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Abstract
Staphylococcus aureus is a human commensal that can also cause a broad spectrum of clinical
disease. Factors associated with clinical disease are myriad and dynamic and include pathogen
virulence, antimicrobial resistance and host susceptibility. Additionally, infection control
measures aimed at the environmental niches of S. aureus and therapeutic advances continue to
impact upon the incidence and outcomes of staphylococcal infections. This review article focuses
on the clinical relevance of advances in our understanding of staphylococcal colonization,
virulence, host susceptibility and therapeutics.

Over the past decade key developments have arisen. First, rates of nosocomial methicillin-resistant
S. aureus (MRSA) infections have significantly declined in many countries. Second, we have
made great strides in our understanding of the molecular pathogenesis of S. aureus in general and
community-associated MRSA in particular. Third, host risk factors for invasive staphylococcal
infections, such as advancing age, increasing numbers of invasive medical interventions, and a
growing proportion of patients with healthcare contact, remain dynamic. Finally, several new
antimicrobial agents active against MRSA have become available for clinical use.

Humans and S. aureus co-exist and the dynamic interface between host, pathogen and our attempts
to influence these interactions will continue to rapidly change. Although progress has been made
in the past decade, we are likely to face further surprises such as the recent waves of community-
associated MRSA.
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Background
The epidemiology and clinical manifestations of any infectious disease are influenced by
several factors including the pathogen, the host, the environment and therapeutic advances.
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The story of Staphylococcus aureus, an incredibly versatile organism that is normally a
human commensal, demonstrates how these factors result in a dynamic and rapidly shifting
landscape. This article will begin by defining key concepts relevant to S. aureus, followed
by a review of recent developments in the interactions between an organism that is
becoming more resistant to antibiotics, a host population that is undergoing more medical
procedures, and the host population’s attempts to change the environment and course of
disease.

Clinical syndromes
S. aureus is a gram-positive coccus with numerous virulence factors and the ability to
acquire antibiotic resistance determinants [1]. Skin and skin structure infections (SSSI)
represent approximately 90% of all S. aureus infections and thus the major burden of
staphylococcal disease [2–6]. However, infections of the bloodstream, respiratory tract, bone
and joint, surgical wounds, and increasingly medical devices are particularly feared due to
the high morbidity and mortality and prolonged treatment required. More recently, severe
manifestations of community-associated disease such as fulminant sepsis [7], the
Waterhouse-Friderichsen syndrome [8] and necrotizing pneumonia [9,10] have become
prevalent. The rise of antibiotic resistance has further compromised effectiveness of existing
antimicrobial agents. Thus, despite improvements in medical care, mortality from S. aureus
bacteremia continues to be 20–30% in the developed world [11].

Antibiotic resistance
Following the introduction of penicillin in the mid-1940s, penicillin-resistant strains of S.
aureus were soon reported [12] and this was followed by a pandemic of penicillin-resistant
S. aureus [13]. Although initially prevalent only in hospitals, penicillin-resistance is now
present in over 90% of community isolates. These strains produce a plasmid-encoded
penicillinase that disrupts the β-lactam ring of penicillin. Methicillin, a penicillinase stable
β-lactam, was introduced in the late 1950s; however, reports of methicillin-resistance rapidly
appeared [14]. The mechanism of resistance to methicillin involves an altered and low
affinity penicillin-binding protein (PBP2a) that is encoded by the mecA gene, which confers
a broad resistance against all members of the β-lactam antibiotics. The mecA gene is carried
on the mobile genetic element staphylococcal chromosome cassette (SCC) with the entire
complex termed the SCCmec element. There are now 11 defined variants of SCCmec (types
I to XI) (see http://www.sccmec.org/) that differ in size and composition of antimicrobial
resistance elements. Typically, multi-resistant nosocomial strains of MRSA harbor
SCCmecII and SCCmecIII, which are larger and include multiple resistance determinants.
On the other hand, the more recent community-associated MRSA strains harbor the smaller
SCCmecIV, which carry fewer resistance elements and thus often retain susceptibility to
macrolides, quinolones, tetracyclines, trimethoprim-sulfamethoxazole and lincosamides.
Moreover, the smaller size of SCCmecIV has been postulated to allow it to be more mobile
and supportive evidence of this is the fact that SCCmecIV has been inserted into multiple
lineages of S. aureus whereas SCCmecII and SCCmecIII have only been found in three and
two lineages respectively [15].

Molecular genotypes
Early studies using phage typing established the utility of discriminating different strains or
lineages of S. aureus [16]. Currently, the most commonly used techniques for molecular
genotyping of S. aureus are pulsed-field gel electrophoresis (PFGE) and sequence based
methods such as multilocus sequence typing (MLST) and spa typing. PFGE involves
separating SmaI-digested DNA fragments of the genome by size in agarose gel and provides
a very fine level of resolution. PFGE is limited by difficulties with inter-laboratory
standardizations and portability, although it continues to be widely used in the United States,
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and the Centers for Disease Control and Prevention (CDC) has developed a national S.
aureus PFGE database [17]. Sequence based approaches have the advantage of producing
unambiguous and reproducible results that can be compared on web-based databases. MLST
involves the sequencing of 450–500bp fragments of seven housekeeping genes [18]. By
assigning sequences for each fragment to different alleles, the combination of alleles can be
designated to a unique sequence type (ST). There are now over 2000 STs on the S. aureus
MLST database (http://saureus.mlst.net/). Sequencing the spa locus, a rapidly evolving
hypervariable region of the genome, is simpler, because it only requires the sequence from
one gene, and in general produces results concordant with MLST [19]. More recently, whole
genome sequencing with next generation sequencing technologies has become an incredibly
powerful means of determining the genetic make-up and relationships between S. aureus
isolates [20].

