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Abstract
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer’s disease
(AD) progression. Loss of synapses and synaptic damage are the best correlate of cognitive
deficits found in AD patients. Recent research on amyloid bet (Aβ) and mitochondria in AD
revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal
mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using
live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic
mice revealed that reduced mitochondrial mass, defective axonal transport of mitochondria and
synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic
deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse
models of AD and clinical trials of AD patients. This article highlights the recent developments
made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis,
impaired axonal transport and synaptic deficiencies in AD. This article also focuses on
mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-
targeted antioxidants in AD.

1. Introduction
Increasing evidence suggests that mitochondria play a large role in aging and several age-
related diseases, including, cancer, diabetes, cardiovascular, neurodegenerative diseases, and
hereditary mitochondrial diseases [1-12]. Germline mutations in mitochondrial DNA
(mtDNA) are involved in causing hereditary mitochondrial diseases, including Leigh
syndrome, Parkinsonism, and Wilson disease [3]. Age-dependent accumulation of somatic
mtDNA changes are involved in disease progression of neurodegenerative diseases,
including Alzheimer’s (AD), Parkinson’s (PD), amyotrophic lateral sclerosis (ALS),
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Huntington’s (HD) [2]. It is interesting to note that age-dependent accumulation of somatic
mtDNA changes are neuronal-specific for each of these degenerative diseases [13].
Dysfunction of mitochondria is linked to increased levels of reactive oxygen species (ROS)
production, abnormal intracellular calcium levels and reduced mitochondrial ATP. More
recent research on mitochondrial structure in tissues of brains from AD, PD and HD
revealed that imbalanced mitochondrial dynamics (increased mitochondrial fission and
decreased fusion) may be the primary cause of mitochondrial dysfunction and neuronal
damage [14].

Tremendous progress has been made in mitochondrial therapeutics in AD mouse models and
clinical trials of AD patients. Further, recently, several mitochondria-targeted molecules
have been developed and currently being tested in cell and mouse models of
neurodegenerative diseases. The purpose of this article is to summarize latest developments
in mitochondrial research with a particular focus on AD. This article also discusses how
mitochondria-targeted molecules protect mitochondria against Aβ-induced toxicity, and
increase neuronal survival in neurons affected by AD.

2. Mitochondrial structure, function and physiology
Mitochondria are cytoplasmic organelles that are essential for the life and death.
Mitochondria arise from a symbiotic association between glycolytic protoeukaryotic cells
and oxidative bacteria 1.5 billion years ago [15]. Mitochondria change their shape rapidly
according to the requirement of cell structure and function. Several features of mitochondria
that reflect their endosymbiotic origin are their double-membrane structure and their circular
genome with mitochondria specific transcription, translation and protein assembly systems
[16]. Mitochondria reduced their genome size to 16.5 kb DNA and adopt to their new
cellular environment, and the reduction of their genome probably increases their replication.
The half-life of neuronal mitochondria is about one month, and half-life varies with tissue
type in mammalians [4]. However, the decay of old mitochondria and the synthesis of new
mitochondria are active in all mammalian cells, including neurons. Mitochondrial function is
well maintained in cells because of continuous mitochondrial recycling [17].

Mitochondria are heteroplasmy in general, meaning both healthy and defective mitochondria
co-exist in cells [3,15]. Mitochondrial dynamics is well maintained in healthy cells, in other
words - mitochondrial division and fusion are equal and balance equally. Mitochondrial
dynamics is essential for cell survival. However, in cells from a disease state and/or cells
exposed to toxins and other oxidative insults, the dynamics of mitochondria are imbalanced,
resulting structural and functional abnormalities leading to cell death.

Mitochondria are compartmentalized into 2 lipid membranes: the outer and inner
mitochondrial membranes. The outer membrane is highly porous and allows the passage of
low molecular-weight substances between the cytosol and the inter-membrane space of
mitochondria (Fig. 1) [16]. However, the inner membrane provides a highly efficient barrier
to ionic flow, houses the electron transport chain (ETC) (Fig. 2) and covers the
mitochondrial matrix. The mitochondrial matrix contains tricarboxylic acid (TCA) and beta-
oxidation. Recent studies revealed that several proteins, including Aβ (4kDa), a 99 amino
acid residues of c-terminal fragment of AβPP found in matrix [18-20]. Therefore the concept
‘inner membrane does not allow big proteins to matrix’ may not always be true, particularly
in mitochondria from disease state neurons.

Mitochondria are controlled by both nuclear and mitochondrial genomes. MtDNA consists
of a 16,571 base pair, double-stranded, circular DNA molecule [21]. The mtDNA copy
number, and the number of mitochondria per cell are dependent on cell type, and ATP
demand in the cell. For example, the number of mitochondrial DNA in fertilized human
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oocytes is about 250, 000 - while for unfertilized oocytes, the mean mitochondrial DNA
number is 164,000 [22]. mtDNA contains 13 polypeptide genes that encode essential
components of the ETC. mtDNA also encodes the 12S and 16S rRNA genes and the 22
tRNA genes required for mitochondrial protein synthesis. Nuclear genes encode the
remaining mitochondrial proteins (approximately about over 1000 proteins), metabolic
enzymes, DNA and RNA polymerases, ribosomal proteins, and mtDNA regulatory factors,
such as mitochondrial transcription factor A [23]. Nuclear mitochondrial proteins are
synthesized in the cytoplasm and are subsequently transported into mitochondria. The cross
talk between nuclear and mitochondrial-encoded proteins is an essential process to complete
oxidative phosphorylation (OXPHOS) in cells.

