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Abstract
This review discusses mechanisms by which progesterone receptors (PR) regulate transcription.
We examine available data in different species and tissues regarding: 1) regulation of PR levels;
and 2) expression profiling of progestin-regulated genes by total PRs, or their PRA and PRB
isoforms. 3) We address current views about the composition of progesterone response elements,
and postulate that PR monomers acting through “half-site” elements are common, entailing
cooperativity with neighboring DNA-bound transcription factors. 4) We summarize transcription
data for multiple progestin-regulated promoters as directed by total PR, or PRA vs. PRB. We
conclude that current models and methods used to study PR function are problematical, and
recommend that future work employ cells and receptors appropriate to the species, focusing on
analyses of the effects of endogenous receptors targeting endogenous genes in native chromatin.

I. INTRODUCTION
Like all nuclear receptors, progesterone receptors (PR) are transcription factors that consist
of a DNA binding domain (DBD), sandwiched between an upstream N-terminal region that
contains activation (AF) and inhibitory (IF) functions, and a downstream hinge region and
C-terminal ligand binding domain (LBD) (Hovland et al, 1998). There are two PR isoforms,
PRA and PRB, which differ only in that human PRB contain an additional 164 amino acid
far N-terminal region called the “B-upstream segment” (BUS) that confers AF3 activity.
BUS is missing in PRA (Sartorius et al, 1994b). Site-specific mutations of amino acids in
BUS that are responsible for its AF3 activity destroy PRB-specific gene regulation without
however, switching PRB to PRA (Tung et al, 2006). This suggests that global structural
differences between PRB and PRA apart from BUS control their unique properties. We
review below the distinctive transcriptional activities of the two PR isoforms.

In normal human tissues including the breast, PRA and PRB are generally expressed at
similar levels but at least in some breast cancers, their ratio is dysregulated (Graham et al,
1995b; Hopp et al, 2004). Classically, transcription mediated by PR is viewed as follows: 1)
The unliganded receptors are cytoplasmic and bound to heat shock proteins in the absence of
progestins (P). 2) Liganded receptors are released from heat shock proteins, dimerize and
translocate to the nucleus. 3) There they locate specific palindromic DNA binding sites
called progesterone response elements (PREs) in promoters of PR regulated genes, after
which, 4) transcription is initiated through recruitment of a transcription complex. While this
may be the case for some tissues, in some contexts, on some promoters, this simple model
cannot explain data showing that: 1) PR are largely localized to the nucleus even in the
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absence of P; 2) dimerization may not be required for PR mediated transcription; 3) the
endogenous structures of PREs have not been defined by unbiased in vivo analyses but are
unlikely to be “classical”; and 4) PR also signal through cell membrane and cytoplasmic
pathways.

The functions of steroid receptors generally, and of PR specifically, have been studied in a
variety of systems. For PR, the most widely used are artificial reporters consisting of tandem
palindromic PREs separated by random intervening sequences, linked to luciferase. These
double PRE (PRE2) reporters are then transiently or stably transfected into cells that may or
may not be relevant to the question under study; conditions and cells are optimized to yield
maximum luciferase activity; and conclusions are drawn regarding PR structure, PR
function, PR isoform specificity, and coregulators of PR-dependent transcription. In an
attempt to address more physiologically relevant conditions, other studies choose bona fide
genes regulated by PR, map their proximal promoters (usually less than 5 Kb) by deletion
analysis, and search for classical PREs within regions considered to be functionally
important. To confirm the validity of any conclusions, candidate sequence(s) are subjected
to protein:DNA interaction studies by electrophoretic mobility shift assays, DNA
footprinting, or methylation interference; all of which use “naked” DNA. More recently,
nuclear receptor binding sites and kinetics of protein:DNA interactions have been analyzed
by chromatin immunoprecipitation (ChIP), which has the advantage of searching for PR
binding sites in the context of chromatin. However, even ChIP assays are biased by being
limited to a search of specified DNA regions or sequences. The least biased methods are
ChIP-on-chip, which combines ChIP with microarray technology (chip) and identifies DNA-
binding sites on a genome-wide basis; or ChIP-seq, which combines ChIP with massively
parallel DNA sequencing. Studies examining PR-regulated promoters have, as of this
writing, been limited to proximal promoter regions using ChIP assays. Neither ChIP-on-chip
nor ChIP-seq has been reported. Thus many important PR regulatory regions including ones
in introns, 3′ untranslated regions (UTR), or tens of thousands of Kb removed from
transcriptional start sites remain unexamined, and true endogenous DNA sequences to which
PR bind either directly or indirectly remain largely unknown.

In this review we examine available data in a variety of tissues and species addressing: 1)
regulation of PR levels by estrogenic and non-estrogenic signaling; 2) analysis of genes
regulated by total PR, or by PRA vs. PRB using expression profiling; 3) our current
understanding about the composition of PREs, and transcriptional regulation via PR
monomers, PRE half-sites and cooperativity with other transcription factors. 4) We review
in detail transcriptional regulation of multiple P-regulated promoters by total PR and the two
PR isoforms. Although many signaling pathways converge on PR and influence their
transcriptional activity (reviewed in (Daniel et al, 2009)), even in the absence of ligands
(Jacobsen et al, 2005), and non-genomic effects of PR have also been described
(Boonyaratanakornkit et al, 2001), this review is limited to the genomic transcriptional
effects of liganded PR.

II. REGULATION OF PR EXPRESSION
To understand PR function, it is important to review factors that regulate PR levels. In T47D
human breast cancer cells, which are the major models for human PR, synthesis of the PRA
and PRB isoforms is driven by transcription from two promoters (Kastner et al, 1990)
located at −711 to +31 and +464 to +1105 of the transcription start-site, respectively. At
least 6 transcripts encode PR (Kastner et al, 1990; Wei et al, 1988) containing translational
start sites not only for PRA and PRB, but also for at least one N-terminally truncated protein
called PRC (Condon et al, 2006; Wei et al, 1990). The majority of normal human P target
tissues that have been studied express PRA and PRB in equimolar amounts (Graham &
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Clarke, 1997) generating 3 theoretical receptor populations consisting of 25% PRA
homodimers, 25% PRB homodimers and 50% PRA/PRB heterodimers. Fluorescence
resonance energy transfer microscopy, which quantifies the separation distance between two
molecules within nanometers, shows the presence of two closely neighboring PR molecules,
which could be monomers or dimers, in transcriptionally active foci of P-treated living cells
(Arnett-Mansfield et al, 2007; Mote et al, 2007).

