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ABSTRACT

Advances in experimental biology, coupled with advances in computational power, bring
new challenges to the interdisciplinary field of computational biology. One such broad
challenge lies in the reverse engineering of gene networks, and goes from determining the
structure of static networks, to reconstructing the dynamics of interactions from time series
data. Here, we focus our attention on the latter area, and in particular, on parameterizing a
dynamic network of oriented interactions between genes. By basing the parameterizing
approach on a known power-law relationship model between connected genes (S-system), we
are able to account for non-linearity in the network, without compromising the ability to
analyze network characteristics. In this article, we introduce the S-System Parameter Es-
timation Method (SPEM). SPEM, a freely available R software package (http://www.picb
.ac.cn/ClinicalGenomicNTW/temp3.html), takes gene expression data in time series and
returns the network of interactions as a set of differential equations. The methods, which are
presented and tested here, are shown to provide accurate results not only on synthetic data,
but more importantly on real and therefore noisy by nature, biological data. In summary,
SPEM shows high sensitivity and positive predicted values, as well as free availability and
expansibility (because based on open source software). We expect these characteristics to
make it a useful and broadly applicable software in the challenging reconstruction of dy-
namic gene networks.

Key words: algorithms, biochemical networks, computational molecular biology, gene networks,

graphs and networks, statistics.

1. INTRODUCTION

Gene network inference, which aims to find interactions from biological data (Bansal et al.,

2007), is among the most important and ambitious studies in modern systems and computational

biology. With advances in the field of molecular biology, it is now possible to collect large quantities of gene-

expression data, as well as to determine the change in gene-expression over a period of time, through the

collection of times series data. Although of evident importance in determining the dynamic relationships

between genes, which are often, by nature, non-linear (Voit, 1991), analysis of such time series data
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also allows us to determe how interactions change over time, important in the area of drug design, for

example.

Currently, several models that are designed to reconstruct gene network structures from time series data

exist. Generally, such models describe genetic networks as a set of differential equations:

dXi

dt
¼Gi(X1‚ X2‚ . . . ‚ Xn)‚ i¼ 1‚ . . . ‚ n (1)

where Xi is gene expression level of i-th gene, n the total number of genes in the network, and Gi a function

used to describe the dynamic rule of gene regulatory interactions.

Different research groups adopt different approaches to model Gi. In addition to work that has assumed a

simple Boolean (Akutsu et al., 2000) or a dynamic Bayesian (Geier et al., 2007; Yan et al., 2010) network

structure, some authors (Kim et al., 2008; Kabir et al., 2010), have developed linear time-variant based

models in order to successfully reconstruct non-linear connections in a network. Further, Kimura et al.

(2008) used several power-law function approximates to solve this problem. Due to the ease in manipu-

lating a non-linear relationship represented by power-laws to a more pliable linear function, power-laws

lend themselves to use in reconstructing the non-linear networks that exist in biology.

Here, and expanding on work by others (Chou et al., 2006; Vilela et al., 2008; Voit and Radivoyevitch,

2000), we adopt an S-system (Voit, 2000; Maki et al., 2001; Chou and Voit, 2009) approach to represent

biological networks, presenting a freely available package for the parameterization of biological networks

from time series data alone (http://www.picb.ac.cn/ClinicalGenomicNTW/temp3.html).

S-systems, which have the fixed structure as shown in Equation 2, assume that the quantity (expression

level) of each node (gene) in the network can be described, using power-laws, by the quantity of other

nodes that it influences or that influence it (by activation or inhibition), coupled with the corresponding rate

of each reaction.

dXi

dt
¼ ai

Yn

j¼ 1

X
gi‚ j

j � bi

Yn

j¼ 1

X
hi‚ j

j ‚ i¼ 1‚ . . . ‚ n (2)

where Xi is the expression level of the i-th gene and n the total number of genes in the network. a and b
represent constant scale parameters, indicating the intensity of the relationship between gene Xi and other

genes in the network. gi,j and hi,j are exponential parameters (referred to as kinetic orders), indicating the

action of whether gene i activates or inhibits gene j, respectively.