Mitochondria are transmitted maternally, but in rare situations, they can be transmitted
paternally. They perform several cellular functions, including: the regulation of intracellular
calcium, ATP production, the release of proteins that activate the caspase family of
proteases, alteration of the reduction-oxidation potential of cells, and free-radical scavenging
[15]. Mitochondrial ATP is generated via OXPHOS within the inner mitochondrial
membrane. As shown in Fig. 1, free radicals are generated as a byproduct of OXPHOS. In
the respiratory chain, complexes I and III leak electrons to oxygen, producing primarily
superoxide radicals. The superoxide radicals are dismutated by manganese superoxide
dismutase, generating H2O2 and oxygen. But H2O2 is converted to H2O by antioxidants,
catalase or glutathione peroxidase. The unconverted H2O2 and other radicals and superoxide
radicals are carried to the cytoplasm via voltage-dependent anion channels and participate in
lipid peroxidation, and protein and DNA oxidation (Fig. 1).

The presence of sufficient quantities of antioxidant enzymes in the mitochondria, scavenge
free radicals and protect cells against the toxicity of oxidants. However, cells that produce
more oxidants, particularly pyramidal neurons in cortex and hippocampus in AD brain – are
likely to be damaged because of presence of insufficient levels of antioxidant enzymes. Thus
produce oxidative stress (imbalance between oxidants and antioxidant enzymes) in neurons
from AD brain.

3. Mitochondrial Defects in Alzheimer’s Disease
Alzheimer’s disease (AD) is the 6th leading cause of deaths in US and devastating mental
illness in elderly population. AD is a late-onset, progressive, age-dependent
neurodegenerative disease, characterized by the progressive decline of memory, cognitive
functions, and changes in behavior and personality [4,24,25]. AD is also associated with the
loss of synapses, synaptic function, mitochondrial structural and functional abnormalities,
inflammatory responses, and neuronal loss in addition to extracellular neuritic plaques and
intracellular neurofibrillary tangles. Several factors, including lifestyle, diet, environmental
exposure, Apolipoprotein allele E4, and several other genetic variants reported to involve in
late-onset AD.

Oxidative stress and mitochondrial dysfunction have been extensively reported in AD
postmortem brains [26-32], in platelets from AD patients [33], in AD transgenic mice
[19,20,30,34-43], and in cell lines that express mutant APP [35,44,45], mammalian cells that
treated with Aβ [46,47] and primary neurons from AD transgenic mice [48-50]. Multiple
lines of evidence suggest that mitochondrial defects play a key role in AD pathogenesis:

3. 1. Defective Glucose Metabolism in AD brains
Several positive emission tomography scan studies revealed that reduced glucose
metabolism in the brains of AD patients, indicating that defective glucose utilization in AD
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[51,52]. Further, ApoE4 genotype is positively correlated with defective glucose utilization
in the brains from AD patients.

3. 2. Reduced Mitochondrial Enzyme Activities in AD
Several biochemical studies found decreased levels of cytochrome oxidase activity, pyruvate
dehydrogenase, and α-ketodehydrogenase in fibroblasts, lymphoblasts, and postmortem
brains from AD patients, compared to neurons, fibroblasts, and lymphoblasts from age-
matched healthy subjects [4].

3.3. Mitochondrial DNA Defects in AD
Increased mtDNA changes were found in postmortem brains from AD patients and aged-
matched control subjects, compared to mtDNA changes in postmortem brain tissue from
young, healthy subjects, suggesting that the accumulation of mtDNA in AD pathogenesis is
age-related [53,54].

Recently, Coskun and colleagues [55] investigated whether the mtDNA copy number was
related to disease progression in AD. Using molecular methods, they investigated the
mtDNA copy number in DNA from patients with AD and Downs syndrome. They found
increased mtDNA changes and decreased mtDNA copy number in postmortem brains from
AD and Downs syndrome patients. Further, in the brain tissues from aged control subjects
who did not have AD, the researchers found that mutations in the control region of mtDNA
increased; and in patients with Downs syndrome, mutations in the control region of mtDNA
were associated with a reduced mtDNA copy number and L-strand transcripts. The increase
in mtDNA mutations was also seen in peripheral blood DNA and in lymphoblastoid cell
DNAs of AD and Downs syndrome patients. In aging, Down syndrome, and Down
syndrome AD, mtDNA mutations positively correlated with β-secretase activity, and the
copy number of mtDNA was inversely correlated with the levels of Aβ40 and Aβ42.
Therefore, mtDNA mutations may be responsible for neuropathological changes observed in
AD and Down syndrome AD [55].