Unlike normal human tissues, human malignancies frequently display aberrant PRA:PRB
ratios (reviewed in (Mote et al, 2007)). Additionally, non-human but nevertheless important
mammalian models used for cancer studies often have isoform ratios that differ from those
in human tissues. Typically the ratio of PRA:PRB in normal mature tissues of mice and rats
is 3:1 (Ilenchuk & Walters, 1987; Schneider et al, 1991), suggesting that the unknown
factors regulating equimolarity in humans differ substantially in rodents. Additionally, this
raises questions about the importance or lack thereof of equimolarity, and, if equimolarity is
important, about the use of rodent models to study human progesterone physiology and
disease processes.

a. E-dependent regulation of PR
The major factors that regulate PR levels in a variety of cells and tissues are 17β-estradiol or
related estrogens (E) bound to estrogen receptors (ER). PR are E regulated in the uterus
including the endometrium, in the pituitary and brain, and in the mammary gland/breast and
other tissues (reviewed in (Graham & Clarke, 1997)). Thus it is rare that normal PR-positive
cells do not also express ER. Indeed to our knowledge, discordance between PR and ER
expression has only been reported in cancers.

In human breast cancer cells, the proximal promoters controlling PRA and PRB
transcription contain estrogen response elements (EREs) recognized by ER, plus binding
sites for other transcription factors with which ER interact (Horwitz et al, 1978; Kastner et
al, 1990). For example, in MCF7 cells, liganded ER interact with an ERE ½ site within the l
Kb PR promoter region (Petz et al, 2004a) that also contains SP1 sites (Schultz et al, 2003),
and two different Fos/Jun AP1 binding sites, one of which functions as an activator, one as a
repressor of ER regulated transcription (Petz et al, 2002; Petz et al, 2004b). ER-dependent
upregulation of PR also likely involves long range transcriptional mechanisms as the region
311 Kb upstream and 4 Kb downstream of the PRB transcription start site contains 8 EREs
that bind ERα (Boney-Montoya et al, 2010). These variable regulatory elements suggest
possibilities for tissue and PR isoform-specificity. While the PR isoform-specificity
controlled by ER via these sites has not been examined, E more strongly induces PRB than
PRA in T47D (Graham et al, 1995a; Vienonen et al, 2002) and ZR-75-1 human breast
cancer cells (Vienonen et al, 2002), but more strongly induces PRA in MCF7 breast cancer
cells (Vienonen et al, 2002). GATA3, often expressed in association with ER, also plays a
role in E mediated induction of PR transcripts (Eeckhoute et al, 2007). However, questions
have been raised about E regulation of PR in normal breast epithelium, since total PR levels
do not vary during the hormone fluctuations associated with the menstrual cycle (Mote et al,
2002). Other signaling pathways regulating PR include retinoic acid receptors (Clarke et al,
1991; Clarke et al, 1990) and P themselves, which promote PR downregulation (Alexander
et al, 1989; Ghatge et al, 2005) and block E-dependent PR upregulation (Graham et al,
1995a). Methylation of the PR promoter correlates with silencing of PR expression in MCF7
cells (Xu et al, 2004).

As with human PR, rat PR expression is driven by two functionally distinct promoters, one
proximal (+461/+675) controlling PRA, and one distal (−131/+65) controlling PRB (Kraus
et al, 1993). Rat and human PR promoters are ~60% homologous (Kraus et al, 1993), and
show important differences in their regulation. In contrast to the two human promoters, both
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of which are E inducible in breast cancer cells (Kastner et al, 1990), only the proximal PRA
rat promoter is E inducible in MCF7 cells. When transfected into primary rat uterine cells,
the rat proximal promoter is not E regulated unless 1 additional exogenous ERE is
introduced, and the distal promoter requires 2 additional exogenous EREs. In mouse
pituitary 3T3 cells E induction of the rat promoters requires 2 additional EREs each.
Examination of the rat promoters show the presence of 4 imperfect EREs in the 5′ flanking
region and within the first exon, and ERE ½ sites are located within 150 bp of 3 of these 4
EREs, implicating ERE ½ sites in conjunction with imperfect EREs in regulating rat PR
levels (Kraus et al, 1994).

Expression of mouse PR has been examined in vivo during mammary gland development
using the LacZ gene encoding β-galactosidase knocked into the PR locus on one allele.
While PR are highly and uniformly expressed in terminal end buds of 5 and 8 week-old
intact virgin mice, in 16 week-old sexually mature cycling mice, PR expression is
variegated, analogous to the effects of E + P treatment in ovariectomized mice (Ismail et al,
2002). Of note is that only PRB expression was monitored in this study since the LacZ
knockin disrupted the translational start site for PRA. Other studies (Aupperlee & Haslam,
2007; Aupperlee et al, 2005; and Kariagina et al, 2007) raise doubt that E regulates PRB in
rodents. Rabbits are seemingly even more different than the above species since they
express only PRB driven by a single promoter that lacks an ERE in the 5′ flanking region,
but contains an ERE that overlaps with the translational start site (Savouret et al, 1991). This
ERE also mediates P-dependent PR downregulation (Savouret et al, 1991).

