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Abstract
Cell transplantation is a novel therapeutic strategy to restore visual responses to the degenerate
adult neural retina and represents an exciting area of regenerative neurotherapy. So far, it has been
shown that transplanted postmitotic photoreceptor precursors are able to functionally integrate into
the adult mouse neural retina. In this review, we discuss the differentiation of photoreceptor cells
from both adult and embryonic-derived stem cells and their potential for retinal cell
transplantation. We also discuss the strategies used to overcome barriers present in the degenerate
neural retina and improve retinal cell integration. Finally, we consider the future translation of
retinal cell therapy as a therapeutic strategy to treat retinal degeneration.
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Therapeutic strategies to restore the neural retina
Retinal degenerations, either inherited or age related, remain the largest cause of untreatable
blindness in the developed world. While encompassing a range of causes, most have in
common the loss of the sensory cells of the retina, the photoreceptors. Many therapeutic
strategies aim to slow down the progression of retinal disease, as once photoreceptors are
lost they will not regenerate. Stem cell therapy may have great therapeutic potential as a
treatment for degenerative retinal disease, by providing the opportunity to replace the lost
cells.

The most relevant clinical studies currently being conducted in patients with retinal
degeneration are fetal retinal sheet transplants. This transplantation strategy relies on the
immature retinal sheet extending cell processes and forming synaptic connections with the
degenerate host retina. The rationale behind this is that the inner retinal neurons of the host
remain intact and therefore only require synaptic connections with photoreceptors for visual
function to be restored. To date, studies investigating retinal sheet transplantation in patients
have shown some subjective visual improvement (Humayun et al., 2000; Berger et al., 2003;
Kaplan et al., 1997; Radtke et al., 1999). A recent clinical study of retinitis pigmentosa and
age-related macular degeneration patients who received fetal retinal sheet transplants (neural
retina and retinal pigment epithelium, RPE), reported improvements in vision for 7 out of 10
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patients, although the direct beneficial effects of the fetal retinal grafts are difficult to assess
as all patients also received intraocular lens implants. Importantly, no overt immunological
responses to the transplanted tissue were observed. However, the possibility of effector cell-
mediated immune responses against the retinal grafts were not examined, and graft rejection
cannot be completely discounted (Radtke et al., 2008).

Previous animal studies investigating retinal sheet transplantation have demonstrated
increased visual responses localized to the region of the host neural retina overlaying the
graft. Due to the lack of control animals with nonfunctional transplanted retinal sheets, it is
difficult to determine whether this is the result of increased synaptic connectivity between
the host and grafted retinal neurons, or a trophic response induced by the fetal retinal sheet
on the remaining host photoreceptors (Mohand-Said et al., 2000; Arai et al., 2004;
Liljekvist-Soltic et al., 2008; Seiler et al., 2005). In the former scenario, the intervening
inner retinal layer of the graft forms a barrier to photoreceptor connectivity between the host
inner retinal neurons and the graft photoreceptor layer. Therefore, synaptic connections
made are unlikely to represent the normal principal retinal circuit, which comprises a single
bipolar and ganglion cell, and may result in atypical visual responses (Fig. 1).

In summary, fetal retinal sheet transplants appear to offer limited potential for retinal repair
but are currently one of few therapeutic options for most progressive retinal degenerations.
Another therapeutic strategy currently under investigation is the transplantation of retinal
cell suspensions. In theory, cell transplantation has the potential to not only maintain the
diseased neural retina but also restore visual function and acuity. To date cell transplantation
to restore the neural retina is still being investigated in animal models of photoreceptor
degeneration, and clinical application is a distant prospect. However, the future therapeutic
application of cell transplantation to human retinas must be considered and experimental
strategies devised accordingly.

The brain and the neural retina are both derived from the neuroectoderm of the neural plate
during embryonic development (Chow and Lang, 2001). Given that immature neurons and
progenitor cells are intrinsically capable of migrating and differentiating during neural
development, numerous studies have investigated the integration of brain-derived neural
progenitors transplanted to the neural retina (Klassen et al., 2007b; Mellough et al., 2007;
Mizumoto et al., 2003; Sakaguchi et al., 2003; Takahashi et al., 1998). However, cell
transplantation to the adult retina has demonstrated limited cell integration of neural
progenitor cells (Sakaguchi et al., 2005; Young et al., 2000). This was assumed to be due to
the inhibitory environment present in the adult neural retina. Therefore, further studies have
investigated the transplantation of neural precursor cells to the developing postnatal retina.