Different approaches have been applied to estimate parameters in S-systems (Cho et al., 2006; Kimura

et al., 2005; Gonzalez et al., 2007). In this article, we introduce an advanced method based on the S-system

parameter optimization in Chou et al. (2006) and Vilela et al. (2008), in which the authors used eigenvector

optimization of a matrix-representation of the system (A) from linearized noise-free time series data,

combined with alternating regression, to estimate the constant rate parameters (a0s and b0s) and kinetic

orders (g0s and h0s). Our method works directly on the logarithmic transition and its inverse matrix. In

addition, as multiple S-systems can often represent the same set of time series data (i.e., the solution is not

necessarily unique) we improve the method of Chou et al. (2006) and Vilela et al. (2008) by forcing

sparsity into the system (Kikuchi et al., 2003), which we believe to be important in gene-network re-

construction. We argue that, although sparsity in a network is debatable, given the structure of known

pathways, natural selection is indeed a mechanism that reduces gene interactions to a limited and often

specific number of connections. For biological data, which are typically noisy, with many missing points,

sparsity is a reasonable observation. Translation of this specificity in the mathematical concept of sparsity

allows for one to reduce the number of unknowns in the equation and thus solve a system that would

otherwise remain undetermined (di Bernardo et al., 2005; Gardner et al., 2003).

Under the aim of applying the method to biological analysis in particular, we proceeded to improve upon

current models as follows:

(1) Improvement of the slope calculation allows for noise in data (Varah, 1982; Voit and Savageau,

1982). The estimation of the slope (used in parameterisation of the system), is calculated, using the

three-point method, directly from the input data, making it very sensitive to noise. To reduce

sensitivity to noise, we have improved on other methods by (a) introducing a smoothing algorithm to

minimise noise and (b) prediction of measurements at additional time points post-smoothing, to

allow for a more accurate slope prediction.
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(2) To tackle the problem of identifying a unique solution, we use structure error (Kikuchi et al., 2003;

Liu and Wang, 2008; Nelander et al., 2008) to force sparsity (Kikuchi et al., 2003) (by setting an

adjustable threshold for the kinetic orders and forcing all kinetic orders whose absolute value is

smaller than the threshold to be zero), thus also making it a closer match to biological systems. This

approach has been applied to other algorithms (Liu and Wang, 2008), although here we continue to

optimize the structure during the regression process.

To validate the improvement, the algorithm is tested on simulated data and on the Escherichia coli SOS

pathway, the results of which show that our method is reliable, in particular regarding the directionality of

the relationship between interacting genes. Driven by the common problem of having few time points per

experiment (influencing the power of results and the ability of the algorithm to perform), we split the data

into transitory and steady state stages, showing that the deletion of time points from the steady state phase

has little effect on the results. The number of time points required in the transitory stage, for the algorithm

to perform well, is determined.

2. METHODS

2.1. Algorithm of SPEM

Based on the S-system approach in Chou et al. (2006) and Vilela et al. (2008), Figure 1 shows the flow

chart of the algorithm, S-System Parameter Estimation Method (SPEM). The algorithm can be divided into

estimation of the rate of change of expression (slope calculation) and optimization.

2.1.1. Slope calculation. In S-system parameter estimation, the differential coefficient of each time

point is calculated from a discrete dataset (Varah, 1982; Voit and Savageau, 1982; Voit and Almeida, 2004;

Goel et al., 2008). This is non-trivial, as the estimation of the slope around any given time point t, which is

based only on the time points t + 1 and t - 1, is sensitive to noise. Thus, in the collection of data that

describe biological systems, where the distance between time points is often as sparse as reasonably

possible, we are faced with the problem of relatively few time points and relatively high noise. In order to

improve the ability of the three-point method (used here) to estimate a slope from the data, the data

distribution was smoothed using spline interpolation (Hastie and Pregibon, 1992). This makes the point

series denser, thus allowing for the slope, close to the original time points, to be estimated with more

accuracy.