Lakatos et al [56] investigated mitochondrial DNA variations (haplotypes) in 138
mitochondrial polymorphisms in 358 subjects in the Caucasian Alzheimer’s Disease
Neuroimaging Initiative subjects. They found that the mitochondrial ‘haplogroup UK’ may
confer genetic susceptibility to AD independently of the ApoE4 allele.

3.4. Abnormal Mitochondrial Gene Expression
Multiple studies investigated mitochondrial gene expressions in postmortem AD brains and
in brain specimens from AD transgenic mice [34,57,58]. These studies found mitochondrial-
encoded genes abnormally expressed in the brains AD patients and AD mice. Further, a
recent, time-course global gene expression study in Tg2576 mice and age-matched non-
transgenic littermates revealed an up-regulation of mitochondrial-encoded genes in 2-, 5-
and 18-month-old Tg2576 mice, suggesting that mitochondrial metabolism is impaired by
mutant APP and Aβ and that the up-regulation of mitochondrial genes may be a
compensatory response to mitochondrial dysfunction caused mutant APP and Aβ [34].
Further, findings from this gene expression study also suggest that mitochondrial
impairment is an early event in disease progression of AD. Further, Manczak et al. [31] also
investigated mitochondrial-encoded genes using quantitative real-time RT-PCR in different
grades of AD postmortem brains and non-demented control subjects. They found that
abnormal expression of mitochondrial-encoded genes in postmortem AD brains compared to
the brains of non-demented, healthy subjects [31], suggesting that impaired mitochondrial
metabolism is a characteristic feature of AD patients.
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The findings from these studies suggest that age-dependent production of APP and Aβ may
cause mitochondrial dysfunction and mitochondrial-encoded genes were abnormally
expressed to compensate the loss of mitochondria function.

3.5. Mitochondrial Dysfunction and Oxidative Stress in AD
Several studies found increased free radical production, lipid peroxidation, oxidative DNA
damage, oxidative protein damage, decreased ATP production, and decreased cell viability
in postmortem AD brains compared to brains from age-matched healthy subjects
[26,27,29,33,59]. Further, using AD transgenic mice lines, multiple studies found increased
production of free radicals, cytochrome c oxidase activity, lipid peroxidation, and reduced
levels mitochondrial ATP in affected brain regions [11,19,20,30,34-43,60,61], and primary
neurons AD transgenic mice or neurons expressing mutant APP and Aβ [32,47-50], further
supporting mitochondrial dysfunction and oxidative stress are important features of AD
pathogenesis.

3.6. Age-induced mitochondrial ROS in late-onset AD
Aging and age-dependent accumulation of mtDNA plays a key role in producing
mitochondrial-ROS in neurons, and as shown in Fig. 3, this mitochondrial-ROS activate
beta- and γ-secretases and facilitate the cleavage of the AβPP molecule. The cleaved APP
molecule (that is, Aβ) further induce free radicals, leading to the disruption of the ETC,
enzyme activities, oxidized DNA, oxidized protein, and lipid peroxidation, and to the
inhibition of mitochondrial ATP [4,24]. This feedback loop of age-dependent free radicals to
Aβ and Aβ to free radicals ultimately leads to neuronal damage, neurodegeneration, and
cognitive decline in late-onset AD patients.

3. 7. APP and Aβ Association with Mitochondria in AD
Several groups reported that AβPP, and monomeric and oligomeric forms of Aβ have been
found in mitochondrial membranes [18,19,29,30,35.42,47,62,63]. Lustbader et al [19] found
Aβ normally interacting with the mitochondrial matrix protein ABAD, with this interaction
leading to mitochondrial dysfunction. Recently, the Reddy laboratory found Aβ monomers
and oligomers in mitochondria isolated from the cerebral cortex of AβPP transgenic mice
and from N2a cells expressing AβP [35]. A digitonin fractionation analysis of isolated
mitochondria from AβPP transgenic mice revealed Aβ in the outer and inner membranes and
matrix of mitochondria. We found that mitochondrial Aβ decreases cytochrome oxidase
activity and increases free radicals and carbonyl proteins. Du et al [47] found Aβ interaction
with mitochondrial matrix protein, cypclophilin D, and this abnormal interaction causes
mitochondrial dysfunction in the brains of AD transgenic mice. Recently, Yao et al. [42]
found Aβ in mitochondrial membranes of cortical tissues from triple transgenic mice.

More recently, Devi and Ohno [20] studied to determine, if β-cleaved C-terminal fragment
C99 of APP accumulate in mitochondria of neurons affected by AD. Using immunoblotting,
digitonin fractionation and immunofluorescence labeling techniques, they found that C99 is
targeted to mitochondria, in particular, to the mitoplast (innermembrane and matrix
compartments) in brains of AD transgenic mice (5XFAD line). Furthermore, full-length
APP was also identified in mitochondrial fractions of 5XFAD mice. Remarkably, partial
deletion of the β-site APP-cleaving enzyme 1 (BACE1 (+/−)) almost completely abolished
mitochondrial targeting of C99 and full-length APP in 5XFAD mice at 6 months of age.
However, substantial amounts of C99 and full-length APP accumulation remained in
mitochondria of 12-month-old BACE1 (+/−)·5XFAD mouse brains. Consistent with these
changes in mitochondrial C99/ full-length APP levels, BACE1 (+/−) deletion age-
dependently rescued mitochondrial dysfunction in 5XFAD mice, as assessed by cytochrome
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c release from mitochondria, reduced redox or complex activities and oxidative DNA
damage.