Promising results were observed after cell transplantation to the developing retina, and it
was suggested that the age of the host tissue had a key role in determining the fate of
transplanted precursor cells (Sakaguchi et al., 2003, 2004; Van Hoffelen et al., 2003;
Chacko et al., 2000). Studies demonstrated well-integrated transplanted cells in all layers of
the host retina. These cells exhibited retinal morphology for various cell types with
extensive dendritic processes present in the plexiform layers, and all cells respecting the
retinal architecture (Young et al., 2000; Takahashi et al., 1998). However, the integrated
cells did not express any mature retinal cell markers, suggesting that their morphology was
related to the retinal microenvironment in which they differentiated, rather than intrinsic
signals (Marquardt and Gruss, 2002; Takahashi et al., 1998). Further studies using tissue-
restricted reporter genes to demonstrate retinal cell fate determination also observed that
integrated cells did not exhibit intrinsic features of mature retinal neurons (Sam et al., 2006).
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The inability of neural progenitor cells to differentiate into photoreceptors, when
transplanted into the developing eye, suggests the lineage restriction of these cells to brain-
related cell types (Klassen et al., 2004a). Therefore, a more appropriate cell source for
transplantation studies to the retina might be neural retinal progenitor cells. These cells
develop in the retinal microenvironment and may therefore have fewer inhibitory intrinsic
signals enabling retinal-specific cell differentiation, compared with neural brain-derived
progenitor cells. Retinal progenitors isolated from embryonic retinas have been transplanted
into young (P17) dystrophic S334ter rats. The integration of these cells was observed in the
form of neurite extensions into the host retina (Qiu et al., 2005). Similar to studies using
brain-derived neural progenitor cells, limited integration of retinal progenitor cells was
observed after transplantation to adult retinas. Greater neurite extensions were observed
following transplantation to young or developing postnatal retinas. However, the use of
degenerate models with no remaining outer nuclear layer (ONL) makes it difficult to
determine the extent of cell integration and mature retinal cell morphology of transplanted
photoreceptors.

It was therefore assumed that the adult retina constituted an environment that inhibited
retinal progenitor cell integration and differentiation possibly due to a lack of extrinsic cues
that are present during development. However, recent studies have demonstrated
morphological integration of early postnatal retinal precursor cells into the normal adult
retina (MacLaren et al., 2006; Bartsch et al., 2008). The study by MacLaren et al. (2006)
demonstrated that the integration of fully differentiated and functional photoreceptors can be
achieved after transplantation into the adult retina, but only if the donor cells are postmitotic
photoreceptor precursors. This was a surprising finding as it had been assumed that
multipotent progenitor cells would be the best source of donor cells. Instead, these results
suggest that the intrinsic nature of transplanted cells, rather than the extrinsic environment,
is of greater importance for cell integration (Fig. 2). Unlike integrated neural progenitor
cells, as well as mature photoreceptor morphology, the integrated photoreceptor precursor
cells also demonstrated correctly localized mature retinal markers, such as rhodopsin (Rho)
and peripherin-2 in the outer segments, and ribbon synapse proteins in the integrated
spherules. They also demonstrated functional synaptic connectivity by increased light-
induced pupil constriction following subretinal transplantation of functional compared with
nonfunctional precursor cells, when transplanted into the rho−/− mouse (MacLaren et al.,
2006). These results show that the ontogenetic stage of transplanted cells is crucial for the
successful integration of retinal cells into the adult host ONL.

Cell sources for retinal transplantation
One fundamental problem for the application of photoreceptor cell transplantation for
human retinal disease is that an appropriate source of the precursor cells is required.
Postmitotic photoreceptor precursor cells can be derived from the P1-5 postnatal mouse
retina. However, equivalent human retinal cells would have to be derived from second-
trimester fetuses. Ethical considerations aside, such tissue is in very limited supply and may
not provide a consistent source of cells for retinal cell transplantation. An expandable source
of cells that could be cultured in vitro to the correct ontogenetic stage for transplantation
may, therefore, be a more appropriate and reproducible source of photoreceptor precursor
cells. Several potential such sources are discussed in the following text, including adult
retinal stem-like (RS) cells, Müller stem-like (MS) cells, and embryonic stem (ES) cells.

Lower vertebrates such as fish and amphibians retain greater regenerative abilities than
mammals. With regard to the eye, they continuously add new retinal neurons to the adult
retina as they grow (Straznicky and Gaze, 1971; Johns, 1977; Johns and Easter, 1977).
These new cells are added at the peripheral edge, at the ciliary margin zone (CMZ), in a

West et al. Page 3

Prog Brain Res. Author manuscript; available in PMC 2012 February 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



manner that is thought to recapitulate embryonic retinal cell development (Harris and
Perron, 1998). A similar zone of proliferating cells has been found in the chick that
contributes to the postnatal growth of the retina (Fischer and Reh, 2000). However, the
presence of a CMZ in the retina of the mouse has not been detected (Kubota et al., 2002). It
has been speculated that the existence of a population of adult stem-like cells isolated from
the ciliary body of the retina in mammals is the evolutionary equivalent of cells from the
CMZ (Tropepe et al., 2000).

