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Summary
1. Anthrax is endemic throughout Africa, causing considerable livestock and wildlife losses

and severe, sometimes fatal, infection in humans. Predicting the risk of infection is
therefore important for public health, wildlife conservation and livestock economies.
However, because of the intermittent and variable nature of anthrax outbreaks, associated
environmental and climatic conditions, and diversity of species affected, the ecology of
this multihost pathogen is poorly understood.

2. We explored records of anthrax from the Serengeti ecosystem in north-west Tanzania
where the disease has been documented in humans, domestic animals and a range of
wildlife. Using spatial and temporal case-detection and seroprevalence data from wild
and domestic animals, we investigated spatial, environmental, climatic and species-
specific associations in exposure and disease.

3. Anthrax was detected annually in numerous species, but large outbreaks were spatially
localized, mostly affecting a few focal herbivores.

4. Soil alkalinity and cumulative weather extremes were identified as useful spatial and
temporal predictors of exposure and infection risk, and for triggering the onset of large
outbreaks.

5. Interacting ecological and behavioural factors, specifically functional groups and
spatiotemporal overlap, helped to explain the variable patterns of infection and exposure
among species.
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6. Synthesis and applications. Our results shed light on ecological drivers of anthrax
infection and suggest that soil alkalinity and prolonged droughts or rains are useful
predictors of disease occurrence that could guide risk-based surveillance. These insights
should inform strategies for managing anthrax including prophylactic livestock
vaccination, timing of public health warnings and antibiotic provision in high-risk areas.
However, this research highlights the need for greater surveillance (environmental,
serological and case-detection-orientated) to determine the mechanisms underlying
anthrax dynamics.
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Introduction
Bacillus anthracis (Cohn), the causative agent of anthrax, is a multihost pathogen affecting
human, livestock and wildlife populations. The disease has a world-wide distribution, but
has declined in many developed countries because of the implementation of livestock
vaccination programmes and sanitary measures. However, anthrax is still endemic in Africa,
with severe outbreaks causing significant losses in domestic and wild animal populations
(Prins & Weyerhaeuser 1987; Shiferaw et al. 2002; Siamudaala 2006; Clegg et al. 2007;
Wafula, Patrick & Charles 2008). Non-fatal cutaneous anthrax acquired through contact
with infected carcasses or animal products accounts for >95% of all reported human cases
globally (World Health Organization 2008). More severe forms, particularly gastrointestinal
anthrax because of handling and consumption of inadequately cooked products from
infected animals, may also exert a substantial burden that is both underreported and under-
diagnosed (Sirisanthana & Brown 2002). Predicting the risk of infection is therefore
important from the perspectives of public health, wildlife conservation and livestock
economies.

Despite the infamous reputation of anthrax, the ecology and transmission of the disease
under natural conditions are not well understood (Hugh-Jones & de Vos 2002). The
difficulty lies in the intermittent and variable nature of outbreaks, with considerable
variation in the species affected, and associated environmental and climatic conditions
(Table 1).

The life cycle of B. anthracis comprises a multiplication phase in the mammalian host and a
persistence phase of spores in the soil. Transmission to herbivores largely occurs indirectly,
so risk factors are usually associated with exposure to spores, rather than direct animal-to-
animal transmission. Survival mechanisms of the pathogen outside the host remain unclear.
Bacillus anthracis has been shown to be associated with plant roots (Saile & Koehler 2006),
and this is suggested to be an adaptation that increases the likelihood of infecting ungulate
hosts (Raymond et al. 2010). Certain environmental factors affect long-term spore survival
and thus increase the risk of anthrax (Blackburn et al. 2007). For example, the endemicity of
B. anthracis in some areas has been associated with calcium-rich and neutral-to-alkaline
soils (van Ness 1971; Dragon et al. 2005; Hugh-Jones & Blackburn 2009), although strain
differences exist in soil chemistry preferences (Smith et al. 2000). Strain differences, in fact,
may also govern spread in anthrax epidemics (Blackburn et al. 2007; Garofolo et al. 2010).