The widespread uptake of MLST has allowed a much deeper understanding of the global
population structure of S. aureus. It appears that there are distinct lineages or clonal
complexes (CCs) of S. aureus and that these tend to evolve through point mutation rather
than recombination [21,22]. However, it is also clear that virulence and resistance genes are
frequently acquired through horizontal gene transfer onto what is a relatively stable genetic
background [23].

Genotypic and epidemiologic definitions
Although molecular genotyping techniques are useful in determining the molecular
epidemiology of S. aureus, such techniques are rarely available in standard diagnostic
laboratories or sufficiently rapidly performed to guide clinicians in real time. Thus
definitions based on epidemiological and resistance phenotype patterns are more commonly
used. The CDC definition divides infections into nosocomial (onset of infection >48 hours
after hospital admission), community-onset healthcare-associated (onset of infection in the
community or <48 hours after hospital admission and the presence of ≥ 1 of the following
risk factors: a history of hospitalization, surgery, dialysis, or residence in a long-term care
facility within one year before the culture date; or the presence of a permanent indwelling
catheter or percutaneous medical device at the time of culture; or previous isolation of
MRSA), and community-associated (onset of infection in the community or <48 hours after
hospital admission with none of the above risk factors) [2]. Resistance phenotype definitions
group isolates as multiresistant (resistant to ≥ 3 non β-lactam classes of antibiotics) or non-
multiresistant (resistant to <3 non β-lactam classes of antibiotics) [24]. There is obvious
overlap between the genotypic, epidemiologic and resistance phenotypic definitions,
particularly with the blurring of boundaries and encroachment of initially community-
associated MRSA strains, such as USA300 into hospital environments, and also the increase
in breadth of resistance of certain strains [25].

The environment: colonization and interventions to change the
environment

S. aureus is a common human commensal. Approximately 30% of healthy adults are
colonized with the anterior nares being the typical site of carriage. However, extra-nasal
sites of S. aureus colonization include the skin, perineum, gastrointestinal tract and the
throat. Longitudinal studies have revealed that individuals can be non-carriers, intermittent
carriers and persistent carriers [26,27]. The risk of developing a healthcare-associated
staphylococcal infection is three to six times increased among nasal carriers with a large
bacterial load compared to non-carriers or those with a low bacterial load [28,29] with nasal
colonizing strains usually being the source of infection [30,31]. More recently, it has
become apparent that the patterns of carriage of community-associated MRSA may differ
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from that previously recognized for healthcare-associated MRSA. A substantial proportion
of those colonized with community-associated MRSA appear to be colonized at body sites
outside of the anterior nares. For example, one study found that 23% of patients colonized
with community-associated MRSA were colonized at non-nasal sites (predominantly
inguinal regions) [32] and in children with SSSI the rectum was found to be the key site of
colonization [33]. Young, healthy individuals appear to be at higher risk of exclusive throat
carriage. Of healthy blood donors colonized with S. aureus, 30% carried S. aureus in the
throat only [34]. Furthermore, the household environment has also been found as a reservoir
[35]. Even in the Intensive Care Unit (ICU) setting, the throat and rectum are important sites
of carriage of MRSA [36].

The clinical importance of understanding the sites, patterns and methods of detection of
colonization lies in the ability to intervene through infection control programs and to prevent
clinical infections in colonized hosts. For example, various interventions involving nasal
decolonization have been shown to be effective in reducing rates of S. aureus bacteremia
(SAB) in hemodialysis patients [37], MRSA wound infections post cardiothoracic surgery
[38] and surgical site infections [39]. Indeed, for the first time since the global epidemic of
MRSA in hospitals, the past five years has seen notable successes in reducing rates of
MRSA infection. In three Illinois hospitals between 2003–2007, universal screening of all
admissions for MRSA followed by topical decolonization and contact isolation of MRSA
colonized patients resulted in a 70% reduction in rates of hospital-associated MRSA
infections [40]. In the United States, the Veterans Affairs hospitals universally implemented
a “MRSA bundle”, consisting of universal active surveillance, contact precautions for those
colonized or infected with MRSA, a hand hygiene campaign and programs to stimulate
institutional culture change, resulting in a 62% reduction in the incidence of MRSA-related
healthcare-associated infections from 1.64 infections per 1000 patient-days to 0.62 per 1000
patient days [41]. The incidence of central line-associated bloodstream infections (CLABSI)
due to MRSA in ICUs has significantly reduced from 2001– 2007, together with an even
greater reduction in CLABSI due to methicillin-susceptible S. aureus (MSSA) [42].
Strikingly, over the period 2005–2008 the incidence of invasive healthcare-associated
MRSA infections decreased by 9.4% per year [43].

