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Complex problems in science, business, and engineering typically
require some tradeoff between exploitation of known solutions
and exploration for novel ones, where, in many cases, information
about known solutions can also disseminate among individual
problem solvers through formal or informal networks. Prior re-
search on complex problem solving by collectives has found the
counterintuitive result that inefficient networks, meaning net-
works that disseminate information relatively slowly, can perform
better than efficient networks for problems that require extended
exploration. In this paper, we report on a series of 256 Web-based
experiments in which groups of 16 individuals collectively solved
a complex problem and shared information through different
communication networks. As expected, we found that collective
exploration improved average success over independent explora-
tion because good solutions could diffuse through the network. In
contrast to prior work, however, we found that efficient networks
outperformed inefficient networks, even in a problem space with
qualitative properties thought to favor inefficient networks. We
explain this result in terms of individual-level explore-exploit
decisions, which we find were influenced by the network structure
as well as by strategic considerations and the relative payoff
between maxima. We conclude by discussing implications for real-
world problem solving and possible extensions.
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Many problems that arise in science, business, and engineer-
ing are “complex” in the sense that they require optimiza-

tion along multiple dimensions, where changes in one dimension
can have different effects depending on the values of the other
dimensions. A common way to represent problem complexity of
this nature is with a “fitness landscape,” a multidimensional map-
ping from some choice of solution parameters to somemeasure of
performance, where complexity is expressed by the “ruggedness”
of the landscape (1, 2). A simple problem, that is, would corre-
spond to a relatively smooth landscape in which the optimal so-
lution can be found by strictly local and incremental exploration
around the current best solution. By contrast, a complex problem
would correspond to a landscape with many potential solutions
(“peaks”) separated by low-performance “valleys.” In the event
that the peaks are of varying heights, purely local exploration on
a rugged landscape can lead to solutions that are locally optimal
but globally suboptimal. The result is that when solving complex
problems, problem solvers must strike a balance between local
exploitation of already discovered solutions and nonlocal explo-
ration for potential new solutions (3, 4).
In many organizational contexts, the tradeoff between explo-

ration and exploitation is affected by the presence of other
problem solvers who are attempting to solve the same or similar
problems, and who communicate with each other through some
network of formal or informal social ties (5–10). Intuitively, it
seems clear that communication networks should aid collabo-
rative problem solving by allowing individual problem solvers to
benefit from the experience of others, wherein the faster good
solutions are spread, the better off every problem solver will be.
However, recent work on the relation between network structure
and collaborative problem solving (11–13) has concluded that
when faced with complex problems, networks of agents that ex-
hibit lower efficiency can outperform more efficient networks,

where “efficiency” refers to the speed with which information
about trial solutions can spread throughout the network. Although
at first surprising, this finding is consistent with earlier results (3, 8)
that slow or intermediate rates of learning in organizations result
in higher long-run performance than fast rates. In both cases, the
explanation is that slowing down the rate at which individuals
learn, either from the “organizational code” (3) or from each
other (8, 11, 13), forces them to undertake more of their own
exploration, which, in turn, reduces the likelihood that the col-
lective will converge prematurely on a suboptimal solution.
Although this explanation is persuasive, the evidence is based

largely on agent-based simulations (2, 3, 8, 11, 13, 14), which
necessarily make certain assumptions about the agents’ behavior,
and therefore could be mistaken in ways that fundamentally
undermine the conclusions. In addition, one recent experiment
involving real human subjects (12) found an advantage for in-
efficient networks in problem spaces requiring exploration.
However, the practical constraints associated with running the
experiments in a physical laboratory limited the size and vari-
ability of the networks considered as well as the complexity of the
corresponding fitness landscapes; thus, it remains unclear to
what extent the experimental findings either corroborate the
simulation results or generalize to other scenarios.
Given these uncertainties, it would be desirable to test hy-