This brief summary highlights the species-specific effects of cell types and promoters in
controlling PR expression. One can only conclude that results from most studies are not
generalizable, and that at the very least, studies intended to address human biology need to
employ human PR in human cells.

b. Non E-dependent regulation of PR
Estrogens do not control PR expression in all tissues. For example, E do not induce PR
transcripts in primary rat granulosa cells; rather PR levels are regulated by cAMP and
gonadotropins (Park-Sarge & Mayo, 1994). Similarly, PR are not directly regulated by E in
rat preovulatory granulosa cells (Clemens et al, 1998) but are instead induced by FSH, LH
and forskolin (all of which increase cAMP); an effect mediated in part by SP1/SP3 binding
sites in the proximal PR promoter (Sriraman et al, 2003). Even in human breast cancer cells,
in which E regulation of PR has been documented for at least 3 decades and forms the basis
for clinical assays to predict hormone responsiveness, factors other than ER play a role. For
example, in MCF7 cells, activators of protein kinase A (PKA), stimulate cAMP production,
which increase PR protein levels (Cho et al, 1994). Interestingly PKA activators increase
only PR protein not PR transcripts, while E increase both (Cho et al, 1994) suggesting that
the cAMP targets are post-translational. The effects of cAMP are inefficient, raising PRB to
8% and PRA to 51% of the levels raised by E (Kraus et al, 1993). However, these results
suggest possible mechanisms for differential PR isoform regulation in mice, rats and human
cancer cells.

Many studies addressing regulation of human PR levels use cultured cell lines, and it is
therefore of considerable importance that serum factors modify the effects observed. Sera-
reduced media increase PR, suggesting that serum growth factors are inhibitory. Indeed,
both IGF1 and EGF inhibit PR levels in MCF7, ZR-75-1 and T47D cells through pathways
that involve PI3K/AKT/mTOR signaling (Cui et al, 2003b). Similarly in endometrial cancer
cells, both IGF1 and IGF2 inhibit PR mRNA expression, while PR levels are increased by
the anti-diabetic drug Metformin, which decreases cellular cAMP production, reduces the
activities of PKA and MAPK1/3, and inhibits mTOR (Xie et al, 2010). Since in MCF7 cells,
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liganded PRB in turn upregulate growth factors such as IRS-2, which primes cells for
activation by IGF1 (Cui et al, 2003a), this sets up a negative feedback loop in which PRs,
through varied signaling pathways, suppress their own biosynthesis.

Transcription factors besides ER also regulate PR gene expression. CEBPβ is repressive
(Seagroves et al, 2000) while P-occupied PR increase CEBPβ in human breast cancer cells
(Richer et al, 2002) and mouse mammary glands (Aupperlee et al, 2009), setting up another
possible negative regulatory loop. However, P-dependent regulation of CEBPβ is mouse
strain specific (Aupperlee et al, 2009), which makes data interpretation difficult. Another
transcription factor involved in regulating the PR gene, apparently specific to the human
PRB promoter, is GATA5, which binds adjacent to a polymorphism (+331G/A) in the
promoter to upregulate transcript levels of this isoform only (Huggins et al, 2006). This
clearly is another mechanism by which PR isoform levels can be dysregulated in malignant
cells.

Cyclin D1 enhances PR levels via an enhancer that binds both ER and Cyclin D1 in the 3′-
UTR of the PR gene (Yang et al, 2010). However, a single pulse of liganded PR suppresses
cyclin levels including those of Cyclin D1 (Groshong et al, 1997) apparently through PR and
AP1 regulatory elements in the distal Cyclin D1 promoter (Cicatiello et al, 2004). A second
P dose exacerbates this effect; another example of a P-dependent autoinhibitory loop. The
fact that multiple examples exist for negative autoregulation of PR suggest that it is
physiologically important that expression levels of these receptors be tightly controlled.

Lastly, the above summary details examples of factors that regulate overall PR protein
levels. However, activity of the receptor proteins is controlled not only by their levels, but
by post-translational modifications including phosphorylation, sumoylation, acetylation and
ubiquitination, the last of which targets PR to proteasomes for degradation (Abdel-Hafiz et
al, 2002; Daniel et al, 2010; Lange et al, 2000). These modifications exert profound effects
on the functional activity of PR. For example, desumoylation increases PR activity ~10-fold
(Abdel-Hafiz et al, 2002). Paradoxically, ligand dependent PR downregulation following
ubiquitination of the receptors is required for, and coupled to, maximal PR transcriptional
activity (Lange et al, 2000; Shen et al, 2001). PR activity is also modified by growth factor
signaling (Lange et al, 1998; Richer et al, 1998).

II. GENE REGULATION: EXPRESSION PROFILING
In the last few years, expression profiling studies have greatly expanded our knowledge of
human P-regulated genes and the role, if any, of PR homo- and heterodimers. These studies
indicate that isoform-specific gene regulation by PR is largely tissue, cell type and promoter
specific. As a result, since most studies use cancer cells, conclusions may not apply to
normal, physiological states. PR gene regulation has been studied mainly in ER+ T47D
human breast cancer cells because, typical of luminal breast malignancies, these cells
express high PR levels (Ghatge et al, 2005; Graham et al, 2005; Hopp et al, 2004; Jacobsen
et al, 2005; Richer et al, 2002). Additionally their PR are extremely stable and not subject to
fluctuation in response to transient shifts in E levels commonly seen in other cells. Therefore
P-regulation can be studied without the confounding effects of having to add E in order to
induce or maintain PR. Cloning of a PR-negative T47D subline called T47D-Y allowed
restoration of either PRA (T47D-YA cells) or PRB (T47D-YB cells) for study of each
isoform in isolation (Jacobsen et al, 2002; Sartorius et al, 1994a). These models are
important because they were constructed in the background of a naturally ER+PR+ cell line
and would be expected to contain appropriate ancillary coregulatory factors needed for
faithful PR-dependent gene regulation. ER and PR-negative cells like MDA-MB-231
transfected with PR may lack this competence.
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In the T47D models, PRA and PRB regulate some overlapping genes but most are isoform
specific. An early study using incomplete gene chips described 94 P-regulated genes: 25
regulated by both PR, 64 by PRB only, 4 by PRA only (Richer et al, 2002), suggesting at
least some differences between the two PR isoforms in sequence recognition and/or
interactions with other transcription factors. A subsequent study with larger chips defined
337 P-regulated genes: 25 by both PR, 229 by PRB and 83 by PRA (Tung et al, 2006). Thus
the trends in both studies were similar with substantially more genes uniquely regulated by
liganded PRB than PRA, and relatively few by both isoforms. When both isoforms were
regulatory, PRB were usually stronger transactivators than PRA (Jacobsen et al, 2005;
Richer et al, 2002). This differs from the unliganded receptors where PRA are the stronger
transactivators (Jacobsen et al, 2005). The above studies would seem to demonstrate that
both heterodimers and homodimers are capable of gene regulation. A role for heterodimers
has not however, been formally proven since in the T47D models homodimers are always in
the mix.