Seasonal incidence patterns suggest climatic factors (precipitation and ambient temperature)
play an important role in triggering outbreaks, although these are not consistent between
locations (Table 1), and therefore underlying mechanisms are debated. In some African
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ecosystems, outbreaks have been reported late in the dry season (Prins & Weyerhaeuser
1987; Turnbull et al. 1991; Lindeque & Turnbull 1994; de Vos & Bryden 1996; Shiferaw et
al. 2002; Clegg et al. 2007; Muoria et al. 2007), leading to suggestions that transmission
may be facilitated by close grazing, nutritional stress and congregation at water holes
(Hugh-Jones & de Vos 2002). Elsewhere, outbreaks have been associated with heavy rains
(Lindeque & Turnbull 1994; Mlengeya et al. 1998; Wafula, Patrick & Charles 2008; Bellan
2010), which are hypothesized to unearth spores and amplify vector populations (Durrheim
et al. 2009; Hugh-Jones & Blackburn 2009; Lewerin et al. 2010). Experimental spore
germination and vegetative growth in the rhizosphere provide a mechanism by which bursts
of rainfall could spark epidemics (Saile & Koehler 2006). This would parsimoniously
explain anthrax occurrences during dry summers in North America and Australia that have
been preceded by rains and when animals are often in good body condition (Turner et al.
1999; Hugh-Jones & de Vos 2002; Parkinson, Rajic & Jenson 2003; Hugh-Jones &
Blackburn 2009; Epp, Waldner & Argue 2010).

Although anthrax infects a wide range of species, outbreaks are typically associated with
just a few (Table 1), for example impala Aepyceros melampus, kudu Tragelaphus
strepsiceros, buffalo Syncerus caffer and zebra Equus spp. (Prins & Weyerhaeuser 1987;
Mlengeya et al. 1998; Clegg et al. 2007; Muoria et al. 2007; Wafula, Patrick & Charles
2008). Even within a single ecosystem, different species may be affected at different times
(Lindeque & Turnbull 1994). Reasons for this remain unclear, but could be attributed to
host-specific differences in susceptibility and exposure as a result of behavioural and
ecological traits as well as differences in pathogen strains. The overall ecological and
genetic factors that contribute to environmental persistence of anthrax, and the underlying
conditions that initiate outbreaks and underlie patterns of circulation are poorly known.

In the Serengeti ecosystem, anthrax has been reported in a variety of species, with sporadic
outbreaks occurring in relatively localized endemic foci and mostly affecting a few focal
species (Lembo et al. 2011). The ecosystem covers a large area (over 20 000 km2, Sinclair et
al. 2008) encompassing a variety of habitats and environmental gradients, which may
influence anthrax occurrence. Here, we draw on data gathered opportunistically including
serology indicative of exposure and case reports from human, domestic and wild animal
populations in the greater Serengeti ecosystem, to explore ecological factors affecting
infection patterns in a range of species. Combined, the investigation into environmental and
climatic predictors of anthrax and their associations with species-specific patterns of
exposure and mortality provides a holistic picture of ecological drivers of anthrax dynamics
and identifies priorities for further research in anthrax endemic ecosystems.