A population of quiescent cells from the ciliary body of the mammalian retina were
discovered to proliferate in vitro, express immature retinal markers, and upon differentiation
express markers of mature retinal cell types (Tropepe et al., 2000; Ahmad et al., 2000).
These adult-derived RS cells can be grown as neurospheres with epidermal growth factor
(EGF) and fibroblast growth factor-2 (FGF2) and differentiated by culture on substrate-
coated plates in a growth factor–free serum-containing medium, similar to adult neural stem
(NS) cells (MacNeil et al., 2007; Ahmad et al., 2000). The addition of Wnt3a and FGF2 to
adult RS cell neurosphere cultures has been shown to have an additive effect on cell
proliferation, resulting in greater numbers of secondary neurospheres (Inoue et al., 2006).
RS cell neurospheres have been derived from the iris, ciliary body, and pars plana, but not
the anterior neural retina (Gu et al., 2007; Haruta et al., 2001; MacNeil et al., 2007). Further
to the studies in rodent and porcine eyes, RS cells have also been isolated from adult human
retinal tissue and shown to form neurospheres in vitro (Carter et al., 2007; Mayer et al.,
2005).

Differentiated neurosphere cultures give rise to both neuronal and glial cell types, suggesting
multipotentiality. However, the expression of a small number of mature retinal markers may
not indicate completely differentiated and functionally mature retinal cell types (MacNeil et
al., 2007; Kokkinopoulos et al., 2008). Several studies have investigated the induction of
mature retinal phenotypes in RS cell cultures from both the adult ciliary body and iris by
retroviral transduction of photoreceptor relevant transcription factors. The expression of Crx
or Otx2 in both cell types demonstrated the directed differentiation of cells positive for Rho,
recoverin, and transducin protein expression (Akagi et al., 2004). In contrast, transduced
mesencephalon-derived NS cells displayed little Rho immunoreactivity, suggesting that NS
cells require greater manipulation to differentiate toward retinal cell lineages (Akagi et al.,
2004; Haruta et al., 2001). In further studies, primate iris-derived cells were induced to
differentiate into Rho-positive cells after transduction with a combination of both Crx and
NeuroD retroviral vectors. Both rat and primate differentiated cells were shown to
hyperpolarize after light stimulation, suggesting the generation of functional photoreceptor
cell types (Akagi et al., 2005). Similar to this study, genetically modified mouse RS cells
electroporated to express Crx have also been shown to induce differentiated cells that exhibit
some functional properties of mature retinal photoreceptors (Jomary and Jones, 2008). This
was in contrast to RS cells electroporated with a control plasmid, which differentiated to
express mature photoreceptor cell markers but did not demonstrate light-sensitive properties
(Jomary and Jones, 2008). These studies suggest that RS cells could be induced to
differentiate into light-sensitive rod photoreceptor phenotypes; however, the expression of
mature retinal markers by differentiated cells does not necessarily equate to functional
photoreceptors (Bradford et al., 2005). Therefore, extensive in vitro characterization of
differentiated cells is required prior to retinal cell transplantation. The potential of these cells
to function in vivo and improve visual responses following transplantation into the
degenerate neural retina has yet to be established (Akagi et al., 2005). RS cells isolated from
the ciliary body or iris tissue have, to date, shown limited potential for cell integration after
transplantation into adult wild-type or degenerate retinas (Akagi et al., 2003; Chacko et al.,
2000; Klassen et al., 2007a; Canola et al., 2007). This is most likely due to reduced numbers
of RS cell-derived photoreceptor precursors at the correct ontogenetic stage (MacLaren et
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al., 2006). Further investigation of homogeneous populations of transplanted cells at
characterized stages of differentiation may enable RS cell-derived transplants to integrate
with the host retina (Canola and Arsenijevic, 2007; Akagi et al., 2003).

To confirm that cultured cells can integrate into the neural retina, the transplantation of
cultured retinal progenitor cells isolated from the embryonic retina has been investigated by
a number of groups. The majority of studies have demonstrated the differentiation of
transplanted progenitor cells into mature retinal phenotypes in the subretinal space.
However, little integration into the host retina was observed following the subretinal
transplantation of these cells (Akagi et al., 2003; Chacko et al., 2000). Other studies have
observed very little differentiation and mature retinal cell marker expression, and concluded
that progenitor cells required further differentiation in vitro prior to cell transplantation
(Yang et al., 2002). Klassen et al. have examined the integration of cultured P1 retinal cells
in the rho−/− mouse and demonstrated gfp (green fluorescent protein)-positive transplanted
cells within the host neural retina. These integrated cells expressed mature retinal
photoreceptor markers but lacked mature retinal cell morphology (Klassen et al., 2004b). A
possible explanation for the differences observed in vivo following cultured retinal
progenitor cell transplantation is the different culture conditions used. However, these
investigations suggest that the culturing of cells in vitro prior to transplantation does not
inhibit their migratory potential.