potheses about network structure and performance in human-
subjects experiments in a way that circumvents the constraints of
a physical laboratory. Fortunately, it has recently become possible
to run laboratory-style human subject experiments online. Al-
though virtual laboratories suffer from certain disadvantages rel-
ative to their physical counterparts, several recent studies have
shown that many of these disadvantages can be overcome (15–17).
In fact, a number of classic psychological and behavioral eco-
nomics experiments conducted using Amazon’s Mechanical Turk,
a popular crowd-sourcing (18) site that is increasingly used by
behavioral science researchers to recruit and pay human subjects,
have recovered results indistinguishable from those recorded in
physical laboratories (19, 20).
In this paper, we report on a series of online experiments,

conducted using Amazon’s Mechanical Turk, that explore the
relation between network structure and collaborative learning
for a complex problem with a wide range of network topologies.
Several of our results are consistent with prior theorizing about
problem solving in organizational settings. In particular, we find
that networked groups generally outperform equal-sized collec-
tions of independent problem solvers (8), that exploration can be
costly for individuals but is beneficial for the collective (3), and
that centrally positioned individuals experience better perfor-
mance than peripheral individuals (21, 22). However, we find no
evidence to support the hypothesized superiority of inefficient
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networks (11–13). We note that although our problem spaces
differ in some respects from prior work, they exhibit the essential
features thought to advantage inefficient networks (11); indeed,
the landscapes in question were designed explicitly to favor ex-
ploration. Rather, we argue the difference in our results stems
from assumptions in the agent-based models that, although
plausible and seemingly innocuous, turn out to misrepresent real
agent behavior in an important respect.

Methods
The experiment was presented in the form of a game, called “Wildcat Wells,”
in which players were tasked with exploring a realistic-looking 2D desert

map in search of hidden “oil fields.” The players had 15 rounds to explore
the map, either by entering grid coordinates by hand or by clicking directly
on the map. On each round after the first, players were shown the history of
their searched locations and payoffs, as well as the history of searched
locations and payoffs of three “collaborators” who were assigned in
a manner described in the “Networks” section. Players were paid in direct
proportion to their accumulated points; hence, they were motivated to
maximize their individual scores but had no incentive to deceive others (see
SI Text and Figs. S1 and S2 for more details).

Fitness Landscape. All payoffs were determined by a hidden fitness landscape,
which was constructed in three stages (more details are provided in SI Text):

Fig. 1. Each of the 16-player, fixed-degree (k = 3) graphs used in the experiment, arranged in order of efficiency. The upper row constitutes networks whose
decentralized nature connotes high efficiency (short path lengths), whereas the networks in the lower row are all centralized to some degree and also exhibit
significant local clustering, both of which lower efficiency. The network on the upper right is an intermediate case, being decentralized but exhibiting some
local structure.
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Fig. 2. Average points earned by players in the different
networks over rounds (error bars are ±1 SE) in sessions
where the peak is found. Graphs with high clustering and
long path lengths are shown in dark gray; those with low
clustering and low path lengths are shown in light gray.
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i) The “signal” in the payoff function was generated as a unimodal bi-
variate Gaussian distribution with the mean randomly chosen in an L×L
grid with variance R.

ii) A pseudorandom Perlin noise (23) distribution was then created by
summing a sequence of “octaves,” where each octave is itself a distri-
bution, generated in three stages:
a) For some integer ω ∈ [ωmin, ωmax], divide the grid into 2ω × 2ω cells

and assign a random number drawn uniformly from the interval
[0,1] to the coordinate at the center of each cell.

b) Assign values to all other coordinates in the LxL grid by smoothing
the values of cell centers using bicubic interpolation.

c) Scale all coordinate values by ρω, where ρ is the “persistence” param-
eter of the noise distribution.

iii) Having summed the octaves to produce the Perlin noise distribution
(see also Figs. S3 and S4), the final landscape was created by superpos-
ing the signal and the noise, and then scaling the sum such that the
maximum value was 100.