Expression profiling of P-regulated genes in ER and PR-negative MDA-MB-231 cells
transfected with both PR isoforms has also been reported (Leo et al, 2005), as have P studies
in estrogenized MCF7 cells (Leo et al, 2005; Purmonen et al, 2008). Comparisons of genes
among these studies are complicated by differing experimental variables, assorted time-
points of P treatment, different genomic platforms, and natural vs. synthetic P usage.
Synthetic progestins are largely similar to progesterone in terms of genes regulated in breast
cancer cells (Bray et al, 2005; Ghatge et al, 2005), the exception being medroxyprogesterone
acetate (MPA), which is a potent mixed progestin/androgen, and in cells that contain both
PR and androgen receptors (AR), signals through both receptors (Ghatge et al, 2005).

Expression profiling has also been performed in T47D cells in which the PRA:PRB ratio can
be altered by allowing PRA to fluctuate from 1:1 to 5:1 (Graham et al, 2005; McGowan &
Clarke, 1999). After short P exposure (6 hrs) neither increase of the PRA:PRB ratio, nor the
heightened PR levels generated by PRA overexpression, impacted the gene profiles.
Interestingly, many of the early genes were transcription factors. At 48 hrs, 6-fold more
genes and different functional pathways were regulated. The authors postulate that these late
genes are indirect targets. However, the major lesson of this study was that the isoform ratio
did not appear to be important at either timepoint. This and other studies also failed to
demonstrate the dominant negative effects of PRA on PRB-dependent transcription (a
phenomenon previously reported using exogenous reporters) unless PRA exceeded PRB by
>15-fold (Graham et al, 2005; McGowan & Clarke, 1999). Such discordant ratios are rarely,
if ever, observed in natural cells.

There is little overlap among P-regulated genes in normal human breast explants vs. T47D
breast cancer cells grown as organoids (Graham et al, 2009), or in PRA+ mouse mammary
organoids vs. PRA+ breast cancer cells (Santos et al, 2009). This emphasizes again how
difficult it is to generalize among different models. Other cell types in which P-regulated
genes have been analyzed include normal human breast epithelium (Graham et al, 2009) and
the normal mouse mammary gland (Fernandez-Valdivia et al, 2008). These genesets have
not been compared to each other or to other published datasets. Recall that differences exist
in PR isoform ratios between rodent and human tissues. Overall, much remains to be learned
about the endogenous genes regulated by progesterone and synthetic progestins in human
PR target tissues, and the accuracy of rodents to model human physiology and cancer
biology remains to be validated.
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IV. COMPOSITION OF PREs
The activity of PR has been extensively studied on 2 exogenous models: the mouse
mammary tumor virus-long terminal repeat (MMTV-LTR) and tandem PREs (PRE2)
derived from the second PRE of the rat tyrosine amino transferase (TAT) promoter. These
sequences, which usually respond to both PR and GR (and often to AR and
mineralocorticoid receptors as well), are often referred to as GRE/PREs. It is not surprising
that GR and PR recognize the same DNA elements since their core DBDs exhibit 90%
amino acid sequence identity (Takimoto et al, 2003).

The MMTV-LTR was first demonstrated to be GR regulated and subsequently to be PR
regulated. It contains one imperfect palindromic PRE preferentially used by GR, and 3
proximal PRE ½ sites preferentially used by PR (Gowland & Buetti, 1989). Overall, PR
occupy a larger DNA footprint (Chalepakis et al, 1988) and interact with different
nucleotide residues (von der Ahe et al, 1985), than do GR. The three PRE ½ sites are
necessary for PR induction of MMTV-LTR/luciferase in human T47D cells (Cato et al,
1986) and can do so even when isolated from the palindrome (Chalepakis et al, 1988;
Jacobsen et al, 2009). PRB are stronger transactivators than PRA on the complete LTR
(Kastner et al, 1990) and on the 3 PRE ½ sites (Jacobsen et al, 2009). The MMTV-LTR
palindrome in combination with 2 of the 3 proximal ½ sites has been used to map the
nucleotides that define a PRE using total PR assessed in T47D cells (Lieberman et al, 1993).
Point mutations demonstrate that even “suboptimal” sequences lead to maximum
transcription, but the consensus sequence arrived at consists of 2 hexamer ½ sites separated
by 3 intervening bases: 5′-RGnACAnrnTGTnCY-3′. The rat TAT promoter was also first
shown to be GR regulated and subsequently to be PR regulated. It contains 3 palindromic
PREs, but the PREII alone – 5′-TGTACAggaTGTTCT-3′ – is PR responsive and used in
many exogenous promoter/reporters (Strahle et al, 1987).

So, what is a GRE/PRE? Depending on which “consensus” sequence is used, the identity
varies. Besides the above, two other “consensus” GREs are listed in the TRANSFAC
database. One – 5′-GGTACAannTGTYCTk-3′ was derived from 10 sequences, two of
which are human: 2 from rat TAT, 2 from rat Tryptophan Oxygenase, 1 from human
Metallothionin IIA (MetIIA), 2 from murine Sarcoma Virus, and 1 from human Growth
Hormone (Jantzen et al, 1987a; Jantzen et al, 1987b). Among these 10, a 3′ hexamer
(TGTTCT) is more highly conserved than the 5′ hexamer (Jantzen et al, 1987a; Jantzen et
al, 1987b). The second GRE is experimentally derived from 38 GR binding sequences
whose identities are unknown. Its sequence is 5′-nnnnnnCnntnTGTNCTnn-3′. It is likely to
be the most accurate “PRE”, reflecting true endogenous variability based on functional
analyses, including the possibility that a strong PRE ½ site hexamer is sufficient for
regulation by PR.