These reductions in incidence of MRSA infections have not been limited to the United
States. In England, following widespread efforts and interventions to combat MRSA, there
has been a 57% reduction in MRSA bacteremia from 2004–2008 [44]. In France, sustained
reductions over the past decade have also been evident [45], and the Netherlands continues
to maintain an incredibly low incidence of MRSA infections [46]. Similarly, in Australia,
concerted efforts to improve hand hygiene compliance resulted in significant reductions in
rates of MRSA infections and bacteremias on a statewide level [47].

These encouraging indications from the above observational studies need to be tempered by
the results of two large and well-designed clinical trials that found no statistically significant
reduction in MRSA rates with the use of MRSA nasal surveillance and isolation precautions
for MRSA carriers [48,49]. Therefore, it remains unresolved as to which interventions are
effective, since multiple interventions targeting MRSA are typically implemented during
observational studies. In addition, the publication and implementation of guidelines to
prevent CLABSIs and ventilator-associated pneumonias may have occurred concurrently.
Edgeworth argues that the decolonization of patients with mupirocin and skin antisepsis
agents has likely played an under-recognized role in the success of these programs [44].
Despite these caveats, the balance of evidence indicates that the bundled interventions being
administered are proving effective in reducing rates of MRSA in hospitals.
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However, an even greater challenge will be to find interventions that are successful in the
community where community-associated MRSA appears to be adding to the general burden
of staphylococcal disease [50] and where high risk populations may be acting as reservoir
and vectors for the amplification and wide-dissemination of community-associated MRSA
strains [51,6]. Moreover, traditional approaches to surveillance and decolonization may not
apply to community-associated MRSA due to its preponderance for colonization of extra-
nasal sites such as the throat and rectum. Attempts to reduce rates of MRSA infections by
screening and nasal decolonization of MRSA carriers in the setting of military and sporting
communities have so far proved unsuccessful [52,53].

The pathogen: Organism related determinants of outcome
S. aureus has a large arsenal of virulence factors that allow it to evade host immune
responses and to cause clinical disease. These comprise cell surface proteins, extracellular
enzymes and exotoxins. Although in vitro studies and the use of animal models have
provided many insights into the role of these various factors, there has been little to correlate
the presence and expression of such factors with clinical disease and outcomes. Indeed, few
therapeutic interventions are currently available that have applied this knowledge. Due to the
epidemic of USA300 community-associated MRSA, much of the recent research described
here has focused on factors associated with USA300, and findings from USA300 may not be
applicable to other strains of S. aureus. It will be important for similar studies to be
conducted with other strains of S. aureus.

The Panton-Valentine leukocidin controversy
One of the initial observations regarding community-associated MRSA was that the majority
of strains harbored the genes encoding for Panton-Valentine leukocidin (PVL). PVL is a bi-
component toxin that forms pores in neutrophils. Early epidemiological studies highlighted
the association between PVL and necrotizing pneumonia, furunculosis and severe bone and
joint infections [54,9,55]. An early paper described an association between PVL and lethal
necrotizing pneumonia in young adults but the overall numbers were small with only 16
cases of PVL+ pneumonia of which 8 were recruited retrospectively [9]. Further cases of
necrotizing pneumonia associated with PVL, in both MRSA and MSSA infections and often
associated with influenza and poor outcomes, have been reported [56,10,57–59]. In
Australia, where non-PVL lineages of community-associated MRSA from clonal complex 1
circulate [60], and also where the majority of PVL+ isolates were found to be MSSA in
northern Australia [61], PVL has consistently been linked to furunculosis [61–63], but not to
poorer outcomes [61,64]. Recent studies have failed to find an association between the
presence of PVL and poorer outcomes in complicated skin and skin structure infections
(cSSSI) [65,66] (Tong et al., Abstract C2-1287 at 50th Interscience Conference for
Antimicrobial Agents and Chemotherapy, Boston, September 12–15, 2010), hospital
acquired pneumonia [67] or invasive disease [68].

Conflicting results from experimental studies have also led to a significant degree of
controversy regarding the pathogenic role of PVL. In one study using a mouse model, it was
reported that PVL was directly causative of necrotizing pneumonia [69]. However, it was
subsequently determined that an unintended point mutation in the agr promoter of the S.
aureus isolate used resulted in defective virulence gene regulation and explained the
observed phenotype [70]. Furthermore, mammalian neutrophils from different species differ
in their susceptibility to PVL. Mouse neutrophils are more resistant than human and rabbit
neutrophils to PVL [71–74]. Therefore mouse models may not be appropriate for
determining the role of PVL in human disease and could explain the negative findings from
several studies [75,76]. However, even the use of rabbit models (rabbit neutrophils are
susceptible to PVL), has not resolved the controversy. A rabbit model of necrotizing
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pneumonia compared the virulence of a USA300 wild-type strain with that of an isogenic
PVL-deletion mutant and found that expression of PVL resulted in increased pathogenicity
[77]. Two recent papers using a rabbit SSSI model came to conflicting conclusions about the
role of PVL [78,79]. To complicate matters further, Yoong and Pier found in a low-
inoculum murine skin abscess model that PVL stimulates a protective host immune response
that is abrogated by antibodies to PVL [80]. However, epidemiological evidence linking a
history of past PVL infection (using the history of a previous furuncle as a surrogate) with
protection against death in PVL-associated pneumonia has also been reported [81]. Thus, the
results of a Phase 1–2 vaccine trial of a vaccine containing a PVL component are eagerly
awaited (ClinicalTrials.gov NCT01011335, study completed in March 2011).