2.1.2. Optimization. The problem of network reconstruction is formulated as a function optimization

problem aiming generally at the minimization of an objective function. This function is used to measure the

goodness-of-fit of the model to the true system. Such a system may have multiple solutions, where different

parameter values can lead to systems that are very ‘‘close’’ in nature. To mimic reality we must identify a

FIG. 1. Main flow chart of SPEM.
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unique solution that gives the most realistic model. In this direction, SPEM uses both square error, esquar,

measuring the goodness-of-fit of the slope calculation, inferred from the data, to the data itself and structure

error, estruc, which describes the (weighted) number or interactions in the network (used to force the

predicted network to be sparse). In order for the numerical optimization process to run, SPEM calculates

initial values for the kinetic orders hi,j, using a pseudo-randomly generated value bi > 0 and the expected

slope, according to Equation 3. Note that in order to force the optimization to begin under the condition that

a > 0, only the negative slope is considered

bi

Yn

j¼ 1

X
hi‚ j

j ¼ �� S�i (3)

where e / 0.

After fixing b̂i and ĥi‚ j, SPEM calculates the parameters âi and ĝij such that the change in expression of

the ith gene, dXi

dt
, is described by Equation 4:

dXi

dt
¼ Si¼ âi

Yn

j¼ 1

X
ĝi‚ j

j � b̂i

Yn

j¼ 1

X
ĥi‚ j

j ‚ i¼ 1‚ . . . ‚ n

âi

Yn

j¼ 1

X
ĝi‚ j

j ¼ Siþ b̂i

Yn

j¼ 1

X
ĥi‚ j

j

log âi

Yn

j¼ 1

X
ĝi‚ j

j

 !
¼ log Siþ b̂i

Yn

j¼ 1

X
ĥi‚ j

j

 !

L � (log(âi)‚ ĝi1‚ ĝi2 . . . ‚ ĝin)¼ log Siþ b̂i

Yn

j¼ 1

X
ĥi‚ j

j

 !
(4)

where N is the number of time points in the dataset and L equals:

L¼

1 log (X1(t1)) log (X2(t1)) � � � log (Xn(t1))
1 log (X1(t2)) log (X2(t2)) � � � log (Xn(t2))

..

. ..
. ..

. . .
. ..

.

1 log (X1(tN)) log (X2(tN)) � � � log (Xn(tN ))

0
BBB@

1
CCCA

Letting log (Siþ bi

Qn
j¼ 1 X

hi‚ j

j )¼ ci, then L � (log(âi)‚ ĝi1‚ ĝi2 . . . ‚ ĝij) can be represented as::

L � (log(âi)‚ ĝi1‚ ĝi2 . . . ‚ ĝin)¼ ci

LT L � (log(âi)‚ ĝi1‚ ĝi2 . . . ‚ ĝin)¼ LTci

(log(âi)‚ ĝi1‚ ĝi2 . . . ‚ ĝin)¼ (LT L)� 1LTci (5)

Next, the expected slope for the ith gene, Ŝi is calculated as

Ŝi¼ âi

Yn

j¼ 1

X
ĝi‚ j

j � b̂i

Yn

j¼ 1

X
ĥi‚ j

j ‚ i¼ 1‚ . . . ‚ n (6)

And the squared error as:

�squar ¼ (Si� Ŝi)
T (Si� Ŝi) (7)

Finally, it is necessary to force the gene interaction matrix to be sparse (as suggested in the introduction,

this is more fitting to biological phenomena [di Bernardo et al., 2005; Gardner et al., 2003; Kikuchi et al.,

2003]). Thus, we introduce structure error for sparsity control, as in Nelander et al. (2008). For a given gene

i, the structure error estruc, which depends only on the number of interactions in a network, can be defined as

the total number of non-zero elements in ĝ and ĥ.

The non-linear optimization function (solved using Rsolnp, R v2.12 [Ye, 2010]) can then be de-

scribed as:
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min �total¼ �squar þ �struc

s:t: bi

Yn

j¼ 1

X
hi‚ j

j þ Si > 0 (8)

Table 1 shows the input parameters and output parameters used by SPEM.

2.2. Validation

2.2.1. Benchmark validation. In this work, we focus on the edges in the network, which represent

the interactions between genes. Let matrix A represent the gene interaction matrix for n genes, with

elements aij‚ i¼ 1‚ . . . ‚ n‚ j¼ 1‚ . . . ‚ n representing the edges of the network. In general, a gene network

can be undirected, directed, unsigned, or signed (Bollobás, 1998).