Overall, these findings together with earlier observations, suggest that Aβ, C99 fragment of
APP and full-length APP are associated with mitochondria, and contribute to inducing
mitochondrial dysfunction in AD neurons.

3.8. Abnormal Mitochondrial Dynamics in AD
Recent studies of mitochondrial structure in postmortem brains from AD patients and
primary neurons from AD transgenic mice revealed that Aβ fragments mitochondria and
causes structural changes in AD neurons [32,44,45,47-50]. Increasing evidence suggests that
mitochondrial dynamics are impaired in neurons affected by AD.

Wang and co-workers [44] investigated the effects of AβPP and Aβ on mitochondrial
structural changes. They found that 40% of human neuroblastoma (M17) that express wild-
type APP and 80% of M17 cells overexpressing mutant AβPP displayed alterations in
mitochondrial morphology, particularly fragmented mitochondria.

Using electron and confocal microscopy, gene expression analysis, and biochemical
methods, the Reddy laboratory studied mitochondrial structure and function, and neurite
outgrowth in neurons treated with Aβ [46]. In neurons treated with only Aβ, they found
increased expressions of mitochondrial fission genes (Drp1 and Fis1) and decreased
expressions of fusion genes (Mfn1, Mfn2, and Opa1), indicating the presence of abnormal
mitochondrial dynamics in AD neurons. Transmission electron microscopy of neurons
treated with Aβ revealed a significant increase in mitochondrial fragmentation, further
supporting abnormal mitochondrial dynamics. They also found significantly decreased
neurite outgrowth and decreased mitochondrial function in cells treated with Aβ. These
findings suggest that Aβ fragments mitochondria and causes abnormal mitochondrial
dynamics, leading to mitochondrial dysfunction.

Using primary neurons from a well-characterized AβPP transgenic mice (Tg2576 mouse
line), for the first time, the Reddy laboratory [50] studied mitochondrial activity, including
axonal transport of mitochondria, mitochondrial dynamics, morphology and function.
Further, we also studied the nature of Aβ-induced synaptic alterations, and cell death in
primary neurons from Tg2576 mice. Transmission electron microscopy revealed a large
number of small mitochondria and structurally damaged mitochondria, with broken cristae
in AβPP primary neurons. We also found an increased accumulation of oligomeric Aβ and
increased apoptotic neuronal death in the primary neurons from the AβPP mice relative to
the WT neurons. Our findings revealed an accumulation of intraneuronal oligomeric Aβ,
leading to mitochondrial and synaptic deficiencies, and ultimately causing
neurodegeneration in AβPP neurons [50].

Using postmortem brains from AD patients and control subjects, and quantitative RT-PCR
and immunoblotting analyses, the Reddy laboratory [32] measured mRNA and protein
levels of mitochondrial structural genes in the frontal cortex of patients with early, definite
and severe AD and in control subjects. We also characterized monomeric and oligomeric
forms of Aβ in these patients. We found increased expression of the mitochondrial fission
genes Drp1 and Fis1 and decreased expression of the mitochondrial fusion genes Mfn1,
Mfn2, Opa1 and Tomm40. The matrix gene CypD was up-regulated in AD patients. Results
from our quantitative RT-PCR and immunoblotting analyses suggest that abnormal
mitochondrial dynamics increase as AD progresses. Primary neurons that were found with
accumulated oligomeric Aβ had lost branches and were degenerated, indicating that
oligomeric Aβ may cause neuronal degeneration. These findings suggest that in patients
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with AD, increased production of Aβ mitochondrial fragmentation, abnormal mitochondrial
dynamics and synaptic damage.

Using neurons from adult fruit flies, Zhao and colleagues [64] studied the effects of wild-
type and an arctic form of Aβ42. They performed extensive time-course analyses to
determine the function and structure of both axon and presynaptic terminals of individual
neurons. They found Aβ accumulated intracellularly, and they found a wide range of
changes typically associated with aging, including the depletion of presynaptic
mitochondria, a slow-down of bi-directional transports of axonal mitochondria, decreased
synaptic vesicles, increased large vacuoles, and elevated synaptic fatigue.

Overall, these findings suggest Aβ enters mitochondria and causes abnormal mitochondrial
dynamics in neurons that are affected by AD, and that such abnormal mitochondrial
dynamics cause mitochondrial dysfunction and abnormal mitochondrial trafficking in AD
neurons.

3.9. Defective Axonal Transport of Mitochondria and Impaired Mitochondrial Biogenesis in
AD

Several recent live-cell imaging studies of primary neurons treated with Aβ peptide and/or
primary neurons from AD transgenic mice revealed that reduced anterograde transport of
mitochondria, indicating lack of healthy mitochondria and mitochondria ATP at synapses
may be an important factor that promote synaptic degeneration in AD neurons
[47-50,65,66].