There has been some debate as to whether RS cells constitute a neural adult stem cell
population like those found in the subventricular and subgranular zones of the brain, or
whether these cells have limited self-renewal suggesting a progenitor-like phenotype (Xu et
al., 2007; Inoue et al., 2005; Liu et al., 2005; Engelhardt et al., 2004; Kokkinopoulos et al.,
2008; ). A growing number of investigations have found that RS cells can only be sustained
in vitro for a limited period (Liu et al., 2005; Inoue et al., 2005; MacNeil et al., 2007). Due
to the difficulty of propagating retinal cells individually, it is impossible to perform
clonogenic analysis to establish if these cells divide asymmetrically. A study comparing the
growth characteristics of adult rat-derived RS cells with those of NS cells demonstrated a
lack of cell proliferation and self-renewal after 8 weeks in vitro for the former, while NS
cells continued to proliferate in neurosphere cultures (Liu et al., 2005). It therefore remains
to be determined whether RS cells can be sufficiently expanded in vitro for therapeutic
purposes.

In the brain, the radial glial cells of the adult hippocampus proliferate and differentiate into
neurons throughout life (Seri et al., 2001, 2004). A similar phenomenon has been observed
in the adult neural retina of fish, with the generation of new neurons from the equivalent
glial cell type in the retina, the Müller cells (Raymond et al., 2006; Bernardos et al., 2007).
Several studies have demonstrated that Müller cells from the adult mammalian central retina
also have some stem-like characteristics in vitro. This includes the formation of
neurospheres and the expression of NS cell markers such as Sox2, Pax6, and Chx10
(Lawrence et al., 2007; Das et al., 2006a; Nickerson et al., 2008). A spontaneously
immortalized cell line of MS cells has been established from human retinal tissue, and their
expansion did not appear to be limited like that of RS cells (Limb et al., 2002). Following
differentiation, MS cells have been shown to express mature retinal cell markers, including
peripherin, recoverin, and S-opsin (Lawrence et al., 2007; Das et al., 2006b). Of note, recent
investigations in the Chx10orJ/orJ mouse have demonstrated a population of cells present in
the central neural retina that exhibit properties similar to those of ciliary epithelium-derived
RS cells (Dhomen et al., 2006; Kokkinopoulos et al., 2008). As the mutation of Chx10
results in reduced retinal progenitor cell proliferation and microphthalmia, it has been
suggested that these cells represent a dormant progenitor cell population that is maintained
in the mutant central neural retina but not in wild-type retinas (Dhomen et al., 2006). When
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cultured in vitro, these cells express glial cell markers and may represent a similar Müller
progenitor cell population. Similar to the differentiation of RS cells into mature retinal cell
types, differentiated cells derived from MS cell cultures have yet to be functionally
characterized to confirm that they represent fully differentiated retinal neurons.

So far, cultured MS cells have shown limited integration into host retinas following
transplantation, similar to RS cells (Singhal et al., 2008; Lawrence et al., 2007; Bull et al.,
2008). Increased integration was observed in degenerate retinas following chondroitinase
ABC treatment at the time of cell transplantation, suggesting that chondroitin sulfate
proteoglycans (CSPGs) form a significant barrier to cell migration and integration (Singhal
et al., 2008). MS cell migration was enhanced further by substantial immune suppression,
demonstrating a combinational effect (Singhal et al., 2008). As microglia can be activated
by CSPGs and their breakdown products have been shown to exert anti-inflammatory
effects, it is likely that an innate immune response against the transplanted MS cells is at
least partially inhibiting successful cell integration (Jones and Tuszynski, 2002; Jones et al.,
2002; Rolls et al., 2006). Further characterization of the developmental stage of the
transplanted population may enable the functional integration of photoreceptor cells derived
from this source. However, immune suppression would be required for the long-term
integration of human-derived MS cells in models of retinal degeneration.

In contrast to adult-derived RS cells, which exhibit limited self-renewal, ES cells isolated
from the inner cell mass of the blastocyst can be grown in culture for indefinite periods of
time, after which they can be induced to differentiate into cell lineages of all three germ
layers (Evans and Kaufman, 1981; Martin, 1981; Thomson et al., 1995, 1998; Suemori et al.,
2001; Pera et al., 2000; Reubinoff et al., 2000). Therefore, established ES cell lines could
provide an expandable source from which to derive photoreceptor precursor cells for retinal
transplantation. Of concern for future clinical application is the culturing of ES cells with
animal-derived reagents such as animal serum and animal-derived feeder layers, or by the
use of animal cell culture conditioned medium. This is because the approval of therapeutic
agents for use in humans requires them to be free of pathogens and animal contamination.
Several studies have successfully cultured human ES cells in serum-free conditions and
without feeder layers (Amit et al., 2004; Xu et al., 2001). A human ES cell line was recently
established without the use of animal contaminated reagents, demonstrating that this should
not be an issue for future clinical therapies (Ludwig et al., 2006a, b).