In its details, our method differs from other methods of generating fitness
landscapes, such as March’s exploration-exploitation model (3, 8, 13) and the
N-K model (1, 2, 11), which generate N-dimensional problem spaces. We
note, however, that all such models of fitness landscapes are highly artificial
and are likely different from real-world problems in some respects. Thus, it is
more important to capture the general qualitative features of complex
problems than to replicate any particular fitness landscape. To satisfy this
requirement, we chose ω ∈ (3, 7) and ρ = 0.7, which generates landscapes
with many peaks in the range between 30 and 50 and a single dominant
peak with maximum of 100 that corresponds to an unambiguously optimal
solution [similar to Lazer and Friedman (11)]. Finally, we emphasize that
players were not given any explicit information regarding the structure of
the fitness landscape; hence, they could not be sure that the dominant peak
existed in any given instance. To ensure that the peak was large enough to
be found sometimes but not so large as to never be found, we conducted
a series of trial experiments with different values of L and R, eventually
choosing L = 100 and R = 3 (an example is shown in Fig. S5).

Networks. Before the startof eachgame, all playerswere randomlyassigned to
unique positions in one of eight network topologies, where each player’s
collaborators for that game were his or her immediate neighbors in that
network. All networks comprised n = 16 nodes, each with k = 3 neighbors, but
differed with respect to four commonly studied networks metrics: (a) be-
tweenness centrality (24), (b) closeness centrality (25), (c) clustering coefficient
(26), and (d) network constraint (22) (details are provided in SI Text). All four
of these metrics have been shown to have an impact on the average path

length of a network,which, in previouswork, has been equatedwith network
efficiency (11, 13); hence, by varying them systematically (as described next),
we were able to obtain networks that varied widely in terms of efficiency
while maintaining the same size and connectivity.

The networks were constructed from regular random graphs (n = 16, k = 3)
by making a series of degree-preserving random rewirings, where only
rewirings that either increased or decreased certain properties of the four
metrics above were retained. The properties of interest were the average
value of the metric, the maximum value, the minimum value, and the var-
iance. Thus, for example, the “max average clustering” network would be
the network that, of all possible connected networks with fixed n = 16 and
k = 3, maximized the average clustering of the network, whereas “max max
betweenness” yielded the network whose most central node (in the be-
tweenness sense) was as central as possible. In principle, this procedure could
generate 2 × 4 × 4 = 32 distinct equilibria (maximum/minimum of the
property, 4 properties, and 4 metrics); however, many of these yielded
identical or nearly identical networks. After eliminating redundancies, we
then selected eight of the remaining networks shown in Fig. 1, which cov-
ered the widest possible range of network efficiency (ranging from 2.2 to
3.87), as shown in Table S1.

Experiments. Each experimental session comprised 8 games corresponding to
each of the network topologies; thus, players experienced each topology
exactly once in random order. We conducted 232 networked games over 29
sessions, where we note that because of the online nature of the partici-
pation, players sometimes failed to participate in some of the rounds. To
check that our results were not biased by participant dropout, we also
reanalyzed our data after removing 61 games in which at least 1 player failed
to participate in more than half of the rounds (analysis with excluded trials is
provided in SI Text), finding qualitatively indistinguishable results. Finally, in
addition to conducting the networked experiments, we conducted a series
of 24 baseline experiments, in which groups of 16 individuals searched the
same landscape independently (i.e., with no network neighbors and no
sharing of information), resulting in a total of 256 experiments comprising
16 players each.