Materials and methods
STUDY AREA

Data were collected from multi-ethnic, agro-pastoralist communities to the west of Serengeti
National Park (SNP), pastoralist communities in Ngorongoro District to the east of SNP and
wildlife populations within and adjacent to SNP (Fig. 1). Spatial data on environmental and
climatic factors including elevation, rainfall, vegetation and distances to water-bodies were
available from the Serengeti Biocomplexity Project Database (http://
www.serengetidata.org); additional rainfall data from Maswa Game Reserve was collected
by Tanzania Game Tracker Safaris/Friedkin Conservation Fund (TGTS/FCF). Parameters of
soil moisture and capacity to hold nutrients (including percentages of sand, clay, and carbon/
organic matter, pH, cation exchange capacity and exchangeable sodium percentage) were
compiled from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC
2009).
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DISEASE MONITORING OPERATIONS
Detection of anthrax in wildlife relied upon passive surveillance operations established in
1996 by Tanzania National Parks (TANAPA) and Tanzania Wildlife Research Institute
(TAWIRI). Sightings of carcasses were reported through a network of veterinarians, rangers,
scientists and tour operators. Follow-up protocols included the collection of blood smears
from carcasses, staining with methylene blue and examination by microscopy for
encapsulated bacilli. Because of the relatively low proportion of carcasses from which
diagnostic samples could be retrieved, a presumptive diagnosis was based on post-mortem
presentation: anthrax was considered ‘suspect’ in case of unexplained death or ‘probable’ if
carcasses had evidence of bloody discharge from anus, vulva, nostrils, mouth, eyes or ears
and incomplete rigor mortis. ‘Probable’ cases included carcasses detected during outbreaks
where at least one case was confirmed by microscopy, but which were not necessarily
individually confirmed. No definitive confirmation by bacterial culture and isolation was
possible because of the lack of facilities in Tanzania.

Detection of anthrax in livestock and human populations was based on passive surveillance
data compiled from records in veterinary offices (Government livestock offices, TAWIRI,
TANAPA and Ngorongoro Conservation Area (NCA) Authority) and hospitals.

SEROLOGICAL IN VESTIGATIONS
Serum samples from wildlife populations in SNP and the NCA and domestic dog Canis
familiaris populations adjacent to the protected areas were obtained opportunistically during
long-term epidemiological and ecological studies. These were tested with an immunoassay
(QuickELISA Anthrax-PA kit; Immunetics, Inc., Boston, MA, USA) that detects antibodies
to the protective antigen (PA) of B. anthracis, as described in Lembo et al. (2011). The
domestic dog samples (n = 314) were collected between 1997 and 2006 during dog
vaccination campaigns in 24 villages (Fig. 3a): four in Loliondo division, 13 in the NCA and
seven to the west of SNP (in Serengeti, Musoma and Bariadi districts) and included 169
random samples obtained as part of other surveys and 53 samples linked to a major outbreak
in pastoralist areas in 2006. Wildlife samples comprised: 286 lions Panthera leo sampled
between 1984 and 2007; 53 spotted hyenas Crocuta crocuta, 49 buffalo S. caffer, 59
wildebeest Connochaetes taurinus, and 85 plains zebra Equus burchelli, sampled between
1998 and 2007. Interpretation of serological results was based on comparison of absorbance
for the sample vs. an assay-defined cut-off. The QuickELISA Anthrax-PA Kit was
configured to detect c. 300 ng mL−1 of PA-specific antibody at the cut-off. The assay cut-off
was defined as the mean net A450 nm plus 0.1 of the negative control, which was provided
in the kit as negative controls were not available from the study populations; the targeted
cut-off range was 0.11–0.25.

STATISTICAL ANALYSES
Randomization tests were used to explore pair-wise associations in the timing of anthrax
occurrence among species. A co-occurrence index (Ii.j) incorporating the number and timing
of cases in each of a pair of species (species i and species j) was constructed from the
observed time series of probable cases:

The number of probable anthrax cases per month, from month 1 to month T, in species i, is
denoted by ct,i. The index was recalculated for each of 1000 permutations of the monthly
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anthrax occurrences and compared to the true index to determine whether the association of
cases between pairs of species was likely to have occurred by chance alone. A more
conservative test was carried out whereby only months with at least one anthrax case (i.e. ci,t
> 0) were permuted. A third test was conducted using data only on presence and absence of
anthrax (i.e. ct,i was binary) and permuting all months in the time series.