The differentiation of ES cells into neural progenitors that can produce the three main neural
cell lineages of neurons, astrocytes, and oligodendrocytes has been well established
(Joannides et al., 2007). Further to this, human ES cells have been shown to differentiate
into various types of neurons, including dopaminergic neurons and oligodendrocytes (Yan et
al., 2005; Perrier et al., 2004; Zhang et al., 2001; Nistor et al., 2005). Transplantation studies
involving these differentiated cell types have demonstrated the potential of ES cells to
produce differentiated neural cell populations that can be used for cell transplantation
strategies (Nistor et al., 2005; Keirstead et al., 2005; Rodriguez-Gomez et al., 2007). The
differentiation of ES cells into retinal cell lineages has not achieved the same progress as
that seen for other neural cell types of the brain. However, recent advances in cell culture
techniques have demonstrated the possibility of producing mature retinal cells from mouse,
primate, and human ES cells (Osakada et al., 2008; Lamba et al., 2006). Previous studies
have shown the differentiation of mouse ES cell-derived neural progenitors into
photoreceptor-like cells after coculture with P1 or E6 retinal tissue. The differentiation of
retinal cells was determined by immunohistochemistry and RT-PCR for photoreceptor-
specific markers, including Crx, Nrl, Rho kinase, arrestin, and interphotoreceptor retinoid-
binding protein (Zhao et al., 2002; Sugie et al., 2005). Despite the apparent generation of
mature retinal phenotypes, the specific factors required to promote the differentiation of
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these cells were not established. Further studies using more defined culture conditions
demonstrated the differentiation of mouse and human ES cells into immature retinal cells.
However, coculture with retinal explants or cell suspensions was still required for the
expression of mature photoreceptor markers such as recoverin (Ikeda et al., 2005; Lamba et
al., 2006). Recently, Osakada et al. demonstrated the generation of mature rod and cone
photoreceptors from ES cells, with the use of defined culture conditions. They found
17.2±1.8% and 8.5±2.9% of cells were Rho and recoverin positive, respectively, after the
stepwise differentiation of mouse and human ES cells (Osakada et al., 2008). Despite the
demonstration of gene expression for phototransduction components in these cells, further
evidence of their function is still required. It will be of great interest to determine whether
these cells, if differentiated to the correct ontogenetic stage, could functionally integrate into
the adult neural retina.

Optimization of transplanted cell integration
Retinal disease has many different genetic and environmental causes, which result in a wide
range of pathological conditions. A consistent outcome of these disorders is the degeneration
and eventual loss of photoreceptors from the ONL. In order to replace these lost cells,
transplanted photoreceptor precursors are required to migrate and integrate into the
degenerated ONL. While the number of integrated photoreceptor precursor cells
demonstrated in the adult neural retina is sufficient to restore the pupillary light reflex, only
a relatively small number of transplanted cells integrate. Greater numbers of integrated cells
would be required in order to improve visual acuity in degenerate models. As photoreceptor
precursor cells are intrinsically capable of migrating and differentiating into the adult neural
retina, it follows that other barriers must be present that limit extensive cell integration
(MacLaren et al., 2006). The ability of transplanted cells to integrate within the host
opossum retina has been shown to decline with host maturation (Sakaguchi et al., 2003,
2004). This coincides with the maturation of glial elements, such as Müller cells, which
form anatomical barriers within the host retina, including the outer limiting membrane
(OLM).

The OLM has been shown to be a significant physical barrier to the migration and
integration of photoreceptor precursor cells into the adult host ONL. OLM disruption, by the
administration of the glial toxin alpha-aminoadipic acid (AAA), at the time of cell
transplantation was shown to correspond with increased photoreceptor precursor cell
integration (West et al., 2008). In mice with retinal dystrophy caused by defects in Crumbs
homologue-1 (Crb1), a protein associated with adherens junction formation and
stabilization, increased photoreceptor precursor cell integration has also been observed
(Pearson et al., manuscript in preparation). However, OLM disruption has not been observed
after retinal degeneration caused by other gene defects (Gouras and Tanabe, 2003; Sanyal
and Hawkins, 1989). This suggests that the OLM would remain a significant barrier to
transplanted photoreceptor cell integration in the majority of retinal degenerations (Fig. 3).
The pharmacological induction of OLM disruption by AAA would not be suitable in
degenerate retinas due to toxic effects on the supportive Müller glia (Pedersen and Karlsen,
1979; Ishikawa and Mine, 1983; Rich et al., 1995). An alternative method to induce
transient OLM disruption is the use of small interfering ribonucleic acid (siRNA) to promote
transcriptional gene silencing of relevant OLM-related proteins. Further investigation in
degenerate models is required to establish the effect of OLM disruption on photoreceptor
precursor cell integration in degenerate retinas.

