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Abstract
Background—Identification of new genes that are mutated in osteosarcomas is critical to
developing a better understanding of the molecular pathogenesis of this disease and discovering
new targets for therapeutic development.

Methods—We identified somatic non-synonymous coding mutations in oncogenes associated
with human cancers and hotspot mutations from tumor suppressor genes that were either well-
described in literature or seen multiple times in human cancer sequencing efforts. We then
systematically characterized 961 mutations in 89 genes across 98 osteosarcoma tumor samples and
cell lines. All identified mutations were replicated on an independent platform using homogeneous
mass extend MALDI-TOF (Sequenom hME Genotyping).

Results—We identified 14 mutations in at least one osteosarcoma tumor sample or cell line.
Some of the genetic changes identified were in tumor suppressor genes previously known to be
altered in osteosarcoma: p53 (R273H, R273C, and Y163C) and RB1 (E137*). Notably, we
identified multiple mutations in PIK3CA (H1047R, E545K, and H701P) which have never
previously been observed in osteosarcoma. Additionally, we observed mutations in KRAS
(G12S), CUBN (I3189V, seen in two separate tumor samples), CDH1 (A617T, seen in two
separate tumor samples), CTNNB1 (N287S), and FSCB (S775L).

Conclusion—We performed the largest mutational profiling of osteosarcoma to date and
identified for the first time several mutations involving the PI3 kinase pathway – adding
osteosarcoma on to the growing list of malignancies with PI3 kinase mutations. Additionally, we
initiated a mutational map detailing DNA sequence changes across a variety of osteosarcoma
subtypes and offered new candidates for therapeutic targeting.
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Introduction
Osteosarcomas are aggressive primary bone malignancies that have a peak incidence in
adolescence – accounting for 60% of primary bone cancers diagnosed in patients < 20 years
old1-5. Patients with localized osteosarcoma develop metastatic disease in greater than 80%
of cases when not treated with chemotherapy, and these patients usually die from their
cancer if found to progress during or after treatment with standard chemotherapy
regimens6-8. For patients with progressive or recurrent disease despite treatment using
standard agents including cisplatinum, doxorubicin, ifosfamide, and methotrexate,
therapeutic strategies other than cytotoxic drugs are needed9-12.

Understanding the genetic mutations that drive cancer pathogenesis have recently led to
identification of new treatments for several cancers such as EGFR-mutated lung
cancers13, 14, cKit mutated gastrointestinal stromal tumors15, 16, and ALK-translocated
tumors17, 18. As a result, recent research efforts on osteosarcoma have focused on
identifying new treatment targets and prognostic markers12, 19-21. Of the molecular targets
currently under evaluation for osteosarcoma, IGF1R22-25, EGFR26-29, STAT330, 31,
PLK132-34, and mTOR35-37, among others, are being intensely evaluated. To date, however,
none of these targets have yet been proven to be of therapeutic benefit to patients with
advanced osteosarcoma22.

A whole genome sequencing approach in lung, breast, and colon cancer samples has
identified numerous genetic alterations38, 39, but many of these mutations are incidental and
unlikely to play an important role in tumor pathogenesis or as therapeutic targets. Currently,
a whole genome sequencing approach for osteosarcomas would be prohibitively expensive
and results would be difficult to interpret. Therefore, taking advantage of insights gained in
treatment of other tumor types, we sought to focus our analysis only on mutations that have
a higher a priori chance at playing an important role in osteosarcoma pathogenesis (see
Methods for Selection of Cancer Gene Mutations), and we genotyped for mutations known
to occur in oncogenes or tumor suppressor genes that have been previously associated in
literature with cancer pathogenesis.

Methods
Osteosarcoma tumor samples

Fresh frozen tumor specimens were obtained from the clinical archives of Dr. Francis
Hornicek (Department of Orthopaedic Surgery, Massachusetts General Hospital) and the
Massachusetts General Hospital Tissue Repository. Institutional review board (IRB)
approval was obtained to study all samples from the Partners Human Research Office
(2007P-002464).