An environmental risk factor analysis for seroprevalence in dogs, buffalo and lions was
conducted using a Generalized Linear Mixed Model (GLMM) framework with a binary
outcome variable (seronegative or seropositive), and the location (village for dogs, protected
area for wildlife) modelled as a random effect. The following predictors were screened by
univariate analysis: (i) animal age (in months for dogs and lions and estimated for buffalo:
young = 0–5 years; mid = 5–10 years; and old = >10 years); (ii) the area in which the
village/sub-village was located (the West, Loliondo and the NCA) for dogs and SNP or
NCA for buffalo and no random effect for lions as all but four data points were within SNP;
and (iii) soil-related predictors including acid or alkaline soil (pH ≤ 7 or pH > 7), the
proportion of sand, clay, organic content and cation exchange capacity. Predictors that were
significant in the univariate analysis with P < 0.05 were included in the multivariate
analysis. The multivariate model was reduced by sequentially removing non-significant
terms until a model was left with only terms significant at P < 0.05. Differences in
seroprevalence between species (lion, hyena, buffalo, wilde-beest and zebra), populations
(SNP vs. Ngorongoro Crater) and years were also tested using the GLMM framework and
binomial error structure. Locations of probable buffalo carcasses (n = 81) were available
from the 2009 outbreak in Maswa. The distances of these to rivers were compared to
expected distances had buffalo been distributed homogeneously (using a random set of 100
000 points within the vicinity) using a t-test (2-sided).

A generalized linear model with binomial errors was used to test whether outbreak
occurrence was associated with climatic conditions, and in particular prolonged weather
extremes (floods and droughts). ‘Outbreak months’ were defined as those with over 10
‘probable’ anthrax cases, including at least one confirmed by microscopy. Seasonal rainfall
patterns were consistent between outbreak sites (which were within areas of similar rainfall),
despite the presence of an overall precipitation gradient across the ecosystem (Holdo, Holt
& Fryxell 2009). Mean monthly (across-site) rainfall was therefore calculated from a
minimum of 30 months of rainfall data from each outbreak site and absolute rainfall
deviation at a site from the mean monthly (across-site) average was tested as a predictor of
outbreaks. Cumulative deviations from the (previous 1, 2 and 3) monthly means were also
tested as predictors of outbreaks.

A linear regression was used to investigate the relationship between mean annual antibody
responses to anthrax in Serengeti lions and annual rainfall, weighted by the square root of
the number of lions sampled. Residuals were checked to ensure the validity of model
assumptions.

All statistical analyses were implemented within the R programming language.

Results
Anthrax was detected throughout the study period, but major outbreaks occurred in 1998,
2003, 2006 and 2009 (Fig. 1). Many species were affected, including wildlife, livestock and
humans (for full list of affected species see Lembo et al. 2011) but the predominant species
varied between outbreaks: impalas in 1998 and 2003, zebras and wildebeest in 2006 and
buffalos in 2009 (Fig. 2). Significant associations in anthrax occurrence amongst these
predominant species were found (Table 2), particularly among grazers such as wildebeest,
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zebra and livestock. Anthrax cases co-occurred in buffalo and impala, buffalo and giraffe
Giraffa camelopardalis, livestock and impala, and wildebeest and gazelles (Eudorcas
thomsonii and Nanger granti, grouped), but there were too few cases in these other species
for statistical inference (Fig. 2). Only two carnivores fatalities, a cheetah Acinonyx jubatus
and a serval cat Leptailurus serval were attributed to anthrax (during the 1998 outbreak).
Seroprevalence was consistently high in carnivores (90% and 57% overall seropositivity in
Serengeti and Ngorongoro Crater lions respectively and 87% seropositivity in Serengeti
spotted hyenas) and significantly lower among herbivores (46% and 14% seropositivity in
Serengeti and Ngorongoro Crater buffalo, 19% and 4% in Serengeti and Ngorongoro Crater
wildebeest), with no seropositive zebras (for more details, see Lembo et al. 2011).