Spacing of PREs, at least in transient transcription assays using synthetic promoters, is
reportedly also important for strong PR-mediated transcription. Optimal cooperativity
resulting in transcriptional synergism was observed between the imperfect PRE palindrome
of MMTV and several transcription factor binding sites including ones for NF1 and SP1 that
were 29bp removed from the PRE (Schule et al, 1988). A second palindromic PRE also
synergizes with the first if the two are separated by 29 nucleotides. It has been suggested
that this reflects nucleosome spacing periodicity. However, as reviewed below, it is rare if
ever the case that two palindromic PREs are spaced 29nt apart in endogenous promoters;
indeed even a single palindromic PRE is hard to find. Cooperative protein-protein
interactions resulting in transcriptional synergy have only been observed on MMTV or
exogenous PRE-containing reporter constructs in transient transfection assays and only with
PRB. PRA do not exhibit synergy under the same conditions, and if co-expressed with PRB,
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ER or GR, the PRAs act as transrepressors. However, this may be due to squelching of
transcription factors under transient transfection conditions in which the receptors are
overexpressed. PRA are not transrepressors of endogenous genes in T47D cells (Graham et
al, 2005). Also with regard to spacing issues, the distance between a GRE/PRE and the
transcription start-site appears to be constrained in experimental models (Nordeen et al,
1998), but there is little or no evidence for such rigid position dependence of PREs in natural
promoters.

As with MMTV and TAT, many other GR regulated genes are also regulated by liganded
PR (Bocquel et al, 1989; Renkawitz et al, 1984; Slater et al, 1988; Vegeto et al, 1993),
including the chicken lysozyme, rabbit uteroglobin and human MetIIA genes. They have
been used to address differences in binding specificities between GR and PR, but often
receptors from different species or only one PR isoform were tested. For example, the
chicken lysozyme promoter contains 2 palindromic PREs, binding of rat GR and rabbit PRB
are the same on the proximal GRE, but PR protect a larger region than GR on the distal
GRE, and the two receptors contact different nucleotide residues (von der Ahe et al, 1985).
In MetIIA, GR and PRB apparently contact the same residues (Slater et al, 1988), which,
when cloned upstream of the tk promoter confer PR inducibility (Scheidereit et al, 1986).
The uteroglobin promoter, contains 3 PR binding sites between −2732 and −2627 that
generate 3 separate footprints (Jantzen et al, 1987b), but if they are cloned upstream of a
heterologous promoter they fail to confer PR inducibility (Jantzen et al, 1987b). PR also
bind a site within the first intron of uteroglobin, perhaps explaining the lack of PR activity of
the 3 upstream binding sites (Bailly et al, 1986). These data demonstrate how complex the
issues of PR regulation are, and point to the weaknesses of exogenous promoter analyses.
While PR and GR regulate some of the same endogenous genes, they also regulate distinct
gene subsets (Wan & Nordeen, 2002). Endogenous binding sites for GR have been mapped
by ChIP-chip and ChIP-seq (John et al, 2011; So et al, 2007). However, authentic
endogenous binding sites for PR have yet to be mapped by such analyses, and the true
identity of PREs and whether or how they differ from GREs, is unknown.

a. Do PR dimers exist?
Biochemical studies and mutational analyses indicate that residues involved in PR
dimerization are present in the LBD, DBD and N-terminus of PR monomers (Tetel et al,
1997) and it has been assumed that monomers assemble in solution to generate a preformed
dimer that binds to DNA with high affinity. Bain et al. (Connaghan-Jones et al, 2008) have
carried out a thermodynamic dissection of PR and conclude that dimer binding at a
palindrome (whether by successive monomer assembly or via a preformed dimer) is
accompanied by an enormous energetic penalty. On the other hand, PR monomers are not
only capable of binding DNA but also engage in cooperative interactions among PRE 1/2 -
sites of varying distances and orientations, which can account for the majority of the binding
energetics on a natural promoter. They conclude that endogenously, PR monomers are the
major transcriptionally active species. Our studies, outlined below, indicate that PRE ½-sites
may be the major DNA elements through which PR regulate transcription; another argument
in favor of a role for monomers.

b. PRE ½ sites and PR monomers
Our in silico analysis of PR-regulated promoters for the presence of PREs shows an
abundance of imperfect palindromes, direct repeats and PRE ½ sites. On the other hand,
palindromic PREs are rare, and are also detected in promoters of non-PR regulated genes, so
that their presence is insufficient to define a PR-regulated promoter (Jacobsen et al, 2009).
Several lines of evidence suggest that PRE ½ sites may be important PR-regulatory sites: 1)
PRE ½ sites are abundant in P-regulated promoters while consensus or perfect palindromes
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are rare (Jacobsen et al, 2009); 2) transcription can be stimulated by P via 2 or 3 PRE ½ sites
(Chalepakis et al, 1988; Jacobsen et al, 2009); 3) PR monomers retain the ability to regulate
endogenous genes; indeed mutated PR that are unable to dimerize are better transactivators
than wild-type PR (Jacobsen et al, 2009); 4) functional studies of endogenous promoters
illustrate the recurring theme that liganded PR act via PRE ½ sites (Brayman et al, 2006;
Buser et al, 2007; Hewetson & Chilton, 2003; Salama et al, 2007); 5) PR bind to PREs as
monomers, and monomer binding to the MMTV-LTR ½ sites is cooperative (Connaghan-
Jones & Bain, 2009; Connaghan-Jones et al, 2008); 6) At molecular protein concentrations
found in cells, PR exist as monomers (Connaghan-Jones & Bain, 2009); 7) mobility shift
assays using DNA containing PRE ½ sites show PR binding as monomers (Roemer et al,
2006). 8) The transcriptional activity of monomeric PR is higher than of dimeric PR on
tandem PRE2, possibly due to cooperativity between monomers (Jacobsen et al, 2009).
Conceptually, these findings may also apply to GR monomers, since mice expressing
mutations in the dimerization interface of GR are viable, demonstrating that GR monomers
retain the capacity to regulate essential genes (Reichardt et al, 1998).