Results
Collectives Performed Better than Individuals. Our first result is that
networked collectives significantly outperformed equally sized
groups of independent searchers. Themain reason for this effect is
obvious: Information about good solutions could diffuse through-
out networked groups, allowing everyone to benefit from the
discovery of even a single searcher in principle, whereas indepen-

Fig. 3. (A) In contrast to theoretical expectations, less efficient networks displayed a higher tendency to copy; hence, they explored less than more efficient
networks [numbers and colors (orange is shorter and green is longer) both indicate clustering coefficient]. (B) Probability of finding the peak is not reliably
different between efficient and inefficient networks.
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dent searchers received no such benefit. Also, not surprisingly, the
benefit to the diffusion of knowledge was particularly pronounced
in instances in which at least one player found themain peak in the
fitness function: Networked collectives earned 29 more points, on
average, in such instances than individuals searching the problem
spaces independently (68 vs. 39; t = 92.5, P ≈ 0). A less obvious
result, however, was that even when the main peak was not found,
networked collectives still earned, on average, 8 points more (M=
40.5) than independent searchers (M = 32; t = 35.6, P ≈ 0). In-
dependent searchers who did not find the peak therefore earned
only 2 points more than a completely random strategy, whereas
individuals searching in a networked collective earned 10 points
more than expected, suggesting that collectives were better able to
take advantage of local maxima in the random landscape as well as
the main peak.
Intuitively, one would expect that independent searchers,

lacking the opportunity to copy each other, would explore more
of the space than networked searchers; hence, one would also
expect that the probability of at least one independent searcher
finding the peak would be higher than for the equivalent number
of networked searchers. Interestingly, however, although the
probability was marginally higher for independent searchers,
the difference was not significant (Fig. S6). Moreover, although
the average distance between coordinates was indeed higher for
independent searchers (Fig. S7A), the difference disappears
when we confine the comparison to rounds in which the peak had
not been discovered (Fig. S7B). Finally, although networked
searchers did exhibit a tendency either to copy or explore close to
the best-available solution in later rounds even when the peak
had not been discovered, independent searchers showed a cor-
responding tendency to copy or explore close to their own best
solutions (Fig. S8). Groups of independent searchers therefore
gained no discernible benefit over networked searchers with re-
spect to exploration, although clearly suffering with respect to
exploitation.

Efficient Networks Outperformed Inefficient Networks. Next, we
investigate the performance differences between our eight net-
work topologies which, recall, varied by a factor of 50% with re-
spect to efficiency (i.e., average path length; Table S1). We begin
by noting that the result that networked collectives exploited local
maxima more effectively than independent searchers demon-
strates that players at times chose to exploit the local maxima of
the fitness landscape rather than continuing to search for the
main peak. We also note that of the 232 sessions, there were only
138 instances in which the peak was found by at least one player in
a networked collective (59.5%). These circumstances, in other
words, capture the qualitative features of fitness landscapes that

prior work suggests should favor inefficient networks (11, 13) over
efficient networks, because individuals in inefficient networks
should be less likely to get stuck on local maxima, and therefore
be more likely to reap the large benefit of finding the main peak.
To the contrary, however, regression analysis finds that the co-
efficient for average path length on score is negative and signifi-
cant (β = −4.63, P ≈ 0.01): Networks with higher efficiency
(shorter path lengths) performed significantly better (Fig. S9 and
Table S2).
Efficient networks outperformed inefficient networks for two

reasons: first, because information about good solutions spread
faster in efficient networks and, second, because, contrary to
theoretical expectations, searchers in efficient networks explored
more, not less, than those in inefficient networks. Fig. 2 illus-
trates the first finding, showing that for the 138 trials in which the
peak was found, the eight networks divided into two rough
groupings: those in the top row of Fig. 1, the efficient networks,
and those in the bottom row, the inefficient networks. The effect
of network structure on performance is therefore likely attrib-
utable to what has been called “simple contagion” (27), which
depends exclusively on shortest path lengths. Supporting this
conclusion, we find that the time required for the information to
reach a node was exactly equal to the path length to the node
that discovered the peak 71% of the time.
Fig. 3A illustrates the second result, showing that before

finding the peak, searchers in inefficient networks had a greater
tendency to copy each others’ solutions than those in efficient

Fig. 4. (A) Probability of copying at least
one neighbor’s previous position increa-
ses with the number of neighbors who
occupy identical positions. (B) Higher local
clustering is associated with higher prob-
ability that an individual’s neighbors cur-
rently occupy the same position.
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networks. In contrast to the theoretical expectation that lower
efficiency should encourage exploration, in other words, we find
it is efficient networks that explored more. Consistent with this
result, it appears that efficient networks found the peak slightly
more often than the inefficient networks (Fig. 3B), although this
difference was not significant.