Cell Culture
The human osteosarcoma cell line KHOS was kindly provided by Dr. Efstathios Gonos
(Institute of Biological Research & Biotechnology, Athens, Greece), and U-2OS and SaOS
were purchased from the ATCC (Rockville, MD). Cells were cultured in RPMI 1640
(Invitrogen,) supplemented with 10% FBS, 100-units/ml penicillin and 100μg/ml
streptomycin (Invitrogen). Cells were incubated at 37°C in 5% CO2-95% air atmosphere and
passaged when near confluent monolayers were achieved using trypsin-EDTA solution.
Cells were free of mycoplasma contamination as tested by MycoAlert(R) Mycoplasma
Detection Kit from Cambrex (Rockland, ME).
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Extraction of Genomic DNA
Extraction of DNA from osteosarcoma tumor tissues and cell lines were performed using
QIAamp® DNA Micro kit (Qiagen). The extraction was carried out according to the
manufacturer's instructions. Briefly, osteosarcoma tumor tissue sample or cell pellet from
cultured cell lines of ∼8 mg in weight was transferred to a 1.5 ml microcentrifuge tube and
180 ul of buffer ATL was added immediately. After equilibrating to room temperature
(25C), 20 ul of proteinase K was added and mixed by vortexing for 15 seconds. The sample
tube was incubated at 56°C overnight until the sample was completely lysed. In the next
day, 200 ul buffer AL was added and mixed by vortexing for 15 seconds. Subsequently, 200
μl of ethanol (96-100%) was added. The mixture obtained was loaded on a QIAamp
MiniElute spin column provided by the kit and washed with AW1 followed by AW2
buffers. DNA was eluted with 60 μl of buffer AE and preserved at −20 °C until use.

Selection of Cancer Gene Mutations and OncoMap Assay Design
Selection of cancer gene mutations for assay design and mass spectrometric genotyping
were performed as previously described in Thomas et al. with modifications indicated in
MacConaill et al.40, 41.

In brief, we queried the Sanger Institute COSMIC database, PubMed, and The Cancer
Genome Atlas (TCGA) databases for known somatic oncogene and tumor suppressor gene
mutations. Non-synonymous coding mutations that have been previously reported to occur
as somatic mutations in human cancers were selected and rank ordered based on (1) the
frequency of mutation in cancers, (2) frequency across cancer subtypes, and (3) the
feasibility of developing an inhibitor of the target gene. Most genes that were described in
only one instance were excluded unless that gene was determined to be very important in
tumorigenesis and/or the gene was currently in drug development pipelines of
pharmaceutical companies. “Hotspot” mutations from selected well-known tumor
suppressor genes were included based on the number of documented occurrences, with
higher weight given to genes commonly deleted or genetically inactivated across cancer
types.

For each mutation, the discriminating nucleotides for both wild-type and mutant alleles were
determined, enabling insertions or deletions to be represented by single base changes.
Subsequently, 250 bases of neighboring DNA were added to each side of the resulting
mutation assay to enable primer design. These primers for PCR amplification and the
extension probe were designed using the Sequenom MassARRAY Assay Design 3.0
software, applying default single base extension (SBE) settings and default parameters but
with the following modifications: maximum multiplex level input adjusted to 24; maximum
pass iteration base adjusted to 100. For complex mutations, genotyping assays were
designed manually. The resulting 501 base pair DNA sequences were queried in the dbSNP
database to avoid incorporation of SNPs during assay design. Resulting primer were then
run through BLAT and modified where necessary to avoid pseudogene amplification. The
resulting list of primer pairs and extension probes (OncoMap version 2.0) consists of 961
assays interrogating 89 oncogenes and tumor suppressor genes for mutations (single-base
substitutions, insertions and deletions). All PCR primers and extension probes were
synthesized unmodified using standard purification (Integrated DNA Technologies,
Coralville, IA).

Mass Spectrometric Genotyping
Mass spectrometric genotyping was performed as previously described40-42. In brief,
primers and probes were pooled, and all assays were validated on the CEPH panel of human
HapMap DNAs (Coriell Institute) as well as a panel of human cell lines with known
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mutational status. Genomic DNA from all tumor samples was quantified using Quant-iT™
PicoGreen® dsDNA Assay Kit (Invitrogen, Carlsbad, California) and subjected to whole-
genome amplification (WGA), with the following modifications: 100ng of genomic DNA
was used as input for WGA and a post-WGA cleanup step was implemented using a
Nucleofast Purification Kit (Macherey-Nagel).