c. Cooperativity, Coregulators and co-Response Elements (coRE)
There is ample evidence that promoter structure confers transcriptional specificity (Maston
et al, 2006) and the structure and location of PREs relative to adjacent or overlapping DNA
binding sites for other transcription factors undoubtedly do so as well. This is the case for
the majority of ER binding sites (Carroll et al, 2005). Whether PRs, like ERs, require a
“pioneer factor” (Carroll et al, 2005) that enables their interaction with PREs is unknown.
Many sequence-specific DNA binding transcription factors regulated by liganded PR are
themselves coregulators of PR-dependent transcription. FOXO1 (Foxo1a) is P-regulated
(Ghatge et al, 2005) and a coactivator of PRA-dependent transcription (Rudd et al, 2007;
Takano et al, 2007). Other examples include STAT5a (Richer et al, 1998), c-Fos (Musgrove
et al, 1991), c-Jun (Alkhalaf & Murphy, 1992), and CEBPβ (Richer et al, 2002), all of which
are both P-regulated and capable of interacting with PRE-bound PR. In some cases PREs are
not required. Instead, PR are tethered indirectly to DNA-bound factors including AP1
(Bamberger et al, 1996; Owen et al, 1998) and JDP2 (Hill et al, 2009). Occasionally, as is
the case for AP1, these are in turn P-regulated (Dai et al, 2003). The fact that gene
regulation can be preserved with liganded PRs whose DNA binding domain has been
mutated supports a tethering model in some cases (Jacobsen and Horwitz, unpublished).
With regard to the PR isoforms, our in silico analyses show no differences in the PRE
composition of PRA vs. PRB-regulated promoter (Jacobsen and Horwitz, unpublished)
suggesting that the key to PR isoform specificity may lie in the transcription factors that
flank PR binding sites, and to differences in binding affinities between these factors and
each receptor isoform. While PRA have a higher affinity than PRB for corepressors on an
exogenous PRE reporter (Giangrande et al, 2000), whether this is the case on endogenous
PR binding sites is unknown. These issues will remain unresolved until the structures of the
full-length PR isoforms have been solved, and authentic in vivo PR binding sites have been
identified.

Because we found that imperfect inverted repeats, direct repeats, and PRE ½ sites are
widespread in the genome, not only in PR-regulated but also in non-PR-regulated and
random promoters, we speculated that PREs may be necessary but not sufficient to control
endogenous PR-dependent transcription. A search for PRE partners identified a highly
conserved 234-nt sequence invariably located within 1–2 Kb of the transcription start sites
of P-regulated genes (Jacobsen et al, 2009). It resembles ALU repeats and contains binding
sites for 11 transcription factors. Interactions between PR and many of these factors have
been documented (Kang et al, 2001; Maccarrone et al, 2003; Owen et al, 1998). We cloned
the 234-nt sequence of the PR-regulated 8-oxoguanine DNA glycosylase promoter in the
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forward or reverse orientation in front of 0, 1, or 2 inverted repeat PREs and one or tandem
PRE ½-sites driving luciferase. Under these conditions the 234-nt sequence functions as a
co-response element (coRE): from the PREs or tandem ½ -sites the reverse coRE is a strong
activator of PR and GR-dependent transcription. The forward coRE is a powerful repressor
(Jacobsen et al, 2009). As discussed above, the prevalence of PRE ½ -sites in natural
promoters suggested that PR monomers regulate transcription. Indeed, dimerization-domain
mutant PR monomers are stronger transactivators than wild-type PR on PREs or tandem ½ -
sites. This is repressed by the forward coRE. We propose that in natural promoters the coRE
functions as a composite response element adjacent to imperfect PREs and PRE ½ -sites that
presents variable, orientation-dependent transcription factors for cooperative interaction with
nearby PR. As discussed below, PR rarely if ever regulate endogenous promoters without
the cooperativity provided by coregulatory partners.

V. DETAILED PROMOTER ANALYSES AND PR ISOFORMS
The majority of studies addressing transcriptional mechanisms of PR focus on the proximal
promoter (usually 5Kb or less from the 5′-UTR) of the regulated gene, cloned upstream of a
reporter, and transfected into cells that contain endogenous or transfected PR. Deletion and/
or mutation analysis of the targeted promoter mark PR functional sites, which are then
analyzed for presence of “consensus” PRE palindromes, and/or for DNA:PR protein
interactions. Often these analyses point to non-consensus PREs or PRE ½ sites, or to other
transcription factor binding sites. While these studies are informative, several caveats need
to be considered (Table 1): 1) Most studies use chimeric experimental models in which the
species of the promoter, the PR, and/or the transfected cells, are heterogenous. Since PRE
sequences and sequences for other transcription factors, PR amino acid composition, and
cellular factors, differ from species to species, the problems with data interpretation are
obvious. 2) Transiently transfected proximal promoters lack the complexity of higher order
chromatin structure, and generally lack important regulatory regions found in introns, the 3′
UTR, or thousands of Kb removed from the transcription start-site. All of these sites, distant
from proximal promoters, are involved in regulation by ER, AR and GR (Carroll et al, 2005;
John et al, 2011; Lin et al, 2009) and are likely to be involved in PR-dependent transcription
as well. 3) The origin of PR is important. Endogenous PR activate transcription driven by
the MMTV-LTR in the context of chromatin, while transiently expressed PR fail to do so
(Botos et al, 2004). 4) Many studies use the pGL3/luc vector for promoter construction. This
vector is studded with transcription factor binding sites including 46 GRE ½-sites, as well as
a palindromic GRE (Dougherty & Sanders, 2005) that would be expected to be PR
responsive irrespective of the promoter cloned therein (see below).

We outline below examples of genes believed to be PR-regulated in an isoform-specific
manner (Table 1). The mechanism(s) of PR isoform-specific gene regulation remain largely
a mystery, however. By expression profiling, some genes appear to be differentially
regulated by PRA and others by PRB. Since the two isoforms probably differ structurally
(Bain et al, 2000; Bain et al, 2001) mechanisms for these differences could include unequal
DNA sequence binding recognition or affinities, and disparate interactions with coregulatory
transcription factors. In silico analysis of putative PREs within promoters of genes uniquely
regulated by PRA vs. PRB do not differ substantially, however (Jacobsen and Horwitz,
unpublished).

a. Promoters regulated by both PR (or PRA versus PRB not examined)
Promoter regulation by PR invariably involves interactions with coregulators that differ
from gene to gene and sometimes species to species. Undoubtedly these differences are
responsible in part, not only for regulatory differences between the PR isoforms, but also

Jacobsen and Horwitz Page 10

Mol Cell Endocrinol. Author manuscript; available in PMC 2013 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between PR and the other steroid receptors that also require “PREs”, and between the same
genes in different species or cells.