Hidden Network Structure Affected the Decision to Explore. This last
finding that the network structure affected the players’ tendency
to copy is somewhat surprising, because, in addition to not being
informed about the fitness landscape, players were not given
information about the network they were in. Moreover, every
player had the same number of neighbors; hence, all players’
“view” of the game was identical irrespective of the details of the
network or their position in it. Under similar circumstances,
a recent study of public goods games (20) found that network
structure had no significant impact on individual contributions;
thus, one might have expected a corresponding lack of impact
here. The explanation for the effect, however, can be seen in Fig.
4. First, as shown in Fig. 4A, individuals were more likely to copy
their neighbors if two or more of their neighbors were exploiting
the same location (z = 38.9, P ≈ 0), even if that location was not
near the peak of the fitness function. Second, as shown in Fig.
4B, higher clustering corresponded to a greater likelihood that
an individual’s neighbors would already have chosen the same
location (z= 15.96, P ≈ 0). What these results reveal is that local
clustering allowed an individual’s neighbors to see each other’s
locations, thereby increasing their likelihood of copying each
other, which, in turn, increased the focal individual’s tendency to
copy his or her neighbors. Because the inefficient networks also
had higher clustering, the players were more likely to copy each
other than those in the efficient networks. In other words, by
facilitating what amounts to “complex contagion” of information
(27), in contrast to the simple contagion described above, in-
efficient network structure effectively reduced players’ tendency
to explore even though the networks themselves were invisible.

Players Faced a Social Dilemma.As noted earlier, players benefited
considerably from discovering the main peak, earning 68 points
on average when it was found, compared with 40 points when it
was not (t = 152.4, P ≈ 0). Clearly, therefore, one would expect
players to copy more, and explore less, when one of their
neighbors had discovered the main peak. Fig. 5 confirms this
expectation; however, it also shows that the decision to exploit
known solutions depended even more sensitively on time. In
early rounds, that is, players mostly explored new locations
whether or not the peak had been discovered (although more so
when it had not), whereas in later rounds, they overwhelming

copied their most successful neighbor, again, regardless of
whether or not their neighbors had discovered the peak. The
likely explanation for these results is that players could not be
certain that the peak existed, or that if it did, whether anyone
would find it within the time limit. As a consequence of this
uncertainty, players were increasingly unwilling to explore as the
game progressed, preferring to exploit known local maxima. Less
obviously, players also faced a version of a social dilemma in
which individual and collective interests collide. On the one
hand, Fig. 6A shows that players who copied more (before
finding the peak) also tended to score higher (t= 5.7, P < 0.001);
thus, players could improve their success by free-riding on oth-
ers’ exploration. On the other hand, Fig. 6B shows that the more
players copied on any round, the lower was the likelihood of
finding the peak on the next round (z= −4.25, P < 0.001); hence,
the individual decision to exploit negatively impacted the per-
formance of the collective.

Relative and Absolute Individual Success Depended on Position and
Network Structure. Finally, in addition to affecting the average
success of group members, network efficiency affected the dis-
tributions of success, and thereby relative individual performance,
in two different and conflicting ways. First, as Fig. 7 shows, the