Assessment of the performances of an algorithm is usually done by defining positive (P) and negative (N)

in the result of the algorithm and true (T) and false (F) in the gold standard (a model from which simulated

data are generated, or an interaction matrix collected from literature and validated by experiments). In case

of signed networks, the definitions of T, F, N, and P require an extension due to the presence of positives

and negative values ( + 1, - 1) (Nardini et al., 2009).

Here, we present results on directed networks only. Since directed networks contain more information

and are thus harder to predict than undirected networks, we report on the performance of both signed and

unsigned cases. In this work, to account properly for the signed performances, we use the R package

MultiClassTest (http://cran.r-project.org/) to calculate the positive predictive value (PPV) for precision and

sensitivity (Se) for recall of the performance of our algorithm, where PPV and Se are defined as:

PPV ¼ TP

TPþFP
Se¼ TP

TPþFN
(9)

The area under the curve (AUC) of the PPV/Se curve, which plots the performances of the algorithm on

matrices, filtered according to a range of different thresholds, is used as a summary statistic. We use AUC

value to find a balance of precision and recall of our algorithm.

2.2.2. Requirement of the time points. In order to achieve a reliable result, also appropriate in

experimental design, it is important to determine how many time points are required by SPEM for accurate

reconstruction of the gene network. As points in the transitory state contain more information than points in

the steady state, we will discuss the two states separately.

Figure 2 shows how we define the transitory and steady states. After smoothing of the gene expression

curve, we give an adjustment error d equal to 2% of the last value of the time series. (The value of 2% as a

measurement of error is borrowed from control theory [Ogata, 2001].) In the event that the last value is

zero, which implies the gene is not expressed, then the transitory part in SPEM would contain all non-zero

expression levels of that gene. We judge the transitory state based on the value of each point compared to

the last point in the time series, as this distance determines the trend of the curve—and hence the system.

Table 1. Input and Output of Our Algorithm SPEM

Input parameters

TS Time series data matirx, columns for genes and rows for expression level

on different time points

tp Timp points, an increasing non-negative vector

n Positive value, SPEM will guess initial b for n times. (Note to keep n small

to improve running time.)

thres Interactions with absolute value smaller than thres will be set to zero

lbH,ubH,lbB,ubB Lower boundary value, upper boundary value for h and b, respectively

Output parameters

a, g, b, h Parameter of the reconstructed S-system

IniBeta Estimate of the initial b
error Regression error

SPEM, S-System Parameter Estimation Method.
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3. RESULTS AND DISCUSSION

3.1. Results for noise free synthetic data.

We generated noise free time series data for didactic systems (also lacking slope error) of 4, 5, and 6

genes using Power Law Analysis and Simulation (PLAS) Version 1.0, according to Equations 10, 11, and

12. For comparison, datasets with four and five genes match those in Chou et al. (2006) and Vilela et al.

(2008).

dX1

dt
¼ 12X� 0:8

3 � 10X0:5
1

dX2

dt
¼ 8X0:5

1 � 3X0:75
2

dX3

dt
¼ 3X0:75

2 � 5X0:5
3 X0:2

4

dX4

dt
¼ 2X0:5

1 � 6X0:8
4 (10)

FIG. 2. Example of how to distinguish between

the transitory and steady states of a curve. Here,

we set an adjustment error equal to the 2% of the

last value. The system is assumed to be in the

transitory state until the time after which all re-

maining measurements are in the range of last

value – adjust error.