Endogenous FK506 binding protein 5 (FKBP5) is regulated by liganded PR in T47D cells
(Hubler et al, 2003) through sequences contained within intron E (Hubler & Scammell,
2004). PRB are stronger transactivators than PRA (Richer et al, 2002). In mice, FKBP5
regulation requires concomitant binding of PR and GATA-2 also at an intronic sequence
(Magklara & Smith, 2009) but it is not known if the two proteins interact or if GATA-2 is
required for the human promoter. It is thought that PR bound to intronic DNA causes it to
loop back to interact with the proximal promoter.

The human BCL2-like1 (Bclxl) gene is more strongly regulated by PRA than by PRB in
T47D cells (Richer et al, 2002). The mouse Bclxl P4 promoter (one of multiple promoters in
mice) is also regulated by PR when transfected into T47D cells, but the isoform specificity,
if any, is unknown. However, the same promoter is PRB-regulated in HC11 mouse
mammary epithelial cells and in COS7 monkey kidney cells. It is postulated, but has not
been demonstrated that PR regulation of the mouse promoter involves 2 imperfect PREs that
resemble PRE ½ sites (Viegas et al, 2004) with GATA3 as a coregulator (Proietti et al,
2011).

In T47D cells, cyclin-dependent kinase inhibitor 1A (p21) is regulated by both PRA and
PRB (Richer et al, 2002), with coregulation by SP1 (Owen et al, 1998), STAT5a (Richer et
al, 1998) and STAT3 (Proietti et al, 2011). The v-myc myelocytomatosis viral oncogene
homolog (avian) (MYC) gene which is rapidly induced by P, contains an imperfect PRE in
its promoter that binds PRA and PRB (Moore et al, 1997). Interestingly, overexpression of
the breast cancer susceptibility BRCA1 protein blocks PR binding to this PRE and increases
corepressor recruitment, while knockdown of BRCA1 enhances coactivator recruitment
(Katiyar et al, 2009). The human NAD+-dependent 15-hydroxyprostaglandin dehydrogenase
(PGDH) promoter is regulated by P together with Ets, AP1 and TF. A 2.3 Kb promoter
fragment contains 6 PRE ½ sites. Both PR isoforms are functional but PRA regulation is
stronger than PRB (Greenland et al, 2000) unless PRB effects are enhanced by cAMP
signaling, in which case PRB effects exceed PRA (Greenland et al, 2000; Sartorius et al,
1994a). The ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS-1)
lacks a PRE but is nevertheless PRA and PRB-regulated. It is postulated that regulation
occurs through multiple tethering factors including CEBPβ, NF1- like factor, and 3 SP1 sites
(Doyle et al, 2004). PR also require SP1 to activate the human glycodelin promoter (Gao et
al, 2001) but SP1 does not work on the baboon glycodelin promoter (Jaffe et al, 2003).

b. Promoters regulated more strongly or only by PRB
There are many examples of genes and promoters more strongly regulated by PRB. The
breast cancer resistance protein (BCRP) promoter is P-induced by PRB but not PRA in
human placental choriocarcinoma cells (Wang et al, 2008), and PRA repress PRB when the
two are co-expressed implicating the heterodimer. The proximal 100 nt BCRP promoter
contains a “novel PRE” to which both PRA and PRB bind by mobility shift assay. This
suggests a dominant negative effect of PRA within the heterodimer as previously reported
(Mohamed et al, 1994). Similarly, the mucin 1, cell surface associated (MUC1) promoter is
stimulated by PRB in human uterine epithelial cells, which is antagonized by PRA
(Brayman et al, 2006). Two PRE ½ sites partially mediate this response, but interactions
with other transcription factors are also likely since mutation of the PRE ½ sites does not
completely abolish P effects. There is a STAT5 binding site in the promoter that is not
involved in regulation of MUC1 in HEC-1A endometrial cancer cells (Brayman et al, 2006).
Interestingly, PRA represses an ERα-mediated increase of MUC1.
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Tissue factor (F3) is strongly regulated by PRB in breast cancer cells (Richer et al, 2002)
and by total PR in HESC human endometrial stromal cells (Krikun et al, 2000) via 3 SP1
sites in the proximal promoter. Similarly, the mouse prostaglandin E2 receptor subtype EP2
promoter is more strongly activated by PRB than PRA through 3 regions that include a
novel PR binding sequence and two SP1 binding sites (Tsuchiya et al, 2003). The SWI/SNF-
related matrix-associated actin-dependent regulator of chromatin-3 (RUSH/SMARC3)
promoter is regulated by PRB in uterine epithelial cell lines through a PRE ½ site
immediately adjacent to a Y-box. PRB mediated regulation is conferred by a chromatin
looping mechanism similar to that observed for FKBP5 (Hewetson & Chilton, 2003). The
follicle stimulating hormone, beta polypeptide (FSHB) promoter is regulated by PRB
through 3 PRE-like sequences resembling ½-sites that bind PRA and PRB (O’Conner et al,
1997). PRB downregulate the gonadotropin releasing hormone (GnRH) promoter via non-
consensus PREs that also resemble a series of ½ sites (Kepa et al, 1996). PRA function was
not examined in the latter two studies.