Using mouse hippocampal neurons and Aβ25-35 peptide, the Reddy laboratory [48] studied
axonal transport of mitochondria, including mitochondrial motility, mitochondrial length
and size, mitochondrial index per neurite, and synaptic alterations of the hippocampal
neurons. In the PBS-treated neurons, 36.4±4.7% of the observed mitochondria were motile,
with 21.0±1.3% moving anterograde and 15.4±3.4% moving retrograde and the average
speed of movement was 12.1±1.8μm/min. In contrast, in the Aβ-treated neurons, the number
of motile mitochondria were significantly less, at 20.4±2.6% (P<0.032), as were those
moving anterograde (10.1±2.6%, P<0.016) relative to PBS-treated neurons, suggesting that
the Aβ25-35 peptide impairs axonal transport of mitochondria in AD neurons. In the Aβ-
treated neurons, the average speed of motile mitochondria was also less, at 10.9±1.9μm/min,
and mitochondrial length was significantly decreased. Further, synaptic immunoreactivity
was also significantly less in the Aβ-treated neurons relative to the PBS-treated neurons,
indicating that Aβ affects synaptic viability. These findings suggest that, in neurons affected
by AD, Aβ is toxic, impairs mitochondrial movements, reduces mitochondrial length, and
causes synaptic degeneration.

More recently, the Reddy laboratory studied mitochondrial activity, including axonal
transport of mitochondria, mitochondrial dynamics, morphology and function. Further, they
also studied the nature of Aβ-induced synaptic alterations, and cell death in primary neurons
from Tg2576 mice. Similar to the findings of Aβ25-35 peptide treated neurons, we found
significantly decreased anterograde mitochondrial movement, increased mitochondrial
fission and decreased fusion, abnormal mitochondrial and synaptic proteins and defective
mitochondrial function in primary neurons from AβPP mice compared with wild-type
neurons.

Using 5-bromo-2-deoxyuridine (BrdU) incorporation and primary neurons, the Reddy
laboratory [49] studied the mitochondrial biogenesis and mitochondrial distribution in
hippocampal neurons from AβPP transgenic mice and wild-type neurons treated with
oxidative stressors, rotenone and H2O2. We found that after 20h of labeling, BrdU
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incorporation was specific to porin-positive mitochondria. The proportion of mitochondrial
area labeled with BrdU was 40.3±6.3% at 20h. The number of mitochondria with newly
synthesized DNA was significantly higher in AβPP neuronal cell bodies than in the cell
bodies of wild-type neurons. In neurites, the number of BrdU-positive mitochondria
significantly decreased in AβPP cultures compared to wild-type neurons. Further, BrdU in
the cell body significantly increased when neurons were treated with low doses of H2O2,
while the neurites showed decreased BrdU staining. BrdU labeling was increased in the cell
body under rotenone treatment. Additionally, under rotenone treatment, the content of BrdU
labeling decreased in neurites.

Overall, findings from our lab together with others [47,65,66] suggest that Aβ and
mitochondrial toxins enhance mitochondrial fragmentation in the cell body, and may cause
impaired axonal transport of mitochondria, defective mitochondrial distribution, leading to
synaptic degeneration.

4.0. Synaptic Degeneration in AD
Several recent studies focused on synapses and synaptic degeneration in AD neurons, and
found Aβ abnormally accumulated in synapses and synaptic mitochondria [4,35,43,47]. This
abnormal accumulation of Aβ at synapses may be important factor causing synaptic
degeneration.

Recently, Dragicevic et al [43] studied synaptic mitochondrial abnormalities in the AβPPsw
and AβPP+PS1 mouse lines, focusing on the hippocampus, cortex, striatum, and amygdala
of 12-month-old AβPPsw and AβPP+PS1 mice as well as nontransgenic mice. They
measured mitochondrial respiratory rates, ROS production, membrane potential, and
cytochrome c oxidase activity. Hippocampal and cortical mitochondria showed the highest
levels of mitochondrial dysfunction, while striatal mitochondria were moderately affected,
and amygdala mitochondria were minimally affected. Mitochondria in affected brain tissues
from AβPP+PS1 mice were more impaired than those from AβPP mice. Synaptic
mitochondria were more impaired than nonsynaptic mitochondria in both the AβPPsw and
AβPP+PS1 mouse models. The AβPP/PS1 mice showed more impairment in the cognitive
interference task of working memory than did the AβPP mice. The correspondence between
levels of mitochondrial Aβ and levels of mitochondrial dysfunction in AD mouse models
supports a primary role for mitochondrial Aβ in AD pathology. Dragicevic et al [69] studied
the relationship between mitochondrial Aβ levels and mitochondrial dysfunction in AD
mouse models. Moreover, the degree of cognitive impairment in AD transgenic mice was
linked to the extent of mitochondrial dysfunction and mitochondrial Aβ, suggesting that a
mitochondrial Aβ-induced signaling cascade may contribute to cognitive impairment [43].