Apart from PVL, phenol-soluble-modulins (PSMs) and alpha-toxins have been investigated
as factors important for lysis of neutrophils. Alpha-toxin is another pore-forming toxin that
has been found to be an important virulence factor in murine pneumonia and skin infection
models [82,83]. PSMs are amphipathic, alpha-helical peptides that have cytolytic activity.
PSMs have been shown to contribute significantly to community-associated MRSA
virulence [84] and to enhance the activity of PVL in lysis of human neutrophils [73].
Notably, a recent study has used a rabbit skin infection model to compare the relative
virulence of a wildtype USA300 isolate with isogenic deletion mutants for PVL, alpha-toxin
and PSMα. These investigators found that alpha-toxin and PSMα played more important
roles than PVL as virulence determinants for this USA300 strain [79]. A novel bi-
component leukotoxin named LukGH has recently been identified through cell surface
proteomics of USA300 strain LAC [85]. LukGH was found to have cytolytic activity
towards neutrophils and is potentially a novel virulence factor for USA300.

In summary, there is strong evidence for an epidemiological link between PVL and
furunculosis and necrotizing pneumonia. The outcomes from cSSSI and hospital acquired
pneumonia appear to not be different for PVL+ and PVL- disease. This may not be the case
with community-acquired PVL+ necrotizing pneumonia, which is often associated with
influenza and frequently results in poor outcomes. There continues to be conflicting
evidence of the role of PVL in animal models of SSSI and pneumonia but it is becoming
clearer that PVL is not the sole or dominant factor contributing to virulence of S. aureus.

Nonetheless, some clinicians are now moving towards treating severe PVL+ disease with
therapies targeted at the PVL toxin. Published recommendations from France suggest that
for severe SSTI, severe bone and joint infections, and necrotizing pneumonia, that antitoxin
agents that inhibit protein synthesis such as clindamycin, rifampicin or linezolid should be
added to standard bactericidal agents and that intravenous immunoglobulin (IVIg) be
considered for necrotizing pneumonia and refractory SSSI [86]. There is evidence that
inhibitors of protein synthesis do reduce the production of PVL [87,88], however there is a
cautionary note that the production of PSMs may be increased with sub-inhibitory
concentrations of such agents [89]. For necrotizing pneumonia, the recommendations
acknowledge that the use of IVIg is only supported by in vitro data and a handful of case
reports [90,91].

Staphyloxanthin
Staphylococcus aureus is named as such due to the golden color of colonies in growth media
(aureus = “golden”, Latin). Recent work has demonstrated the importance of the carotenoid
pigment, staphyloxanthin, to the ability of S. aureus to resist killing by neutrophils. Loss of
pigmentation results in reduced virulence in murine skin and sepsis models [92].
Additionally, inhibition of staphyloxanthin biosynthesis resulted in improved clearance of S.
aureus in a murine intra-peritoneal sepsis model, although no mention is made of an impact
on murine survival [93]. Interestingly, an isolate from an early-branching and
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phylogenetically divergent S. aureus lineage, clonal complex 75, has been shown to lack the
genes necessary for synthesis of staphyloxanthin and 126 isolates from this lineage were
found to all be non-pigmented [94]. Whether the acquisition of genes for staphyloxanthin
biosynthesis was a significant event in the evolution of S. aureus as a virulent species
remains to be determined.

Underlying genetic background
A further question of interest is whether S. aureus strains of distinct lineages differ in their
virulence and the clinical diseases caused. Earlier studies using MLST data demonstrated
that there was no difference in the populations of S. aureus that caused asymptomatic nasal
carriage compared to a diverse range of severe disease [95,96]. Similarly, using amplified
fragment length polymorphism analysis, it was shown that all lineages found in carriage
isolates were also present in invasive isolates. However, some lineages appeared to be more
frequently associated with impetigo isolates [97]. Focused studies have implicated CC5 and
CC30 as more likely to cause bacteremia with hematogenous complications [98]. CC30 was
also more likely to be a cause of persistent bacteremia [99] and over-represented in isolates
from infective endocarditis as compared to SSSIs [100]. The reasons for why CC30 might
be over-represented in these severe forms of infection are unknown. Recent evidence
demonstrating that the same CC30 isolates that are associated with an increased risk for
endocarditis in humans are also paradoxically less likely to cause septic death in two in vivo
models implies that these contemporary CC30 isolates may have evolved an increased
tendency to bind to host tissues at the expense of specific toxin production (Sharma et al.,
Abstract B-060/60 at 51st Interscience Conference for Antimicrobial Agents and
Chemotherapy, Chicago, September 17–20, 2011). A fascinating study from Deleo and
colleagues provides support for this potential explanation. In their work, they elegantly
demonstrate how contemporary CC30 isolates, when compared to isolates of the historical
hypervirulent 80/81 clone from the 1950s and 60s, contained non-synonymous SNPs in
genes encoding accessory gene regulator C (agrC) and alpha hemolysin (hla) and had
reduced virulence in vivo (DeLeo et al., Proc Natl Acad Sci USA 2011 in press).