There is significant crosstalk between prolactin (PRL) and P in the mouse mammary gland,
with many of the same genes regulated by both hormones, possibly coregulated by STAT5
(Fernandez-Valdivia et al, 2008; Goldhar et al, 2011; Hilton et al). In human breast cancer
cells both liganded and unliganded PRs upregulate PRL receptors (PRLR) (Jacobsen et al,
2002; Tseng & Zhu, 1998). The PRLR promoter lacks a consensus PRE but contains
multiple transcription factor binding sites including ones for CEBPβ, SP1 and AP1 (Hu et
al, 1998) all of which interact with PR (Goldhar et al, 2011). In normal mouse epithelial
cells, P regulate inhibitor of differentiation 4 (ID4) via PRB. Its promoter contains 8 putative
PRE ½ sites but ChIP studies show PR recruitment to only two of these. Upon PRL
treatment, STAT5a also binds this promoter at STAT5 responsive element (S5RE)
(Fernandez-Valdivia et al, 2008) and co-treatment with PRL and P bring both STAT5a and
PR to the promoter. The human hydroxysteroid (11-beta) dehydrogenase 2 (HSD11B2) gene
is more strongly regulated by PRB than PRA (Richer et al, 2002); an effect that again
involves STAT5a (Subtil-Rodriguez et al, 2008). Two mechanisms operate: 1) direct
binding of PR to the proximal HSD11B2 promoter; and 2) recruitment of PR to the distal
promoter via STAT5a. Indeed, STAT5a is an important coregulator of both PRA and PRB
activity on many genes. This can be shown by Janus Kinase inhibition, which prevents
STAT5 phosphorylation and in turn inhibits P-induction of genes including DUSP1, IL6st,
Jun, HMGB3 and STAT5a itself (Subtil-Rodriguez et al, 2008).

E74-like factor 5 (ets domain transcription factor) (ELF5), is regulated by recruitment of PR
to a binding site within the 4th intron. A putative second PR binding site has been identified
30Kb upstream of the transcription start-site (Hilton et al). Liganded PR downregulate
expression of ERα in breast cancer cells (Ghatge et al, 2005) via a PRE ½ site in the ERα
promoter (De Amicis et al, 2009). ERα downregulation appears to be PRB-specific.

c. Genes regulated more strongly or only by PRA
The β–casein promoter is induced by PRL and suppressed more strongly by PRA than PRB
(Buser et al, 2007). Two PRE ½ sites flank a STAT5a response element in the promoter and
P ligands recruit both PR and STAT5 to these sites. Although PRs bind both PRE ½ sites,
their affinity and function are stronger on the 5′-site. Both human and mouse PR were tested
in this model, with human PRA stronger inhibitors than mouse PR. The human insulin-like
growth factor binding protein 1 (IGFBP1) proximal promoter contains two PREs that are
more strongly upregulated by PRA than PRB in endometrial stromal cells. Co-expression of
PRB suppresses PRA (Gao et al, 2000). Interestingly, HOX proteins suppress (Gao et al,
2002) and Foxoa1 increase PR-dependent induction of IGFBP1 via either PR isoform (Kim
et al, 2005).
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Liganded PRA regulate the mouse multidrug resistance 1b (MDR1b) promoter (Piekarz et
al, 1993) in T47D cells. The P-responsive region is in the first untranslated exon of the gene,
which contains a partial PRE. However PR do not bind there; instead regulation by PR
involves CEBPβ and NF-Y (Mallick & Horwitz, 1997). Similarly, the fibronectin promoter,
which is regulated more strongly by PRA than PRB, lacks a PRE; instead PRA function via
AP1 and SP1 sites (Tseng et al, 2003). Liganded human PRA more strongly regulate the
chicken ovalbumin promoter than PRB in chicken embryonic fibroblasts (Kastner et al,
1990). Similarly, the rat tyrosine amino transferase (TAT) promoter is activated more
strongly by PRA than PRB in HeLa human cervicocarcinoma cells, but PRB are not
dominant negative inhibitors (Vegeto et al, 1993). However, PRs do not stimulate the TAT
promoter in monkey kidney CV-1 cells; and both PRs stimulate it equally well in human
hepatocellular carcinoma HepG2 cells. This emphasizes the importance of controlling the
tissue and species specificity of reagents in such studies.

d. PRA and PRB have opposite effects
Kruppel like factor-9 (KLF9) and PR interact to regulate MMTV, cyclin D1 and uteroferrin
expression. The uteroferrin promoter contains two PRE-like ½ sites (Lamian et al, 1993;
Zhang et al, 2003) at which KLF9 interacts with liganded PRB to superactivate
transcription. KLF9 does not modify PRA-dependent transcription, but it enhances
repressive effects of PRA without physically interacting with the receptors (Zhang et al,
2003). Both PRA and PRB activate the decidual prolactin (dPRL) promoter in human
endometrial stromal cells. The promoter lacks a palindromic PRE but contains a PRE ½ site
and a CEBPβ binding site. Both PR isoforms interact with the inhibitor (LIP) and activator
(LAP) isoforms of CEBPβ in vitro but only PRA activates dPRL transcription in vivo
(Christian et al, 2002). The catechol-O-methyltransferase (COMT) gene has two promoters;
one regulates the soluble form of the protein, the other regulates the plasma membrane form.
Transcription of COMT is upregulated by PRA and downregulated by PRB, mediated by 3
PRE ½ sites (Salama et al, 2007). In human choriocarcinoma placental cells, the human
gonadotropin releasing hormone receptor (GnRHR) gene is downregulated by PRA and
upregulated by PRB, which bind to a nonconsensus PRE (Cheng et al, 2001). Similarly,
corticotrophin-releasing hormone (CRH) promoter expression is decreased by PRA and
increased by PRB; in this case mediated by a cAMP regulatory element (Ni et al, 2004).

VI. SUMMARY
Progesterone is a key physiologic hormone of women and its receptors play a major role in
the diagnosis and treatment of breast cancers. Nevertheless its fundamental mechanisms of
action remain in doubt. The receptor proteins have not been purified, crystallographic
structural data are unavailable, virtually nothing is known about authentic DNA binding
sites on promoters of PR regulated genes, and very little about the true nature of PR
interactions with native chromatin. As we review here, in all likelihood, the classical view of
PR as dimeric transcription factors that bind a palindromic hormone response element is
likely to be either oversimplified or incorrect, given strong evidence that PR function as
monomers and that the promoters of PR responsive genes are studded with “half-site”
elements. Cumulative data point to cooperative interactions between PR monomers and
neighboring coregulatory proteins to bestow progestin specificity to transcriptional
responses. A great deal of work has focused on the two PR subunits. Expression profiling
data indicate that PRA and PRB regulate different gene subsets suggesting that the two
receptors subserve different functions. But, as we point out here, these conclusions are at
best preliminary because the models used to perform most studies are problematical. The
objective of this review is not meant to highlight these deficiencies and gaps in our
knowledge. Rather, we hope to inspire investigators to study these interesting and important
receptors using contemporary molecular tools.
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