Recently, Du and colleagues [47] studied differences in mitochondrial properties and
functions of synaptic versus non-synaptic mitochondria in the transgenic mouse brain, that
overexpress the human mutant form of APP and produce Aβ. Synaptic mitochondria showed
a greater degree of age-dependent accumulation of Aβ and mitochondrial alterations relative
to nonsynaptic mitochondria. The synaptic mitochondrial pool of Aβ was detected at 4
months, before the onset of nonsynaptic mitochondria and Aβ deposits accumulation. Aβ-
insulted synaptic mitochondria revealed early deficits in mitochondrial function, as shown
by increased mitochondrial permeability transition, decline in both respiratory function and
activity of cytochrome c oxidase, and increased mitochondrial oxidative damage. A low
concentration of Aβ1-42 (200 nM) treated murine primary neurons showed significantly
altered mitochondrial distribution and trafficking in axons.

The findings from these studies suggest that synaptic mitochondria, especially Aβ-rich
synaptic mitochondria, are more susceptible to Aβ-induced damage, highlighting the

Reddy et al. Page 8

Biochim Biophys Acta. Author manuscript; available in PMC 2013 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



importance of synaptic mitochondrial dysfunction relevant to the development of synaptic
degeneration and cognitive impairments in AD.

4. Mitochondrial Approaches to Treat AD
Extensive research based on postmortem brains, cell and mouse models of AD, several
cellular changes/mechanisms have been reported, including 1). Aβ production and deposits,
2). hyperphosphorylation of tau and neurofibrillary tangles, 3). inflammatory responses, 4).
cholinergic inhibition, 5). loss of synapses and synaptic damage and 6). abnormal
mitochondrial dynamics and mitochondrial dysfunction. Based on these cellular changes,
several therapeutic approaches have been developed and currently are being tested using cell
and mouse models of AD. Despite tremendous progress made in AD research, and AD
therapeutics, currently there are no drugs/agents available to prevent, delay, stop disease
progression in AD patients and in elderly individuals.

As described above, loss of synapses/synaptic damage and mitochondrial oxidative damage
are early events on AD progression [18,19,28-30,32,34,35,42,44,45,47-50,63,66], and loss
of synapses are the best correlate of cognitive deficits reported in AD patients. Further,
impaired mitochondrial biogenesis and defective axonal transport of mitochondria are
primary events that cause synaptic degeneration in AD neurons [32,48-50]. Therefore, it is
critical to develop molecules that 1). scavenge free radials and decrease mitochondrial
dysfunction and promote healthy mitochondrial biogenesis, 2). enhance axonal transport of
organelles including mitochondria and enhance synapse formation and synaptic branches in
AD neurons (Fig. 4).

4.1. Antioxidant Therapeutics in AD
In the last decade, several groups studied efficacies of antioxidants, including vitamin E,
curcumin, Ginko biloba and melatonin to determine, if antioxidants reduce Aβ and tau
pathologies and enhance cognitive functions in mouse models of AD [67-72]. The outcome
of these AD mice studies is positive, AD animals treated with antioxidants showed reduced
soluble Aβ levels, improved mitochondrial function and cognitive behavior.

Based on encouraging outcome of AD mice studies, several clinical trials were conducted in
AD patients and elderly individuals using vitamin E, vitamin C and E together, vitamin E
+donepezel, Formula F+donepezel, statins and huperzine A [73-89].

Further, to determine the neuroprotective effects of huperzine A (an antioxidant) in AD
patients, recently huperzine A was administered to randomly selected in mild to moderate
AD in a multicenter trial in which 210 individuals were randomized to receive placebo (n =
70) for at least 16 weeks, with 177 subjects completing the treatment phase [90]. The
primary analysis assessed the cognitive effects of huperzine A 200 μg BID at week 16 at 200
μg BID compared to placebo. Secondary analyses assessed the effect of huperzine A 400 μg
BID, as well as effect on other outcomes including Mini-Mental State Examination.
Huperzine A 200 μg BID did not influence change in ADAS-Cog at 16 weeks. In secondary
analyses, huperzine A 400 μg BID showed a 2.27-point improvement in ADAS-Cog at 11
weeks vs 0.29-point decline in the placebo group (p = 0.001), and a 1.92-point improvement
vs 0.34-point improvement in the placebo arm (p = 0.07) at week 16. Changes in clinical
global impression of change, NPI, and activities of daily living were not significant at either
dose. The primary efficacy analysis did not show cognitive benefit with huperzine A 200 μg
BID. This study provides Class III evidence that huperzine A 200 μg BID has no
demonstrable cognitive effect in patients with mild to moderate AD.
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Overall, the outcome of antioxidant clinical trials is mostly negative and/or showed modest
positive effect in cognitive function in AD patients or even elderly individuals. There are
several possible reasons for the limited success of antioxidant clinical trials: 1). naturally
occurring antioxidants might not cross the blood-brain barrier and so cannot reach
mitochondria to neutralize free radicals, 2). not well-thought-out experimental design of
clinical trials, and 3) most clinical trials conducted thus far in late-stage AD patients.