The Qiagen Repli-g kit was used for phi29-mediated WGA of fresh frozen and cell line
DNA. After quantification and dilution of genome-amplified DNA, mass spectrometric
genotyping using iPLEX chemistries was performed as previously published 41.

After iPLEX genotyping (32 iPLEX pools with an average pool plex size of 14.4 assays),
samples harboring candidate mutations were further filtered by manual review. Samples
harboring candidate mutations were selected for experimental confirmation using multi-base
extension homogenous Mass-Extend (hME) chemistry with plexing of ≤6 assays per pool.
Conditions for hME validation were consistent with the methods described by MacConaill et
al. 2009. Primers and probes used for hME validation were designed using the Sequenom
MassARRAY Assay Design 3.0 software, applying default multi-base extension (MBE)
parameters but with the following modifications: maximum multiplex level input equal to 6;
maximum pass iteration base adjusted to 200.

Western Blotting for PI3 kinase pathway proteins
The human AKT, pAKT(Thr308), and p4EBP1(Thr37/46) antibodies were purchased from
Cell Signaling (Dedham, MA). The mouse monoclonal antibody to human actin was
purchased from Sigma-Aldrich. Western blot analysis was performed as described
previously43. Briefly, the cells were lysed in 1× radio-immunoprecipitation assay (RIPA)
lysis buffer (Upstate Biotechnology) and protein concentration was determined by the DC
Protein Assay (Bio-Rad). Total protein (25 μg) was resolved on NuPage 4% to 12% Bis-
Tris gels (Invitrogen) and immunoblotted with specific antibodies. Primary antibodies were
incubated in TBS (pH 7.4) with 0.1% Tween 20 with gentle agitation overnight at 4°C.
Horseradish peroxidase–conjugated secondary antibodies (Bio-Rad) were incubated in TBS
(pH 7.4) with 5% nonfat milk (Bio-Rad) and 0.1% Tween 20 at a 1:2,000 dilution for 1 h at
room temperature with gentle agitation. Positive immunoreactions were detected by using
SuperSignal West Pico Chemiluminescent Substrate (Pierce Biotechnology).

Results
Characteristics of Clinical Tumor Samples

A total of 98 DNA samples were derived from cell lines or patients who had undergone
operative resection of their osteosarcoma (Table 1). In summary, 68 specimens were
obtained from fresh frozen tissue, 26 were derived from FFPE blocks, and 4 were derived
from cell lines that were created from primary tumor samples. 83 samples had detailed
pathologic subclassification information available, and the majority of samples were either
of osteoblastic (21) or conventional (25) subtypes. The average known age of patients at
time of surgery was forty years old (as this study only collected from patients age 20 or
older). Because the available clinical dataset was incomplete, no available clinical
characteristic or outcome correlated with the mutational status of the tumor.

OncoMap Results
98 osteosarcoma samples were tested for mutations across the 89 genes tested in the
Oncomap version 2.0 panel (see Table 2 for list of genes tested). 89/98 samples passed our
quality control check, and 96% of assays tested yielded results (see example of readout in
Figure 1). 40/98 samples were identified to have at least one mutation. 14 mutations
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occurring in 8 of the genes tested were identified; these were all validated using an alternate
chemistry (hME genotyping) on unamplified DNA.

Among the 68 freshly frozen samples tested, 9 mutations were identified and validated.
Among the 22 FFPE samples tested, 4 mutations were identified and validated. Among the 4
cell lines tested, 1 mutation was identified and validated. There was no significant difference
in discovered mutation rates between freshly frozen and FFPE samples.

The 14 mutations that were identified involved 8 different genes. Some of these genes were
previously associated with osteosarcoma pathogenesis: p53 (R273H, R273C, and Y163C)
and RB1 (E137*). However, we also identified 3 mutations in PIK3CA (H1047R, E545K,
and H701P) which have never previously been observed in osteosarcomas. Other mutations
were identified in KRAS (G12S), CUBN (I3189V, seen in two separate tumor samples),
CDH1 (A617T, seen in two separate tumor samples), CTNNB1 (N287S), and in FSCB
(fibrous sheath CABYR binding protein) (S775L).