Fig. 6. (A) Average individual perfor-
mance increases with individual ten-
dency to copy his or her neighbors’
positions (size of circle indicates the
number of games played by a given
subject, showing the same trend for
frequent and infrequent participants).
Larger circles indicate more games, and
smaller circles indicate fewer games. (B)
Proportion of players copying each
other on any given round was associ-
ated with diminished probability of
discovering the main peak of the fitness
landscape on the subsequent round.
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best-performing individuals, those who occupied central positions
(i.e., with high betweenness or closeness centrality), consistently
earned more points than their peers in the same network (See SI
Text and Figs. S10 and S11 for more details). Second, however,
Fig. 7 also shows that the average number of points earned for
individuals in decentralized networks was comparable to the most
points earned for centralized networks. Thus, depending on
whether a given individual cares about relative or absolute per-
formance, and assuming that he or she can also choose his or her
network position, he or she may prefer to belong to a more or less
centralized network, respectively.

Discussion
Our results reinforce certain conclusions from the literature on
organizational problem solving but raise interesting questions
about others. For example, our finding that exploitation is cor-
related with individual success but anticorrelated with collective
success is consistent with previous results (3), which, inter-
estingly, were derived from a very different model of organiza-
tional problem solving than ours. Moreover, our finding that
individuals benefit from occupying central positions is reminis-
cent of long-standing ideas about the benefits of centrality (21)
and bridging (22). However, our result that efficient networks
perform unambiguously better than inefficient networks stands
in contrast to previous findings that inefficient networks perform
better in complex environments (11–13).
To understand the reasons for this difference better, we con-

ducted a series of agent-based simulations in which artificial
agents played the same game as our human agents, on the same
fitness landscapes, but followed rules similar to those described
in one previous study (11). Although we were able to replicate
the result that inefficient networks outperformed efficient net-
works, it arose only when agents searched with an intermediate
level of myopia (i.e, search that was either too local or too global
yielded no difference in performance across networks). More-
over, for all parameter values, simulated agents copied more and
performed worse than human agents did (see SI Text and Figs.
S12–S17 for more details).
These results suggest that, at least for this class of problem,

agent-based models have, to date, been insufficiently sophisti-
cated and heterogeneous to reflect real human responses to
changing circumstances, such as observed spatial correlations in

the fitness landscape or the period of the game. For example, our
comparison case (11) assumed that when at least one neighbor
had a higher score, the focal agent would always copy; moreover,
when agents “chose” to explore, they also adopted a fixed heu-
ristic, independent of time and circumstances. By contrast, the
search strategies that we observed in our experiments varied
considerably across players, and also within players over the
course of the game.
Recognizing that the results of both artificial simulations and

artificial experiments should be generalized with caution, we
conclude by outlining two possible implications of our findings.
First, the result that networked searchers outperform inde-
pendent searchers appears relevant to real-world problems, such
as drug development, where competitive pressures lead firms to
protect not only their successes but their failures. Given the
considerable benefits to collective performance that our results
indicate are associated with sharing information among problem
solvers, future work should also explore mechanisms that in-
centivize interorganizational tie formation or otherwise increase
efficiency in communication of trial solutions.
Second, we expect that network efficiency should not, on its

own, lead to premature convergence on local optima. To clarify,
recall that the intuition in favor of inefficiency is that slowing down
the dissemination of locally optimal solutions also allows more
time for globally optimal solutions to be found. However, our
simulation results suggest that this extra time is useful only inas-
much as the overall rate of discovery is neither too slow nor too
fast, an unlikely balance that does not appear to be displayed by
actual human search strategies (more discussion is provided in SI
Text). Moreover, we find that inefficient network structures can
also decrease exploration, precisely the opposite of what the
theory claims they are supposed to accomplish. We emphasize
that this result does not contradict other recent work pointing out
the collective advantages of diversity (28) or of other aspects of
interactivity, such as turn taking (29). Rather, it suggests that
manipulating network structure to impede information flow is an
unreliable way to maintain organizational diversity, and indeed
may have the opposite effect. Assuming that diversity can be
maintained via more direct mechanisms, such as recruiting efforts,
allocation of individuals to teams (28), or choice of alliances (30),
our results therefore imply that efficient information flow can only
be advantageous to an organization.
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