Other studies have corroborated this surprising finding that even within monophyletic
lineages significant differences in virulence may exist. In a genomic study of 10 USA300
isolates, isolates that were very closely related on a genome level demonstrated substantial
differences in their virulence as determined in a murine sepsis model [101]. Similarly, single
amino acid polymorphisms in the fibronectin binding protein A of S. aureus can result in an
increased force of binding between S. aureus cells and fibronectin (Lower et al., Proc Natl
Acad Sci USA 2011 in press). These single amino acid polymorphisms were found to be
more common in SAB isolates from patients with infected cardiac devices compared to
those from patients with uninfected cardiac devices. Collectively, these studies suggest that
for S. aureus, as for other pathogens [102], determining variation at the single nucleotide
level across the whole genome will be necessary to truly understand and elucidate
associations with virulence in clinical disease.

The human host: Host related determinants of outcome
Perhaps of greater importance than pathogen virulence factors, many characteristics of the
human host, whether intrinsic or acquired, have a major influence on clinical outcomes –
ranging from establishing S. aureus as an asymptomatic colonizer to deleterious and
fulminant invasive staphylococcal infection.

For some time now, researchers and clinicians alike have known that S. aureus infections
may be associated with specific racial, social and physical attributes of the human host. Age,
sex and racial origin are three important characteristics that determine risk of S. aureus
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colonization and infection. For example, a secondary analysis of the 2001–2002 National
Health and Nutrition Examination Survey (NHANES) in which 9,622 participants
contributed microbiologic data showed women and patients aged 65 years and older were
more likely to have MRSA colonization [103]. In addition to risk of colonization, older age
group was also a risk factor for higher mortality if a patient became infected with S. aureus.
A recent study of patients with S. aureus bacteremia found that patients aged 80 or older had
substantially higher mortality rates [104]. The authors of the study went on to conclude that
specific interventions to optimize clinical care practices in elderly patients with S. aureus
bacteremia are essential given the compelling data on the disproportionately high rates of
morbidity and mortality.

Racial origin is also a major determinant of risk of S. aureus colonization and infection at
the population level. In the same aforementioned NHANES study, white persons were found
to have statistically higher risks of S. aureus colonization than Hispanic or Black persons
[103]. Despite this lower rate of colonization, African Americans were significantly more
likely to develop invasive MRSA infections than whites [43,105]. Indigenous populations of
different continents also appear to be at high risk for the acquisition and infection with
community-associated MRSA as seen in the Native American, Pacific Islander, and
Australian Aboriginal populations [51]. The reasons for these higher infection rates in
racially distinct populations are unknown, and likely complex. At least some of these
differences in infection rates may relate to sociocultural rather than genetic issues. For
example, culturally unique behaviors among different populations may be more relevant in
the pathogenesis of some forms of S. aureus infection. Other economic factors such as living
in crowded conditions, lack of access to healthcare and suboptimal personal hygiene
practices, are also likely to be relevant. In support of the role of these lifestyle issues is the
observation that crowding, communal living conditions and sharing of personal items are
thought to be important contributors to community-associated MRSA outbreaks among
incarcerated inmates [106], military recruits [107] and professional athletes [108].

Skin and mucosal protection against S. aureus
There is no greater barrier against S. aureus than our skin and mucosal defenses. Data
clearly show that S. aureus infections occur more frequently when the normal protective
defenses of human skin are weakened or if they are breached, especially if there is a high
burden of S. aureus colonization or if personal hygiene practices are lacking. Early evidence
of the protective importance of human skin came from patients who had skin conditions and
high rates of S. aureus colonization. For instance, a point-prevalence study of 54 patients
with atopic dermatitis attending the dermatology clinic of the Children’s Hospital of
Philadelphia showed that greater than 80% were colonized with MRSA [109] – a
colonization rate that is substantially higher than what is expected in the general population
(~3%).

Within the community setting, protective skin barriers may be breached as a result of simple
trauma during shaving of facial or body hair or from more serious injuries sustained during
sports and training. Interestingly, the simple act of shaving body hair was identified as a
specific risk factor associated with MRSA infections among college football players during
an outbreak in Connecticut [110]. “Turf burns” and other more serious skin abrasions
sustained during sports are much more obvious portals of entry for S. aureus colonizing the
skin. An outbreak of community-associated MRSA SSSI among St. Louis Ram’s football
players demonstrated that infections often occurred at the sites of skin abrasions and turf
burns [111]. The authors of the report also suggested that appropriate treatment and
coverage of such skin abrasions may have helped to prevent community-associated MRSA
infections seen in the outbreak.
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Two other activities in the community setting are associated with high risks of S. aureus
infection, namely tattooing and injection drug use. Both such activities may occur with
contaminated sharps that can introduce S. aureus directly into soft tissue and the vascular
system, respectively. For example, a 2006 report from the CDC revealed that 34 cases of
community-associated MRSA infections were reported in patients who received tattoos from
unlicensed tattooists who did not routinely perform hand hygiene, skin antisepsis or
adequate disinfection of equipment and surfaces [112].