Table 2. Performance of Noise Free Data

Four-gene dataset

a g1 g2 g3 g4 b h1 h2 h3 h4 Initial value

Gene1 11.99 0 0 - 0.8 0 9.99 0.49 0 0 0 0.1

Gene2 7.99 0.5 0 0 0 3 0 0.75 0 0 0.1

Gene3 3 0 0.75 0 0 4.99 0 0 0.5 0.2 0.1

Gene4 2 0.49 0 0 0 6 0 0 0 0.8 0.1

Five-gene dataset

a g1 g2 g3 g4 g5 b h1 h2 h3 h4 h5 Initial value

Gene1 7.42 - 0.127 0 1.32 - 0.55 - 0.28 10 0 0.48 0 0 0 0.1

Gene2 10 2 0 0 0 0 10 0 1 0 0 0 0.7

Gene3 10.7 0.3 2.2 2.3 0.67 1.4 10 0.38 - 2.2 - 2.2 0.63 1.5 0.7

Gene4 8 0 0 1.99 0 - 0.99 10 0 0 0 1.99 0 0.16

Gene5 10 - 0.29 0.7 0.6 2.5 - 1.87 10 - 0.25 0.67 0.6 0.1 0.66 0.18

Six-gene dataset

a g1 g2 g3 g4 g5 g6 b h1 h2 h3 h4 h5 h6 Initial value

Gene1 10 0 0 - 2 0 1 0 5 0.5 0 0 0 0 0 1.1

Gene2 5 0.5 0 0 0 0 0 10 0 0.5 0 0 0 0 0.5

Gene3 2 0 0.5 0 0 0 0 1.25 0 0 0.5 0 0 0 0.9

Gene4 8 0 0.5 0 0 0 0 5 0 0 0 0.5 0 0 0.75

Gene5 0.5 0 0 0 0 0 0 1 0 0 0 0 0 1 0.5

Gene6 1 0 0 0 0 0 1 0.5 0 0 0 0 0 0 0.75
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dX1

dt
¼ 5X3X� 1

5 � 10X2
1

dX2

dt
¼ 10X2

1 � 10X2
2

dX3

dt
¼ 10X� 1

2 � 10X� 1
2 X2

3

dX4

dt
¼ 8X2

3X� 1
5 � 10X2

4

dX5

dt
¼ 10X2

4 � 10X2
5 (11)

dX1

dt
¼ 10X� 2

3 X5� 5X0:5
1

dX2

dt
¼ 5X0:5

1 � 10X0:5
2

dX3

dt
¼ 2X0:5

2 � 1:25X0:5
3

dX4

dt
¼ 8X0:5

2 � 5X0:5
4

dX5

dt
¼ 0:5�X6

dX6

dt
¼X5� 0:5 (12)

Table 2 shows the initial value of all Xis, as well as all ais, bis, gi,js and hi,js as reconstructed by SPEM.

From the table, we see that for datasets with four and six genes, SPEM obtains perfect results. However, for

the dataset containing five genes, only two genes were predicted without error.

In order to further understand this phenomenon, consider the expression curves of these three datasets:

Figure 3 shows that those datasets with four genes and six genes contain more information in the transitory

state than that of five genes. Not only does X2 in the third equation have the same power in both terms

(Function 11), which may be the cause of the problem, we also notice that in the five-gene data set, the

steady state is quickly reached, thus masking information that might occur in the transitory state (i.e., too

few measurements were taken in the transitory state to describe the dynamics of the system). Thus, for

expression data that contain little information, there may exist a higher number of possible solutions,

reducing the power of the algorithm to determine the correct solution. The amount of data that is required to

achieve an acceptable level of accuracy is explored.

Table 3. Expression Level for Genes (X
i
) at Time = 0 (Initial Value)

Initial condition X1(0) X2(0) X3(0) X4(0)

1 0.10 0.10 0.10 0.10

2 0.10 3.0 1.3 0.13

3 1.5 0.5 0.5 1.5

FIG. 3. Pictorial representation of

synthetic datasets with four, five,

and six genes (from left to right).

Curves show how the expression

level of each gene changes over the

time period studied. Note that for

the five-gene dataset, only the first

50 time points are shown, in order

to show clarity in the transitory

state.
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3.2. Time point requirements

In order to explore how many data points are required in the transitory and steady states, for accurate

results to be obtained two additional datasets, each with four genes and with different initial values (Table

3), were generated according to Function 10. Points were then deleted in the transitory and steady states in

order to investigate the change in the performance of SPEM, given different quantities of data.