Spatial heterogeneity in anthrax cases and seroprevalence were evident (Figs 1b and 3).
Suspected cases in livestock occurred predominantly in pastoralist areas to the east of SNP,
with some locations (i.e. Olbalbal, Oiti and Olduvai, see Fig. 3) appearing as endemic foci.
Seroprevalences in domestic dogs reflected these marked regional differences, with very low
seroprevalences in agropastoral western communities, and higher but variable prevalences in
the eastern communities (Fig. 3a). Of the 314 sampled dogs, 77 were seropositive and three
statistically significant predictors of seropositivity were found (Table 3): age, soil alkalinity
and location (Loliondo and the NCA vs. the West), but there was no significant difference in
risk between the NCA and Loliondo. Overall seroprevalence was lower in Ngorongoro
Crater wildlife populations than in Serengeti populations (P < 0.001). Seropositivity in both
buffalo and lions was associated with alkaline soil and no other environmental factors were
found to be significant. Suspected buffalo carcasses located during the 2009 outbreak in
Maswa tended to be localized around river basins (Fig. 1b inset) and were significantly
closer to major rivers than would be expected if location of death was random (t = −3.838, P
< 0.001).

Human anthrax case reports were sporadic and originated exclusively from pastoralist
villages in the NCA and Loliondo division (Fig. 1b) consistent with areas of high
seroprevalence in domestic dogs and cases in wildlife and livestock. The only significant
association detected with co-occurrence of human cases was the presence of zebra cases
(Table 2).

The large outbreaks in wildlife were significantly associated with cumulative extremes in
weather conditions (Fig. 4): the Sopa (January 1998) outbreak followed the extreme El Niño
rains in 1997 and the Seronera (January 2003) outbreak followed particularly heavy short
rains, whereas the Naabi (February/March 2006) outbreak occurred after the short rains
failed and the Maswa (October/November 2009) outbreak followed a prolonged dry period.
Of the different models that examined deviations in rainfall, the most significant (P < 0.005)
predictor of these four outbreaks was a 3-month cumulative deviation from mean monthly
rainfall (i.e. deviations from the 3 months preceding the outbreak and from the outbreak
month). Related predictors were also significant (deviation from mean monthly or annual
rainfall during the outbreak month, as well as 1-, 2-, 3- and 4-month lags, including and
excluding rainfall in the outbreak month), but were not independent. Using only the first
month of an outbreak as the response variable reduced the statistical power so only 3-month
and 2-month lagged cumulative deviations (together with deviations during the outbreak
month) approached significance (P = 0.06 and P = 0.09, respectively). We did not find
evidence for year-to-year variation in seropositivity in carnivores (P > 0.05), but annual
rainfall was negatively associated with annual average antibody levels in Serengeti lions (P
= 0.03, R2 = 0.21, n = 20, Fig. 5), i.e., lion antibody levels were on average higher during
years of lower than average rainfall than in years of heavy rain.
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Discussion
Environmental and climatic drivers have long been recognized as important factors
influencing the ecology of anthrax (Hugh-Jones & de Vos 2002); though, variable patterns
in species-specific mortality and timing of outbreaks between and within ecosystems have
made it difficult to understand anthrax epidemiology and to predict disease occurrence. In
the Serengeti ecosystem, cases were detected regularly, but outbreaks that caused large die-
offs were sporadic and spatially localized. Soil alkalinity and cumulative weather extremes
were identified as useful spatial and temporal predictors of exposure and infection risk and
for triggering large outbreaks. Serology combined with case reports provided further details
on anthrax circulation and ecological drivers underlying species-specific patterns of
exposure and mortality.