Immune Deficiencies
Immune competency is also an important part of the body’s defense against S. aureus. There
are inherited and acquired immunodeficiency states that are well associated with S. aureus
infections. Inherited defects in white blood cell function or immune responses such as
present in chronic granulomatous disease (CGD), Job’s syndrome, Chediak-Higashi
syndrome, and Wiskott-Aldrich syndrome all predispose to recurrent staphylococcal
infections [113]. The key role of Il-1 and Il-17 in the immune response to S. aureus
infections of the skin has recently been reviewed [114]. On the other hand, defects in
specific cellular immunity are generally not closely associated with infections with S.
aureus. Even though some studies have shown that HIV-infected patients are at higher risk
of S. aureus infections, much of the link between S. aureus infection in HIV-infected
patients may be attributable to higher frequency of healthcare contact, more antibiotic
consumption, high proportion of indigent or incarcerated patients, and histories of substance
abuse and high-risk behaviors. Interestingly, regardless of HIV-infection status, men who
have sex with men have emerged as an important and independent risk factor for
development of community-associated MRSA infections over the last decade [115].

Medical comorbidities and Healthcare Contact
Many medical comorbidities have been found to be important and manageable risk factors
for S. aureus colonization and infection, including peritoneal dialysis or hemodialysis,
diabetes mellitus, and rheumatoid arthritis [116]. There are many thoughts as to how these
comorbidities increase risk of S. aureus infection. First, some of these comorbidities are
associated with functional defects of the immune system. For instance, poorly-controlled
diabetes mellitus is known to be associated with decreased neutrophil function and
decreased cellular chemotaxis [117]. Similarly, patients with uremia or who are receiving
dialysis have a degree of neutrophil dysfunction as well as diminished antibody production
and opsonic capabilities.

Second, many of the aforementioned comorbidities may result in regular healthcare contact,
more hospitalizations and frequent invasive procedures – all of which are well-understood
major risk factors for S. aureus colonization and invasive disease [118,119]. In particular,
breaches of the skin and mucosal defense with intravascular lines and hemodialysis needling
are key risk factors. Furthermore, frequent healthcare contact often culminates in antibiotic
use (whether appropriate or not), which is also is independently associated with acquisition
of MRSA [120].

Finally, comorbid conditions can result in reduced functional status and an inability to
independently perform personal hygiene and skin care, leading to higher rates of S. aureus
colonization and infection. A case-control study at 7 hospitals in the southeastern region of
the United States showed that poor functional status (defined as requiring assistance with
any activity of daily living) was highly associated with infection with MRSA, particularly
surgical site infections [121]. Additionally, if patients with multiple comorbidities and poor
functional status were admitted to long-term care facilities (LTCF), the risk of MRSA
colonization and infection also increases [122]. Specific characteristics in LTCFs have been
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found as significant risk factors for MRSA colonization and infection: low ratio of nurses to
patient beds, location of facility in a deprived area, and a stay of more than 6 months in the
LTCF.

It is important to remember that modern medicine can offer new diagnostic and therapeutic
options through the use of indwelling lines and other invasive procedures. Such
opportunities come at a great risk of causing debilitating or even, lethal, S. aureus infections.
Indeed, there has been a notable shift in the epidemiology of infective endocarditis (IE) over
the past 20 years with S. aureus now the leading cause of IE in many regions of the world
and much of this being healthcare-associated [123]. This sobering reminder underscores the
need for increased vigilance and the urgency for a collective and aggressive response to
reduce the threat of S. aureus infection.

Therapeutics: attempts to change outcomes
There are several overarching principles in the management of S. aureus infections. Two
such important principles are grounded in basic science and studies on pathogenesis of
staphylococci and the conclusions correlate well with data and outcomes from clinical
studies.

S. aureus can form biofilm which facilitates its survival and multiplication on infected
surfaces and prosthetic. In addition, the biofilm can provide protection against both host
immune defenses as well as antibiotic agents, potentially prolonging the duration of
organism exposure to antibiotics and promoting the possible opportunity for transfer of
antibiotic resistance genes between organisms [124]. Thus, one of the most important
management principles for invasive S. aureus infection is to completely remove infected
tissue and/or prosthetic material [125] – to minimize the ability for S. aureus to persist and
relapse.

Direct drainage of an abscess is another tenet in the management of S. aureus infections
[126]. Models of staphylococcal abscess clearly demonstrate the ability of S. aureus to
replicate in the center of an abscess, separated from surrounding immune cells and protected
from high levels of antibiotics [127]. In fact, many smaller S. aureus abscesses may be
adequately treated with drainage alone; the converse is also true, that treatment failure
frequently occurs if antibiotics are used while the staphylococcal abscess remains undrained.

Over the last 30 years, oxacillins (nafcillin and flucloxacillin) and vancomycin have been
the stalwarts of antibiotic therapy against MSSA and MRSA respectively. Recently, several
new anti-staphylococcal antibiotics have become available. Furthermore, the quest for an
effective vaccine to prevent staphylococcal infections continues. The following is a brief
overview of recent drug and vaccine developments.

Linezolid
Linezolid is a synthetic oxazolidinone that is bacteriostatic against S. aureus. It acts by
binding to the 23S portion of the 50S subunit of bacterial ribosomes and inhibits protein
synthesis. The antimicrobial activity of linezolid is predicted by the 24-hour area under the
time-concentration curve to minimum inhibitory concentration (MIC). Interestingly, the
drug also displays moderate post-antibiotic effect against S. aureus [128].