A crucial difference between normal and degenerate retinas that may limit photoreceptor
precursor cell integration is the presence of Müller cell activation in the latter. Following
injury or degeneration of the neural retina, a process known as reactive gliosis occurs. This
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can vary in severity depending on the initiating insult and is indicated by the expression of
glial fibrillary acidic protein (GFAP) by Müller cell processes (Lewis and Fisher, 2003). In
contrast, in uninjured retinas, GFAP is only expressed by astrocytes present at the inner edge
of the neural retina. In addition to the upregulation of GFAP and vimentin by Müller cells
during reactive gliosis, Müller cell processes have also been shown to form glial barriers
along the outer edge of the retina after retinal detachment (Fisher et al., 2005; Lewis and
Fisher, 2000, 2003). This glial scarring constitutes a barrier to integrating transplanted cells
and is a characteristic of many late-stage retinal disease models (Zhang et al., 2004; Ekstrom
et al., 1988; Sheedlo et al., 1995; Iandiev et al., 2006; Fan et al., 1996;).

Similar barriers to cell transplantation, such as the OLM and glial scarring, have been
reported to limit the “integration” of retinal sheets with the host retina, as neurite extension
does not occur in these regions (Zhang et al., 2003, 2004). Further to this, activated Müller
cells and microglia are thought to produce increased extracellular matrix (ECM) components
such as CSPGs, which have been shown to limit axon extension in the brain (Fawcett and
Asher, 1999). Several studies have investigated the use of enzymes, such as chondroitinase
ABC, neuraminidase X, and matrix metalloproteinase-2 (MMP-2), to break down these
extracellular barriers in combination with cell transplantation and demonstrated encouraging
results (Singhal et al., 2008; Suzuki et al., 2006, 2007; Zhang et al., 2007). It therefore
seems that the investigation of techniques to reduce reactive gliosis and the subsequent glial
scarring and ECM deposition will be important for successful photoreceptor precursor cell
integration in late-stage retinal degeneration (Fig. 3).

One common feature of all retinal degenerations is cell death and the subsequent activation
of the resident macrophage population, the microglia (Hughes et al., 2003; Hose et al., 2005;
Zhang et al., 2005; Roque et al., 1996). This has also been demonstrated for injury-induced
models of retinal degeneration (Harada et al., 2002). In our own investigations, we have
noted that increased macrophage presence shortly after cell transplantation resulted in fewer
integrated photoreceptors (unpublished results). It is not clear whether macrophages prevent
precursor cell integration or cause the destruction of the integrated photoreceptors. However,
the difference in inflammatory status between normal and degenerate retinas may be the
cause of reduced photoreceptor cell integration observed in the latter. A recent study
demonstrated increased numbers of sialoadhesin-expressing macrophages present in rd1 and
rds mouse models following precursor cell transplantation, and suggested that this may
affect the survival of transplanted cells (Sancho-Pelluz et al., 2008). Previous studies have
detected the presence of sialoadhesin-positive macrophages in untreated rds mice and a
model of experimental autoimmune uveoretinitis (Jiang et al., 1999, 2006; Hughes et al.,
2003). Sialoadhesin expression has been shown to contribute to the inflammatory response
by promoting T cell and macrophage adhesion (Crocker et al., 1995; Jiang et al., 1999,
2006). Therefore, the increased inflammatory status of degenerate retinas may prompt the
early rejection of transplanted cells, and initial innate immune suppression may be required
to successfully transplant cells in these models of retinal degeneration (Fig. 3).

Immune rejection is a major problem in many transplantation paradigms. However, the brain
and the eye are frequently described as immune-privileged sites, defined as sites that allow
foreign grafts to survive for extended to indefinite periods of time. The eye contains several
immune-privileged sites, namely, the anterior chamber, vitreous cavity, and subretinal space.
Streilein et al. (2002) have performed extensive experiments examining the survival of
neonatal retinal allografts in the eye. In combination with the eye maintaining an immune-
privileged site, neonatal retinal tissue itself has been shown to be partially immune
privileged when placed beneath the kidney capsule, a non-immune-privileged site. This is in
contrast to skin grafts, a non-immune-privileged tissue type, which have been shown to be
rejected by 12 days, and fully immune-privileged tissues, including the cornea and the RPE,
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which survived for indefinite periods of time (Ng et al., 2002; Hori et al., 2000; Wenkel and
Streilein, 2000).

Of greatest relevance to photoreceptor precursor cell transplantation is that the subretinal
space has been shown to elicit immune deviation after cell-associated or soluble antigen
administration. The immune deviation of eye-derived antigens is a form of immune
tolerance, a state of specific immunological unresponsiveness, mediated by antigen-specific
T regulatory cells, also referred to as suppressor T cells (Streilein and Niederkorn, 1985;
Wilbanks and Streilein, 1990). These cells are produced in the spleen and suppress delayed-
type hypersensitivity immune reactions to alloantigens present in the eye. However, the
immune deviation of alloantigens present in the subretinal space is lost if RPE cell viability
is compromised or the outer blood-retinal barrier is disrupted (Wenkel and Streilein, 1998).
Transplantation of neonatal retinal allografts to the subretinal space and vitreous cavity have
been shown to induce immune deviation by 12 days, whereas transplantation to the
subconjunctival space promoted antigen-specific delayed hypersensitivity (Jiang et al.,
1993). However, neonatal retinal allografts eventually deteriorate in both the anterior
chamber and the subretinal space by 35 days (5 weeks) post implantation. This appears to
coincide with the loss of immune deviation and the onset of donor-specific delayed
hypersensitivity (Jiang et al., 1995; Streilein et al., 2002).