Herbivores are thought to be at most risk of contracting anthrax because of inhalation/
ingestion of spores whilst grazing. Serological differences detected between herbivores and
carnivores in the Serengeti confirm this and provide context for observed patterns of
infection; low seroprevalence and high mortality in ungulates suggested frequently fatal
exposure (with some species-specific variation, see Lembo et al. 2011), whereas high
seroprevalence in carnivores (wild and domestic) and low mortality suggested a protective
immune response to regular exposure, possibly through consumption of infected carcasses,
which may be less lethal than direct spore inhalation/ingestion. This is further supported by
age-seroprevalence in lions, indicating a high force of infection with seroconversion at a
young age (Lembo et al. 2011).

Alkaline soils with high levels of calcium have been shown to be important geographical
determinants of anthrax occurrence because of increased spore survival (Van Ness 1971;
Dragon & Rennie 1995; Hugh-Jones & Blackburn 2009), and our results are consistent with
this (Fig. 3). Spatial associations are probably maintained as anthrax carcasses contaminate
the local environment with spores that can remain viable for decades (Dragon et al. 2005).
Soil characteristics that restrict spore dispersal may increase the likelihood of grazing
animals acquiring a lethal dose (Hugh-Jones & Blackburn 2009), as may drainage channels
that concentrate spores. ‘Incubator areas’ have been hypothesized to occur when favourable
soils collect water and organic matter providing a milieu for spore germination and
multiplication (Durrheim et al. 2009). These factors may explain why anthrax appears to
persist endemically in foci, such as in certain pastoralist villages, where low numbers of
cases (in livestock and humans) were detected annually, and seroprevalences in dogs were
consistently high (possibly from scavenging on infected carcasses). Seroprevalences in dogs
also indicated circulation of anthrax in one agro-pastoralist village to the west of SNP with
high soil alkalinity, where no human or livestock anthrax cases were reported (Fig. 3a),
further emphasizing the utility of serological data from sentinel populations.

While soil characteristics can explain much about the spatial localization of cases, climate
anomalies appear necessary to trigger large outbreaks. However, the mechanisms by which
this occurs remain unclear and may vary by location. Associations with drought (Prins &
Weyerhaeuser 1987; de Vos 1990; Turnbull et al. 1991; Lindeque & Turnbull 1994; de Vos
& Bryden 1996; Bryden 1999; Pollack 1999; Smith et al. 1999; Shiferaw et al. 2002;
Promed-Mail 2004a,b; Barrett 2006; Dudley 2006; Clegg et al. 2007; Muoria et al. 2007;
Wafula, Patrick & Charles 2008) have been suggested to result from range degeneration
and/or over-utilization leading to spore ingestion or inhalation (Beyer & Turnbull 2009), or
contamination of limited water resources (Clegg et al. 2007). Alternatively, climate may
indirectly affect animal health; hot, dry conditions may lower host resistance (Hugh-Jones &
Blackburn 2009) and cause nutritional stress, thereby increasing infection probabilities (de
Vos 1990). Outbreaks following prolonged rains are less commonly reported (Lindeque &
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Turnbull 1994; Mlengeya et al. 1998; Wafula, Patrick & Charles 2008; Bellan 2010) and
have often been linked to increased numbers of vectors (reviewed by Hugh-Jones &
Blackburn 2009), for instance, Tabanid (Davies 1983) or blow flies (de Vos 1990). Intense
flooding can also unearth spores, and this has been considered the cause of outbreaks far
from endemic areas that were not thought to involve vectors (Durrheim et al. 2009; Lewerin
et al. 2010). Climatic conditions may affect the ability of B. anthracis to germinate and/or
sporulate (Hugh-Jones & Blackburn 2009). Some rainfall occurred prior to all the outbreaks
we observed (Fig. 4), and experimental work suggests that rain-induced grass growth could
facilitate anthrax multiplication and saprophytic growth within the rhizosphere (Saile &
Koehler 2006; Schuch & Fischetti 2009).