Linezolid has been approved by the Food and Drug Administration (FDA) for the treatment
of nosocomial pneumonia and cSSSI, including those due to MRSA [129]. The retrospective
analysis of two randomized controlled trials (RCTs) claimed that linezolid was associated
with improved survival and clinical cure compared to vancomycin for nosocomial
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pneumonia due to MRSA [130]. However, these findings have been seriously questioned
due to flaws in study design and a recent meta-analysis of RCTs involving 1641 patients
found that linezolid was not superior to glycopeptide antibiotics [131]. This issue is hoped to
be resolved when the results of a RCT of linezolid versus vancomycin for MRSA ventilator-
associated pneumonia are published (ClinicalTrials.gov NCT00084266).

There are three important pharmacologic features of linezolid that require caution with
prescription. Linezolid has been associated with dose-dependent myelosuppression that is
usually reversible. Thrombocytopenia is the commonest pattern of haematologic change.
Renal impairment, low baseline platelet count and prolonged use of linezolid beyond 14
days are all major risk factors for linezolid-associated thrombocytopenia. Thus, weekly
complete blood counts should be monitored in patients receiving linezolid for more than 7–
10 days [132]. Second, manifestations of mitochondrial dysfunction, such as neuropathy and
lactic acidosis, have also been infrequently reported with linezolid use. Interestingly, some
reports indicated that neuropathy tended to persist even after cessation of linezolid [133].
Third, linezolid is a weak inhibitor of monoamine oxidase (MAO) and can precipitate
serotonin toxicity when administered with a non-selective MAO-Inhibitors such as a
serotonin-reuptake inhibitor (SSRI) or a serotonin-noradrenergic reuptake inhibitor (SNRI)
[134].

Although resistance to linezolid appears to be rare [135], possibly because its high cost
limits widespread use, documented mechanisms include the horizontal acquisition of a cfr
rRNA methyltransferase [136] and point mutations at the target site of 23S rRNA [137] and
rlmN that encodes for a conserved RNA methyltransferase [138].

Finally, linezolid is available in both oral and intravenous formulations and the
bioavailability of the oral form approaches 100%, which should be used whenever possible.

Tigecycline
Tigecycline is a glycylcycline antibiotic with acts on the 30S ribosomal subunit and prevents
amino acid incorporation into bacterial peptide chains. Tigecycline is structurally related to
minocycline and tetracycline, however, studies show that it remains active against most S.
aureus isolates that are tetracycline resistant [139]. In addition to effective coverage against
MRSA, tigecycline has broad gram-negative activity except for Pseudomonas and Proteus
spp.. Currently, tigecycline has FDA approval for three common indications: treatment of
cSSSI, complicated intra-abdominal infections and community-acquired pneumonia (CAP).

Tigecycline has several important pharmacological properties that require particular caution
and consideration in prescription. First, tigecycline distributes extensively into lung and
biliary tissue, however drugs levels are often low in serum, bone and joints and in the
cerebrospinal fluid (CSF). Second, tigecycline has a high proportion of gastrointestinal
adverse effects; nausea and vomiting have consistently been more frequent in the tigecycline
compared to the comparator arms of phase III studies [140]. Finally, tigecycline has a
Pregnancy Class D rating which is based on animal studies showing delayed bone
development and increased incidence of fetal loss. Thus, it should not be used in pregnant
women unless potential benefits clearly outweigh the potential risks to the mother and/or the
fetus.

Ceftaroline
Ceftaroline is a novel cephalosporin with high affinity for the modified penicillin-binding
protein (PBP 2A) and thus has in vitro activity against MRSA. Ceftaroline is different to
recent new antibiotics with anti-MRSA coverage. First, ceftaroline also has activity against a
narrow spectrum of gram-negative organisms; however, there is no intrinsic activity against
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Pseudomonas spp., or other gram-negative pathogens that produce beta-lactamases,
including AmpCs, extended-spectrum beta-lactamases and Klebsiella pneumoniae
carbapenemases [141]. Second, there are some emerging data to suggest that ceftaroline
might be more efficacious for invasive infections. For example, a recent in vivo study
indicated that ceftaroline is superior to daptomycin in sterilizing cardiac vegetations infected
with S. aureus [142].

Two pairs of large RCTs have studied ceftaroline for treatment of cSSSI and CAP.
CANVAS 1 & 2 trials were parallel phase III studies that found ceftaroline monotherapy to
be non-inferior to the combination of vancomycin plus aztreonam in the treatment of cSSSI,
including those infections caused by MRSA [143]. Although FOCUS 1 & 2 studies found
ceftaroline to be non-inferior to ceftriaxone for treatment of moderately-severe CAP not
requiring intensive care therapy, efficacy of ceftaroline on CAP due to MRSA was not
specifically examined [144]. In these randomized studies, ceftaroline was well tolerated and
there were no excess adverse effects compared to controls.

Daptomycin
Daptomycin is a cyclic lipopeptide with marketing approval for the treatment of cSSSIs and
for SAB and right-sided infective endocarditis. There have been two international phase III
studies of daptomycin at a dose of 4mg/kg intravenously (IV) for 7–14 days compared to
vancomycin or penicillinase-resistant penicillins for cSSSIs [145]. Of clinically evaluable
outcomes, daptomycin and comparator arms demonstrated successful treatment in 83% and
84% of patients respectively. Further analyses demonstrated that daptomycin treated patients
required a shorter duration of IV therapy with an earlier clinical response [145,146].