4.2. Mitochondria-targeted antioxidants in AD
considerable progress has been made in the last decade in developing mitochondria-targeted
antioxidants. To increase the delivery of antioxidants into mitochondria, multiple
mitochondria-targeted molecules have been developed: 1. triphenylphosphonium-based
antioxidants - MitoQ, MitoVitE, Mito-α-lipoic acid, MitoPBN, 2. the cell-permeable, small
peptide-based molecules, SS31, SS02, SS19, SS20 and 3. choline esters of glutathione and
N-acetyl-l-cysteine [91-95]. However, these mitochondria-targeted molecules are not fully
studied yet using cell and mouse models of AD.

Recently, Murphy and colleagues developed a series of liphophilic triphenylphosphonium
cation based antioxidants [95]. The liphophilic triphenylphosphonium cation is attached to
antioxidants such as vitamin E, coenzyme Q, α-lipoic acid and these liphophilic cation
attached antioxidants were preferentially taken up by mitochondria due to charge difference
between mitochondria (with negative charge) and liphophilic cation based antioxidants (with
positive charge) (Fig. 5). These antioxidants accumulate in the cytoplasm of cells, due to a
negative plasma membrane potential and enter mitochondria and accumulate several
hundred folds within the mitochondrial matrix.

MitoQ—Among several lipophilic cation based antioxidants, MitoQ is a strong therapeutic
antioxidant that has been successfully targeted to mitochondria. MitoQ excessively
accumulate in the mitochondria and convert H2O2 to H2O and O2, and reduce toxic insults
from free radicals in the mitochondria. This reduction may ultimately lead to the protection
of neurons from age-related and AD-related mitochondrial insults [93,95]. However, higher
concentrations (above 0.3μM) of MitoQ are toxic to neuronal cells.

Using electron and confocal microscopy, gene expression analysis, and biochemical
methods, the Reddy laboratory [32,46] studied mitochondrial structure and function, and
neurite outgrowth in mouse neuroblastoma (N2a) cells treated with MitoQ, SS31, and
resveratrol, and then incubated with Aβ. In N2a cells only incubated with the Aβ, we found
increased expressions of mitochondrial fission genes and decreased expression of fusion
genes, and also decreased expression of peroxiredoxins, endogenous cytoprotective
antioxidant enzymes. Electron microscopy of the N2a cells incubated with Aβ revealed a
significantly increased number of mitochondria, indicating that Aβ fragments mitochondria.
Biochemical analysis revealed that function is defective in mitochondria. Neurite outgrowth
was significantly decreased in Aβ-incubated N2a cells, indicating that Aβ affects neurite
outgrowth. However, in N2a cells treated with MitoQ, and SS31, and then incubated with
Aβ, abnormal expression of peroxiredoxins and mitochondrial structural genes were
prevented and mitochondrial function was normal; intact mitochondria were present and
neurite outgrowth was significantly increased. In primary neurons from AβPP transgenic
mice that were treated with MitoQ and SS31, neurite outgrowth was significantly increased
and cyclophilin D expression was significantly decreased. These findings suggest that
MitoQ and SS31 prevent Aβ toxicity in mitochondria from neurons affected by AD. Further
research is needed using AD mouse models in order to determine MitoQ effects in cognitive
behavior and AD pathology.
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SS31—Recently, Szeto and Schiller developed a series of 4, small, cell-permeable
antioxidant peptides (Szeto-Schiller or SS peptides) that are known to protect mitochondria
from oxidative damage: 1) SS19 H-Tyr-D-Arg-Phe-Lys-NH2, 2) SS02 H-Dmt-D-Arg-Phe-
Lys-NH2, 3) SS31 H-D-Arg-Dmt-Lys-Phe-NH2, and 4) SS20 H-Phe-D-Arg-Phe-Lys-NH2
[91,95-97]. These SS peptides have a sequence motif that allows them to target
mitochondria. They scavenge H2O2 and ONOO-, and inhibit lipid peroxidation. Their
antioxidant action can be attributed to the tyrosine, or dimethyltyrosine (Dmt), residue. Dmt
is more effective than tyrosine in scavenging mitochondria for ROS. The specific location of
the tyrosine or Dmt residue does not appear to be significant, as SS31 was found to be as
effective as SS02 in scavenging H2O2 and in inhibiting LDL oxidation.

Recently, the efficacy of the SS31 was studied in rodent models by several labs using
different murine models of human diseases including ischemic brain injury [98], with a
diabetic condition [99], undergoing myocardial infarction [100] and in ALS [101].
Researchers found that SS31 protects cells from mitochondrial toxicity in all these disease
states.

The Reddy laboratory [32,48-50]extensively studied the protective properties of SS31 in
neurons treated with Aβ25-35 peptide, and primary neurons from Tg2576 mice [32,48-50]
and Tg2576 mice treated with SS31 (Mao and Reddy, unpublished observations).

As reported earlier, SS31 decreased the levels of mitochondrial fission proteins (Drp1, Fis1)
and matrix protein, CypD and reduced mitochondrial dysfunction in neurons affected by
AD. Further, SS31 enhanced the number of healthy and intact mitochondria, and increased
synaptic outgrowth and neuronal branching.