Aggregation of buffalo cases around rivers during the 2009 drought-associated outbreak
(Maswa) is consistent with droughts forcing animals to graze in more restricted locations
(close to water), where spores may have accumulated and transmission may be exacerbated
(Clegg et al. 2007). This could be an artefact, as animals terminally ill with anthrax are
septicaemic and often seek water (World Health Organization 2008). Nonetheless, the
behaviour reinforces deposition and concentration of spores around water sources. The
range of open questions arising from these reported associations highlights the need for
research into the natural life cycle of B. anthracis, particularly survival and vegetative
growth outside the host, to understand the mechanisms triggering such spatially localized
outbreaks.

In the Serengeti, associations in anthrax infection among species largely arise from
concurrent multispecies localized outbreaks, driven by mass deaths in highly susceptible
species. These associations reflect functional groupings and spatial overlap at times of
outbreaks. A general ecological pattern emerges, whereby grazers (zebra, wildebeest,
buffalo and livestock) are worst affected after droughts and browsers (impala) following
heavy rains. Serengeti ungulates tend to become protein deficient toward the end of the dry
season (Sinclair 1977),explaining their migration to the nutrient-rich volcanic plains at the
onset of the rains (Holdo, Holt & Fryxell 2009). The preponderance of anthrax amongst
grazers during the 2006 drought-associated (Naabi) outbreak is consistent with both close
grazing and drought-induced nutritional stress as the poor rains prevented access to quality
forage. As hindgut fermenters, the grazing intake of zebras exceeds that of most Serengeti
herbivores (Gordon & Prins 2008), which may explain their apparent high susceptibility to
anthrax (Lembo et al. 2011), through greater ingestion of spores. After feeding on infected
carcasses, blow-flies regurgitate or defecate onto surrounding bush, disseminating anthrax
bacilli. The distribution of these droplets, generally 1-3 m above ground level, means
browsers are likely to be exposed whilst feeding, where as grazers are not, but still requires
an initial carcass from which to disseminate infection. This may account for why impala
were differentially affected during the outbreaks associated with heavy rains (Sopa-1998 and
Seronera-2003). However, rains were probably necessary to loosen soils and unearth spores
or promote vegetative growth that initially triggered anthrax cases in grazing wildebeest and
zebra. Buffalo only overlap with migratory grazers (wildebeest and zebra) for short periods
and are rarely found on the southern plains which are endemic anthrax foci for grazing
livestock and wildlife, explaining the lack of association of cases in buffalo with other
grazers.

Regarding antibody responses in lions, our data show a negative relationship with rainfall.
Serengeti lions feed almost exclusively on grazers, which may be why we did not detect
higher antibody levels in years of heavy rainfall when browsers were more affected.
Differences in susceptibility and survival among prey may explain the exposure and
susceptibility in carnivores. More cross-species comparisons could allow assessment of the
relative roles of exposure vs. susceptibility in explaining the variable species mortality
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patterns characteristic of anthrax. However, high levels of exposure in most carnivores may
mean that quantitative investigations in relation to timing and location of anthrax outbreaks,
including longitudinal studies of serial titres from known individuals, are necessary to shed
light on immunological responses and enable greater inference from serological data.

Overall, these data point to concomitant factors that affect the environmental reservoir and
increase host susceptibility and exposure, through grazing restrictions, nutritional stress or
vector amplification. The small number of identified outbreaks in this study limits the
statistical power for resolving these issues. To tease them apart, more detailed data are
required on the environmental reservoir, the condition of hosts and their behaviour relating
to exposure, and the influence of weather conditions on B. anthracis in the environment and
on host and vector ecology.