Data collected when the system is in its steady state contain little additional information and collection

of too many measurements in this state defeats one of the advantages of collecting time series data, by

wasting resources. We therefore tested SPEM on data containing one or two points in the steady state and

all original points in the transitory state. Figure 4 shows the performance of SPEM, measured using the

AUC value. The results show that when we have only one point from the steady state, an AUC value of 1

is still obtained. SPEM thus requires little information from the steady state in order to achieve accurate

results.

We then tested the time points needed in the transitory state using only one time point in the steady

state phase. The number of time points in the transitory state, before removal of data, were 68, 64, and 62,

in datasets 1, 2, and 3, respectively. We compared the results obtained when all points were considered

with 3/4 of all points, 1/2 of all points, and 1/4 of all points (Fig. 5). Figure 5 shows that datasets 1 and 3

require only 34 and 31 transitory points for an AUC value of 1 to be obtained, but dataset 2 is quite

different. When 32 of the transitory points are removed from dataset 2, the AUC value is close to 0.95,

and in fact, the AUC value already begins to drop when as many as 48 of the points remain. When 17, 16,

and 15 of the points remain, the AUC value for datasets 1 and 3 falls to approximately 0.95, implying that

removing this many points is too many. The reduction in the number of points in the transitory part of

dataset 2 (compared to 1 and 3) may cause the reduction in accuracy for dataset 2. Further, this low

number of points in the transitory part may also cause an instability in the non-linear optimization

function, Rsolnp. Determining the true effect of this on the optimization algorithm is highlighted as an

area of further study. We speculate that one possible explanation relates to the situation in which the

problem is highly non-linear or non-smooth. In this case, it is possible to have many local solutions,

resulting in the function becoming ‘‘trapped.’’

We infer that, for SPEM to solve a system, few time points are needed in the steady state but one should

obtain 20–25 measurements in the system’s transitory state in order to achieve accurate results. De-

termining the sensitivity of this number to n, for example, is highlighted here as an area of further study

(Goel et al., 2008). In order for this important results to be efficiently used in experimental design, advice

from experimental biologists on when a steady state is likely to be reached is required.

FIG. 4. Area under curve (AUC)

value of SPEM results on a four-

gene system, under different initial

conditions (Dataset 1–3) and dif-

ferent network types (signed or

unsigned). The AUC value (of both

signed and unsigned) of g and h

were tested separately for all points,

two points, and one point in the

steady state.
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3.3. Result for SOS

Reiterating that real biological data contain noise, we applied SPEM to the E. coli SOS DNA repair

system. The dataset is described as a time-course gene-expression matrix, containing many zeros. As

reported by existing literature, LexA and RecA are hub genes in the regulatory SOS pathway (they connect

many other genes) and are bound to the interaction sites of other genes as master repressors. The data used

here describes the reactions directly related to these two hub genes (download from the Uri Alon lab: http://

www.weizmann.ac.il/mcb/UriAlon/). Although the downloaded dataset contains eight genes (uvrD, lexA,

umuD, recA, uvrA, uvrY, ruvA, and polB) taken from Experiment 3 (UV light intensities, 4:20 Jm - 2), here

we chose to compare results for the same six genes investigated in Kimura et al. (2008, 2009) and Kabir

et al. (2010) (uvrD, lexA, umuD, recA, uvrA, and polB). In this way, a fair comparison between SPEM and

other published results can be performed. These six genes are in fact well studied, and the network of

interactions can be described as in Figure 6a (Ronen et al., 2002).

Figure 6b shows the regulatory network as reconstructed by SPEM. Comparing with Figure 6a, we see

that SPEM correctly predicted all of the (activation) reactions related to RecA as well as all of the

(inhibition) reactions of LecA, including reaction direction. Intriguingly, the only true reaction that SPEM

did not predict was the reaction that occurs between RecA and LexA.

The performance of SPEM is compared, using the gold standard (Table 4), to other published algorithms

by considering the PPV and Se of the algorithm on signed and unsigned versions of the SOS pathway. The

results (Table 5) show that SPEM performs better here than in other approaches, in terms of both PPV

(0.62) and Se (0.65) in the signed network, with the next best algorithm for the signed network being that

published in Kabir et al. (2010), where PPV = 0.39 and Se = 0.35. For the unsigned network, SPEM has

the highest PPV (0.71 compared to 0.67 in Kabir et al. [2010] and Kimura et al. [2009]) and the second

highest Se (0.75, compared to 0.8 in Kimura et al. [2009]).