Recently, the Reddy laboratory [50] studied mitochondrial activity and the nature of Aβ-
induced synaptic alterations in primary neurons from Tg2576 mice. We sought to determine
whether the mitochondria-targeted antioxidant SS31 could mitigate the effects of oligomeric
Aβ. We found significantly decreased anterograde mitochondrial movement, increased
mitochondrial fission and decreased fusion, abnormal mitochondrial and synaptic proteins
and defective mitochondrial function in primary neurons from AβPP mice compared with
wild-type neurons. However, we found that the mitochondria-targeted antioxidant SS31
restored mitochondrial transport and synaptic viability, and decreased the percentage of
defective mitochondria, indicating that SS31 protects mitochondria and synapses from Aβ
toxicity.

Overall, findings our lab indicate that SS31 reduce Aβ-induced mitochondrial toxicity and
increase axonal transport of mitochondria and enhance synaptic viability, and protect
neurons from Aβ toxicity. Further research is needed using AD mouse models in order to
determine the efficacies of SS31 and before applying for clinical trials in AD patients.

Conclusions and Future Directions
Mitochondria are essential cytoplasmic organelles that are critical for cell survival and cell
death. Mitochondria are involved in aging and several age-related human diseases.
Increasing evidence suggest that age-related accumulation of mtDNA changes play a large
role in producing increased levels of ROS, decreased mitochondrial function, low levels of
ATP production and neuronal damage in neurodegenerative diseases, including AD, PD, HD
and ALS. Further, recent research on Aβ and mitochondria in AD neurons revealed that Aβ
accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial
dynamics and synaptic degeneration in AD neurons. In addition, recent studies using live-
cell imaging and primary neurons from AD transgenic mice revealed that reduced
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mitochondrial mass, defective axonal transport, impaired mitochondrial biogenesis and
synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic
deficiencies.

In terms of AD therapeutics, despite tremendous progress made in understanding disease
progression and developing therapies, we still do not have drugs/agents that prevent, delay,
stop AD in our elderly population. Antioxidant approaches in treating AD patients thus far
are disappointing. However, mitochondria-targeted molecules appear to be promising to
treat AD, and however, further research is needed to study the efficacies of mitochondria-
targeted molecules.
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Highlights

1. Summarizes recent developments of Abeta-induced abnormal mitochondrial
dynamics and synaptic degeneration in AD.

2. Discussed the factors that cause mitochondrial dysfunction in AD.

3. Highlighted the antioxidant approaches in AD.

4. Discussed the mitochondria-targeted antioxidant therapeutics in AD.
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Figure 1.
Mitochondrial structure and sites of free radical generation. Mitochondria are bag like
structures compartmentalized with two lipid membranes: the inner mitochondrial membrane
and the outer mitochondrial membrane. The inner mitochondrial membrane houses the
mitochondrial respiratory chain and provides a highly efficient barrier to ionic flow. The
inner mitochondrial membrane houses respiratory chain or electron transport chain (ETC).
In the ETC, complexes I and III leak electrons to oxygen, producing primarily superoxide
radicals. Superoxide radicals are dismutated by manganese superoxide dismuase and
produce H2O2. In addition, ETC involves H2O2 reducing to H2O and O2 by catalase or
glutathione peroxidase accepting electrons donated by NADH and FADH2 and then yielding
energy to generate ATP from adenosine diphosphate and inorganic phosphate. Free radicals
are also generated by tricarboxylic acid in the matrix. These radicals are carried to the
cytoplasm via voltage-dependent anion channels, and may involve oxidation DNA and
proteins in the cytoplasm.
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Figure 2.
The structure of electron transport of chain.
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Figure 3.
Age and amyloid beta-induced free radical production and cleavage of APP fragments in
AD neuron. The accumulation of mtDNA changes may induce ROS production and cause
oxidative damage in aged tissues. In late-onset AD, age-dependent production of ROS
contribute to the secretion of Aβ peptides by activating β- and γ-secretases. These Aβ
peptides enter mitochondria, induce free radicals, decrease cytochrome oxidase activity, and
inhibit ATP generation. In familial AD, mutations in APP, PS1 and PS2 activate β- and γ-
secretases and secrete Aβ peptides, and these Aβ peptides enter mitochondria, cause
mitochondrial dysfunction and damage neurons.
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Figure 4.
Schematic representation mitochondrial therapeutics for AD.
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Figure 5.
Schematic representation of targeting mitochondria by different molecules. A generic
mitochondria-targeted antioxidant is shown constructed by the covalent attachment of an
antioxidant molecule to the lipophilic triphenylphosphonium cation. Antioxidant molecules
accumulate 5-10 fold in the cytoplasm, which is driven by plasma membrane potential, and
then further accumulates 100-500 fold in the mitochondria. Mitochondria-targeted
molecules rapidly neutralize free radicals and reduce mitochondrial toxicity. The SS31 is a
cell-permeable tetra-peptide that targeted to mitochondria and protects mitochondria from
oxidative damage. SS31 peptide has a sequence motif that allows them to target
mitochondria several hundred fold more than natural antioxidants. Once SS peptides reach
mitochondria, the SS peptides rapidly neutralize free radicals and decrease mitochondrial
toxicity.
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