Although the study was designed with hopes of correlating mutation with clinical data, only
5 of the samples with identified mutations were annotated with detailed clinical information,
a sample size too small to make statistically significant inferences. One patient with grade
2-3 osteoblastic osteosarcoma of the right femur had a mutation in FSCB (S775L) as well as
in CDH1 (A617T). Another patient with grade 2 osteoblastic osteosarcoma of the femur had
a mutation in PIK3CA (H701P). A patient with osteosarcoma with chondroid features, grade
2 of 3, had a P53 mutation (R273C). A patient with a low grade osteosarcoma of the right
scapula had a mutation in CUBN (I3189V).

PI3 Kinase Pathway is activated in PIK3CA-mutated osteosarcoma tumor samples
PIK3CA is the gene coding for p110a, which is one of four catalytic units for class I PI3
kinase44, 45. Because the samples that revealed mutations in PIK3CA were from preserved
tumor samples rather than cell lines, we were unable to perform functional assays for PI3
kinase activity. Therefore, we used western blot analysis to determine the relative levels of
expression for members of the PI3 kinase pathway (Figure 2) when compared to three
osteosarcoma tumor samples for which PI3 kinase mutations were not observed. PI3 kinase
is known to activate both the AKT and mTOR pathway, so we looked for phospho-AKT as
evidence of AKT activity and phospho-4EBP1 as evidence of mTOR activity. We found that
all six samples expressed AKT. Two of the three samples with PIK3CA mutations revealed
detectable phospho-AKT and all three samples revealed detectable phospho-4EBP1.
Unexpectedly, one of the samples without an identified PIK3CA mutation also appeared to
have high levels of phospho-AKT and phospho-4EBP1, suggesting an alternate mechanism
for hyperactivation of PI3 kinase. Future studies including complete gene sequencing of PI3
kinase pathway members and gene copy number analysis may reveal the mechanism for PI3
kinase activation in this sample.

Discussion
Osteosarcomas have been well-described to have numerous chromosomal aberrations and
are characterized by complex karyotypes27, 46, 47. Although high-level amplifications and
homozygous deletions have been well described in this tumor type, with one study showing
28.6% and 3.8% of the osteosarcoma genome consisting of amplifications and homozygous
deletions 46, a comprehensive genome-wide survey for high-yield mutations have not yet
been performed across a large collection of osteosarcomas. Because whole-genome tumor
sequencing of large collections of osteosarcomas are costly and prohibitively laborious, we
aimed our screen to test only for those mutations that have been previously described in
other tumors and implicated in tumor pathogenesis. Of course, results of our study are not
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equivalent to what can be found by complete sequencing efforts that are currently being
undertaken by large consortiums.

It is important to note that in the majority of our samples, we did not identify any mutations.
This observation has two critical implications. First, a comprehensive gene sequencing study
would likely identify more mutations. For example, although our screen was able to detect a
few samples with mutations in p53 and RB, osteosarcomas have been well described to have
frequent mutations in both p5348 and RB49. Undoubtedly, complete gene sequencing of p53
and RB in the one hundred osteosarcoma samples tested in this study will yield many more
samples with p53/RB mutations. Second, our mutation panel was quite thorough in its
examinations of the more clinically relevant mutations found in lung and colon cancer,
including mutations in the EGFR, KRAS, BRAF, and PDGFR. Therefore, the lack of
identification of any mutations suggest that, for those genes, point mutations are unlikely to
be involved in the pathogenesis of osteosarcoma.

We wanted to identify new mutations that could potentially serve as therapeutic targets for
the treatment of osteosarcoma. Mutations newly identified in osteosarcoma need not be new
to oncology. For example, mutations in cKIT were well-described to predict for the efficacy
of the cKIT inhibitor, imatinib, in treating patients with gastrointestinal stromal tumors
before a rare cKIT mutation in a melanoma led to a trial of treatment with imatinib and a
major response50. Likewise, we are hopeful that other drug-mutation relationships that may
be established in other cancer subtypes will point to effective drug targets for osteosarcoma.

We were interested in the finding that the validated mutation discovery rate in FFPE
samples was similar to that in freshly frozen samples. Until recently, a major limitation to
high-throughput multiplexed genotyping assays was the limitation in access to freshly frozen
tissue. However, our study as well as other similar studies suggests that FFPE samples are
sufficient for mutation discovery.