The eye therefore represents a partially immune-privileged site and appears to eventually
reject allogeneic cells transplanted to the subretinal space. This may be of concern for long-
term retinal repair by cell transplantation. It remains to be seen whether a homogenous
population of cultured photoreceptor precursor cells would elicit immune rejection
following transplantation to the neural retina. Cultured neural progenitors have been shown
to be less immunogeneic compared with freshly dissociated neural progenitors, the most
likely explanation for this is the lack of donor-derived microglia in the cultured cell
population (Hori et al., 2003; Ma and Streilein, 1998). Further investigation of cultured
retinal progenitor cells transplanted to the subretinal space is required to establish the
relevant issues of immune rejection for photoreceptor precursor cell transplantation.

Future considerations for retinal cell therapy
Studies have shown that precursor cells at the correct ontogenetic stage can migrate and
integrate into the adult host ONL and form functional synaptic connections (MacLaren et al.,
2006). Several studies have since demonstrated mature photoreceptor morphology of
integrated precursor cells in adult retinas (MacLaren et al., 2006; West et al., 2008; Bartsch
et al., 2008). Recent studies of ES cells have established defined culture conditions to
differentiate ES cells into photoreceptors (Osakada et al., 2008). Despite the recent advances
in the production of ES cell-derived retinal cells, these may not translate into successful cell
transplantation strategies, namely, due to the foreign nature of these cells with regard to the
host immune system. Classic immunosuppressive drug therapy could be used, or
alternatively, a human ES cell bank of cell lines characterized by human leukocyte antigens
(HLA) could be created to provide closely matched differentiated cells (Taylor et al., 2005).
Several studies have investigated novel ways to promote prolonged immunological tolerance
to transplanted alloantigens in the eye, such as the transplantation of retinal progenitors
combined with immature dendritic cells or alpha-melanocyte-stimulating hormone–induced
T regulatory cells to develop or transfer immune tolerance, respectively, against the
alloantigens present. Such strategies appear to lead to enhanced transplanted cell survival
(Ng et al., 2007; Oishi et al., 2007). It may therefore be possible to exploit the eye’s natural
immune deviation response to enable prolonged transplanted cell survival.
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Barriers to photoreceptor precursor cell transplantation, such as the OLM and glial scarring,
would still be present in the adult human retina. Intriguingly, however, cystoid macular
edema (CME) is a condition seen in the end stages of many diseases of the outer retina, such
as retinitis pigmentosa and diabetic maculopathy; microscopic examination of pathological
specimens have shown that CME represents an intracytoplasmic swelling (edema) of Müller
cells in the foveal region (Yanoff et al., 1984) which is similar to the effects of AAA
described in previous studies (West et al., 2008; Ishikawa and Mine, 1983; Pedersen and
Karlsen, 1979). Therefore, the diseased human fovea may have reduced OLM integrity and,
as a result, constitute a particularly favorable site for future retinal cell transplantation
strategies. This would be especially important if cone photoreceptor precursor cells are also
able to integrate into the adult ONL, as observed for rod photoreceptor precursors
(MacLaren et al., 2006). Other conditions that might be particularly suitable for cell
replacement strategies include inherited retinal degenerations due to defects in Crb1, which
have also been shown to result in reduced OLM integrity (Mehalow et al., 2003; van de
Pavert et al., 2007).

A recent advance in stem cell biology has been the reprogramming of adult human
fibroblasts by retroviral transduction to generate induced pluripotent stem (iPS) cells. Three
independent studies used various combinations of four transcription factors, known to be
required for pluripotency in ES cells (Friel et al., 2005), to induce adult cells to acquire
pluripotent characteristics (Takahashi et al., 2007; Yu et al., 2007; Park et al., 2008).
However, the use of retroviral transduction of transcription factors results in multiple
random insertions of the transgene, which can also lead to oncogenesis in certain
circumstances (Cattoglio et al., 2007). At present, very small numbers of human ES cell-like
iPS cell colonies are produced (around 1 in 1000 cells). Therefore, further investigation of
this cell population is required to improve the efficiency of the methods used and establish
virus-free protocols of induction that would be less oncogeneic and have greater viability for
therapeutic applications (Nakagawa et al., 2008; Kim et al., 2008; Okita et al., 2007). It will,
however, be of significant interest to determine whether the current differentiation protocols
for human ES cell-derived retinal cells also work for human iPS cells.