In a RCT of daptomycin 6mg/kg IV compared to either, vancomycin or a β-lactam, plus an
aminoglycoside, for the first four days of therapy, daptomycin demonstrated non-inferiority
for treatment of SAB and right-sided endocarditis [147]. For MRSA bacteremia, the success
rate was higher for the daptomycin treated patients (44% versus 32% for daptomycin and
standard therapy respectively).

These data suggest that daptomycin is now clearly part of the armamentarium for the
treatment of cSSSIs and SAB. Importantly, daptomycin should not be used for treatment of
staphylococcal pneumonia as pulmonary surfactant inhibits the action of daptomycin [148]
and creatine kinase levels should be monitored weekly during therapy. Also notable, and of
significant concern, is that in the registrational multinational trial of daptomycin for SAB,
treatment emergent resistance occurred in ~5% of daptomycin treated patients [147]. Others
have also reported daptomycin resistance that appears related to heterogenously vancomycin
intermediate S. aureus (hVISA) and VISA strains [149,150].

Telavancin
Telavancin is a lipoglycopeptide that disrupts peptidoglycan synthesis. Phase III clinical
trials have been conducted for cSSSI and hospital-acquired pneumonia. The ATLAS studies
enrolled 1867 patients with cSSSI and compared telavancin to vancomycin [151]. Of
clinically evaluable patients 88% and 87% were cured with televancin and vancomycin
respectively and for those with MRSA infections eradication rates were 90% and 85%
respectively. Recently, the ATTAIN study found that telavancin was non-inferior to
vancomycin for treatment of hospital-acquired pneumonia due to gram-positive pathogens
with respective cure rates of 59% and 59% respectively [152].

Tong et al. Page 12

Semin Immunopathol. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Vaccines
Given the large burden of disease due to S. aureus, concerns about increasing antimicrobial
resistance and the growing numbers of patients with risks for invasive staphylococcal
infections, there is a great need for an effective vaccine. However, to date, there have only
been disappointing results in clinical trials for staphylococcal vaccines. The general topic of
vaccines for S. aureus has been thoroughly addressed elsewhere [153–155] and here we
briefly comment on human clinical trials conducted in the past 10 years.

StaphVAX®, produced by Nabi Biopharmaceuticals, is a polysaccharide conjugate vaccine
that contains purified capsular antigens CP5 and CP8. A phase III clinical trial of
StaphVAX® in hemodialysis patients showed no protection against bacteremia between 3
and 54 weeks, but a post-hoc analysis demonstrated efficacy up to 40 weeks post
vaccination [156]. In a second unpublished study involving 3600 hemodialysis patients no
protection was observed. There are now studies progressing with the use of a capsular
polysaccharide conjugate vaccine (PentaStaph®, that has been purchased by
GlaxoSmithKline from Nabi) that also contains antigens to teichoic acid and the secreted
toxins alpha-toxin and PVL [155].

Merck’s V710® vaccine contains IsdB, one of many microbial surface components
recognizing adhesive matrix molecules (MSCRAMMs) of S. aureus. Use of V710 in a phase
I study elicited promising immune responses [157] however a phase II/III trial in elective
cardiothoracic surgery patients to prevent serious S. aureus infections has recently been
terminated. Although full results have not yet been released, it is understood that the Data
Monitoring Committee recommended termination of the study due to the observation that
V710 was unlikely to demonstrate a statistically significant clinical benefit as well as safety
concerns
(http://www.merck.com/newsroom/news-release-archive/research-and-development/
2011_0608.html). There is an ongoing trial of V710 in hemodialysis patients.

Passive immunization approaches also have not been successful in clinical trials. INH-A21
(Veronate) is a pooled human immunoglobulin preparation with high antibody titres against
clumping factor A (ClfA) that was tested in a phase III trial involving low birth weight
infants. It failed to reduce late onset sepsis and SAB in this cohort [158]. Other products
now through phase II studies include tefibazumab (monoclonal antibodies to ClfA) [159],
Altastaph® (antibodies to CP5 and CP8) [160,161] pagibaximab (monoclonal antibodies to
lipoteichoic acid) [162] and Aurograb® (antibodies to ATP-binding cassette). Pagibaximab
has proceeded to a phase 2b/3 trial.

All these results demonstrate the great difficulties in developing a vaccine against S. aureus.
Questions remain as to the best combination of antigens, and also which patient population
should be targeted for the use of vaccines or passive immunotherapy. The conundrum is that
high-risk patients such as those on hemodialysis may have relatively poor immune responses
to a vaccine.

Conclusions
As long as S. aureus remains a human commensal, humans will continue to be at risk for
developing staphylococcal infections. With increases in patient age, comorbidities,
healthcare contact, and use of invasive medical procedures, the number of patients at risk of
invasive staphylococcal infections will almost certainly increase. Furthermore, S. aureus has
proven remarkably adaptable to challenges posed through the introduction of antibiotics and
we have witnessed multiple waves of resistant S. aureus to β-lactams and reports of
resistance to new antimicrobial agents continue unabated. Studies into the virulence and
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pathogenicity of S. aureus have deepened our understanding of these mechanisms and it is
hoped that this will translate into new therapeutics that specifically target such virulence
factors (although it is likely that the organism will once again adapt to such agents). The
good news is that efforts to reduce the incidence of healthcare-associated staphylococcal
infections have recently achieved some success and highlights the importance of prevention
of what are often devastating and costly infections.
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