtained in ref. 6). On the other hand, at present,
computer descriptions of biological mechanisms are, by neces-
sity, very simplified. In silico designs may not perform in vivo as
anticipated. A combination of computer and experimental ap-
proaches may then be the most efficient, with for instance the
approach of ref. 7 serving to tune kinetic rates of a network
designed in silico. Another interesting next step would be to use
the present procedure with appropriate constraints on the
allowed mutations to select testable candidates for missing
interactions in partially known existing networks.

The described algorithm is simple to implement and can be

refined by including, for instance, more detailed protein–
promoter interactions, regulation of mRNA stabilities and trans-
lation, noise in elementary chemical steps, and cellular com-
partments. It should therefore prove quite useful in designing
gene networks and in helping to make sense of experimentally
described interactions.
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