For retinal dystrophies caused by photoreceptor-specific gene mutations, autologous adult-
derived cells do not initially appear to be the best source of new retinal neurons, as the
genetic mutation will remain. However, by ex vivo gene therapy, they have the potential to
replace and restore visual function in degenerate retinas. Future treatment for retinal
degeneration due to photoreceptor cell loss may require a combination of gene and cell
therapeutic strategies (Bainbridge et al., 2008; Maguire et al., 2008). An alternative to this is
the use of allogeneic, but closely matched, adult donor cells from which photoreceptor
precursor cells for transplantation can be generated. Similar to conventional organ
transplantation, these cells could be derived from a close family member or HLA-matched
donor tissue to reduce the possibility of transplanted cell rejection. However, for some
retinal dystrophies that progress slowly, the integration of recently derived autologous
photoreceptors may limit further degeneration, especially in diseases such as retinitis
pigmentosa where the loss of peripheral rod photoreceptors leads to the secondary loss of
cone photoreceptors vital for central vision. Therefore, the successful rescue of retinal
degeneration via cell therapy is most likely to involve a combination of different strategies
and methodologies, depending on the pathology of the retinal disease being treated.

In summary, the restoration of visual responses by photoreceptor precursor cell
transplantation to the human retina remains a promising strategy for retinal repair. Many
studies have demonstrated both the potential structural barriers to precursor cell
transplantation present in the adult and degenerate retina, as well as the need for autologous
cell transplantation to promote long-term survival of transplanted cells. Strategies to
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modulate these factors have highlighted some important considerations for future
transplantation studies. The transplantation of photoreceptor precursor cells derived from the
recently discovered iPS cells will be of great interest for future regenerative strategies of the
neural retina. Since this review was written several papers of related interest have been
published, these include Cicero et al. (2009) and Hirami et al. (2009).
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MS cell Müller stem-like cell

NS cell neural stem cell
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Fig. 1.
The mammalian retina. (a) A schematic diagram illustrating the layers of the mammalian
retina (green rod and purple cone photoreceptors; red Müller cells and RPE; blue nuclei). (b)
A schematic diagram illustrating the position of the various cell types present in the adult
neural retina. These cells are subdivided into (i) the principal retinal circuit, (ii) the
association neurons, and (iii) the neuroglia. (c) A sagittal retinal section from an Nrl.gfp
(green; rod photoreceptors) mouse. Scale bar, 200 μm. (d) A single fluorescence image of
an adult Nrl.gfp retinal section stained for CRALBP (red), a protein present in Müller cells
and the RPE. Scale bar, 40 μm. (e) A single fluorescence image of a degenerating retinal
section stained for CRALBP (red), demonstrating the disorganization and loss of
photoreceptor cells (Nrl.gfp; green). Scale bar, 40 μm. Nuclei were counterstained with
Hoechst 33342 (blue). CB, ciliary body; ON, optic nerve; ILM, inner limiting membrane;
GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner nuclear layer; OPL, outer
plexiform layer; ONL, outer nuclear layer; OLM, outer limiting membrane; RPE, retinal
pigment epithelium. (See Color Plate 1.1 in color plate section.)
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Fig. 2.
Photoreceptor precursor cell transplantation into the adult eye. (a) A schematic diagram of a
mouse eye illustrating the subretinal transplantation of Nrl.gfp precursor cells (green) and
the resulting cell mass (inserts). (b) A confocal image of integrated Nrl.gfp rod
photoreceptors, 21 days after transplantation to an adult recipient. (c) A Nomarski confocal
image of integrated Nrl.gfp rod photoreceptors. (d) A schematic representation of the
structure of a rod photoreceptor. Nuclei were counterstained with Hoechst 33342 (blue).
Scale bars, 20 μm. INL, inner nuclear layer; ONL, outer nuclear layer. (See Color Plate 1.2
in color plate section.)
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Fig. 3.
A summary of retinal cell transplantation strategies. A diagram to summarize the various
retinal cell transplantation strategies and the related barriers that may limit transplanted
photoreceptor cell integration in the adult and degenerate neural retina, as discussed in the
main text. The donor cell population (top; green) can be derived from a variety of cell
sources, but must be differentiated to the correct ontogenetic stage (postmitotic rod
precursors, Nrl.gfp; green) prior to transplantation to enable photoreceptor cell integration
into the host adult retina (MacLaren et al., 2006). The recipient retinal microenvironment
(middle; blue) may also limit photoreceptor cell integration if the relevant barriers are not
modulated at the time of transplantation. Scale bar, 50 μm. The relevant barriers to retinal
cell transplantation and integration (right; red) are indicated. The outer limiting membrane
(indicated by the red or black arrow head) forms a barrier to increased cell integration in the
adult retina and in some models of retinal degeneration. Scale bars, 10 μm and 5 μm. Other
barriers, present predominantly in the degenerate retina, include retinal cell death and the
resulting activated microglia/macrophages and reactive gliosis/glial scarring. Scale bars, 50,
100, and 20 μm, respectively. Nuclei were counterstained with Hoechst 33342 (blue). ES
cells, embryonic stem cells; GS, glutamine synthetase; MS cells, Müller stem-like cells; RS
cells, retinal stem-like cells; ZO-1, zonula occludens-1. (See Color Plate 1.3 in color plate
section.)
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