Although PIK3CA mutations have been described in myxoid/round cell liposarcomas51,
such mutations have never been previously described in osteosarcomas. PIK3CA is the gene
coding for p110a, the catalytic subunit of class I PI3 kinase. These lipid kinases catalyze the
conversion of phosphatidylinositol-3,4-bisphosphate to phosphatidylinositol-3,4,5-
trisphosphate. These lipid products in turn recruit AKT to the plasma membrane, where it is
phosphorylated and itself catalyzes the phosphorylation and activation of other proteins,
such as mTOR and 4EBP, that regulate glucose metabolism, cell proliferation, and
survival45. In this study, we are the first to observe human osteosarcoma tumor samples
harboring mutations in PIK3CA.

When these samples with PIK3CA mutations were analyzed for phosphorylation (and
therefore activation) of proteins that signal downstream of PI3 kinase, we confirmed that all
three samples expressed phosphorylated 4EBP-1 and that 2 of 3 samples expressed
phosphorylated AKT. However, we were surprised to find one sample without an identified
PIK3CA mutation also demonstrated high levels of phosphorylated 4EBP-1 and AKT. This
observation can be due to either the hyperactivation of other pathways that also activates
4EBP-1 or AKT – such as the RAS/RAF/MAPK, the IGF-1R/IRS-1, and the mTOR
pathways, or the loss of PTEN inhibition of AKT activation, or the existence of another PI3
kinase activating mutation that was not tested in this study - highlighting the limitation of
this study as a genotyping study of particular mutations and underscoring the ultimate need
for whole gene sequencing to comprehensively evaluate the mutation rate of PIK3CA in this
cohort.

Further studies need to be done to establish PI3 kinase as a useful signal transduction
pathway to target in osteosarcomas. There are at least nine PI3 kinase inhibitors in clinical
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development44 and, at the time of submission of this manuscript, there are eleven clinical
trials using PI3 kinase inhibitors in cancer cohorts posted on ClinicalTrials.gov. The fact that
activating mutations in PIK3CA have now been observed in osteosarcomas makes this
disease group an interesting cohort to focus on for further pharmaceutical development of
PI3 kinase inhibitors.
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Fig 1.
Mass spectrometric cluster plots (left side) and spectral plots (right side) for the PIK3CA
mutations identified in this study. The mutation interrogated is indicated above each plot.
The sample with the mutation is indicated by a circle in the left panel. The corresponding
spectral plot is indicated on the right. The mass of the alleles specific for the indicated assay
are shown by dashed lines.
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Fig 2.
Western Blot Analysis of AKT/mTOR Pathway Activation in Osteosarcoma Tissues, 3
without PIK3CA mutations and 3 with PIK3CA mutations.
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Table 2
List of Genes Tested

ABL1 EGFR KRAS PTEN

ABL1 EPHA1 LRP1B PTPN11

ABL2 EPHA3 MADH4 RAF1

ADAMTSL3 EPHB1 MAP2K4 RB1

AKT1 EPHB6 MET RET

AKT2 ERBB2 MINK1 ROBO1

AKT3 ERBB2 MLL3 ROBO2

ALK ERBB4 MOS ROS1

AML1/RUNX1 FBXW7 MPL SMAD2

APC FES MSH2 SMAD4

AR FGFR1 MSH6 SMARCB1

AXL FGFR2 MST1R SMO

BMX FGFR3 MYH1 SPTAN1

BRAF FGFR3 NF1 SRC

BRCA1 FLJ13479 NOTCH1 STK11

BRCA2 FLNB NPM SUFU

BUB1B FLT3 NPM1 TBX22

C-MYC FMS NRAS TEC

C14orf155 GATA1 NTRK1 TFDP1

CDH1 GNAS NTRK2 TIAM1

CDK4 GUCY1A2 NTRK3 TIF1

CDKN2A HRAS PDGFRA TP53

CEBPA IGF1R PDGFRB TRIM33

CTNNB1 JAK2 PDPK1 TSC1

CUBN JAK3 PIK3CA VHL

DBL KDR PKHD1

DBN1 KIT PRKCB1
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