These results are of particular interest because they show that SPEM is able to perform well on real, and

therefore noisy data, and better, or comparably well, than existing approaches on the same dataset. As the

noise problem has not been clearly discussed in other approaches, we believe that, in our comparison, one

of the reasons that SPEM is superior to other methods is its efficient noise processing.

4. CONCLUSION

In this article, we have presented an algorithm for the estimation of parameters in an S-system, from time

series data. The algorithm, SPEM, is an improvement on algorithms that have previously been published in

FIG. 5. Area under curve (AUC)

value of SPEM results on a four-

gene system, under different initial

conditions (Dataset 1–3) and dif-

ferent network types (signed or

unsigned). The AUC value (of both

signed and unsigned) of g and h

were tested separately for all points,

3/4, 1/2, and 1/4 of points in the

transitory state.
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the field of reverse-engineering of gene networks as it uses structural error to effectively force sparsity into

the (biological) network, and importantly, it is able to process noisy data through improved slope calcu-

lation. This means that SPEM performs well on real, as well as synthetic, data. Although we acknowledge

that SPEM cannot give 100% accurate results every time (see Section 3.2), the algorithm has high levels of

Table 4. Gold Standard of SOS Pathway, Collected from the Literature

uvrD lexA umuD recA uvrA polB

uvrD 0 - 1 (Gardner et al.,

2003; Ronen

et al., 2002)

- 1 (Kato and

Shinoura, 1977;

Steinborn, 1978)

1 (Gardner et al.,

2003; Ronen

et al., 2002)

1 (Szklarczyk

et al., 2011)

0

lexA 0 - 1 (Gardner et al.,

2003; Ronen

et al., 2002)

- 1 (Gardner

et al., 2003)

1 (Gardner et al.,

2003; Ronen

et al., 2002)

0 0

umuD 0 - 1 (Gardner et al.,

2003; Ronen

et al., 2002)

- 1 (Gardner

et al., 2003)

1 (Gardner et al.,

2003; Ronen

et al., 2002)

0 0

recA 0 - 1 (Gardner et al.,

2003; Ronen

et al., 2002)

- 1 (Gardner

et al., 2003)

1 (Gardner et al.,

2003; Ronen

et al., 2002)

0 0

uvrA 1 (Szklarczyk

et al., 2011)

- 1 (Gardner et al.,

2003; Ronen

et al., 2002)

- 1 (Kato and

Shinoura, 1977;

Steinborn, 1978)

1 (Gardner et al.,

2003; Ronen

et al., 2002)

0 0

polB 0 - 1 (Gardner et al.,

2003; Ronen

et al., 2002)

- 1 (Kato and

Shinoura, 1977;

Steinborn, 1978)

1 (Gardner et al.,

2003; Ronen

et al., 2002)

0 0

FIG. 6. SOS DNA repair pathway in Escherichia

coli: (a) According to the literature. (b) As predicted by

SPEM.
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Se and PPV for the networks studied. In addition, SPEM is designed so that the user can change parameters

such as the level of required sparsity, allowing for prior knowledge to be accounted for if desired.

If the number of time points and number of genes are high, SPEM will be time costly (Goel et al., 2008).

To minimize this, we have used vector computation instead of loop computation, and the current version

supports parallel computation. One feasible improvement is embedded parallel computation on the code

itself, and this improvement is planned in an update of SPEM.

Another natural stage in development of SPEM would be to allow for the time series input data to

include perturbations at arbitrary time points. In addition, it would be of interest to investigate other options

for introducing sparsity into the networks, thus potentially decreasing runtime of the algorithm. One could

adopt ideas from LARS (least angle regression) (Efron et al., 2004), based on the Lasso approach (Tib-

shirani, 1996) to allow for sparsity. However, to date, LARS can deal only with optimization of linear

models, GLMs, and Cox proportional hazard models (see packages LARS and glmpath in R [Friedman

et al., 2008]). We therefore highlight the extension of LARS to S-system parameterization as a potential

area for future study.
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