The quality of case finding in our study was affected by the lack of confirmatory
identification of B. anthracis. Animal cases were identified exclusively by detection of
encapsulated bacteria, which may have resulted in an underestimation of cases. Examination
of blood smears is considered a reliable method for obtaining a diagnosis from fresh samples
(<2 days), but reliability decreases with the time between animal death and sample
collection (Berg et al. 2006). Although culture of B. anthracis has been shown to be more
reliable than examination of blood smears, culture results can be variable because B.
anthracis does not compete well with other bacteria in the decaying carcass (Turnbull et al.
1998). PCR significantly improves the confidence with which a diagnosis can be made,
particularly for decomposing animals (Berg et al. 2006), and would therefore provide a
valuable confirmatory test for less-than-optimal samples obtained from remote areas such as
the Serengeti. We suggest that future quantitative comparisons of the sensitivity of
microscopy, culture and PCR for anthrax diagnosis under field conditions could provide a
useful means of determining the degree to which cases are under-diagnosed in remote
ecosystems with limited diagnostic infrastructure.

While serology provided a valuable tool to infer patterns of exposure and should be
validated using control groups for multispecies comparisons (Lembo et al. 2011), culture of
B. anthracis would provide material for genotyping, which could reveal additional insights
into patterns of anthrax circulation. Future studies within the ecosystem should prioritize
isolation of B. anthracis for case confirmation. Genetic analyses in the Serengeti and other
multihost natural systems should more generally address the hypothesis that clonal
genotypes predominate in anthrax epizootics (Blackburn et al. 2007; Fasanella et al. 2010)
and could be used to investigate differences in host susceptibility with circulating genotypes.

Our findings have a number of practical implications for reducing the impact of anthrax.
Indicators of risk could be used to guide conservation and management policy such as pri-
oritizing reintroduction sites and prophylactically vaccinating anthrax-susceptible species,
like black rhino Diceros bicornis (Metzger et al. 2007) and African wild dogs Lycaon pictus
(Creel et al. 1995). Cattle in high-risk areas could also be vaccinated prophylactically, public
health warnings appropriately timed and more antibiotics provided in clinics in pastoralist
areas to mitigate risks. Although hospital reports coincided with livestock and wildlife cases,
these relationships were weak. This may be because low-grade sporadic infection and
infrequent cattle fatalities might not be suspected as anthrax and thus the meat/carcasses be
eaten, in contrast to more obvious mass anthrax mortality. Nonetheless, household surveys
following the 2006 outbreak indicated several human cases including fatalities not reported
to hospital (Lembo et al. 2011), which suggests that these records fail to reflect acute fatal
infections.
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We conclude that countervailing seasonally driven rainfall and fertility gradients in the
Serengeti, which are a consistent feature of African savannas (Holdo, Holt & Fryxell 2009),
might foster ideal conditions for localized endemic anthrax foci. Herbivores converge on
hotspots of accumulated spores during climate extremes, when exacerbating biotic and
abiotic stressors or vector populations may be amplified. However, continued and more
targeted anthrax surveillance (environmental, serological and case-detection-orientated) is
necessary for more statistically rigorous investigations into mechanisms triggering outbreaks
and for predicting infection.
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Fig. 1.
Spatiotemporal patterns of anthrax infection in the Serengeti ecosystem. (a) Time series
showing continuous detection of small numbers of cases in wildlife, interspersed with
occasional large outbreaks. Probable cases are shown in black and suspect cases in grey.
*549 ‘probable’ and 67 ‘suspect’ cases were detected. Black circles indicate hospital
records, scaled according to numbers and gray squares indicate when livestock cases were
reported (data quality too poor to quantify). (b) Spatial location of cases, showing outbreak
areas. Villages shaded according to hospital reports from 1995 to 2008. Exact locations of
carcasses retrieved during the 1998 (Sopa) outbreak were unavailable, so the shaded area
demarcates the outbreak area. For the 2003 outbreak (crosses – Seronera), the locations of
cases are randomized within a 10 km radius of the outbreak area, because exact locations
were not available. Inset shows the location of buffalo carcasses during the 2009 outbreak in
Maswa district. LGCA, Loliondo Game Control Area; NCA, Ngorongoro Conservation
Area; SNP, Serengeti National Park.
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Fig. 2.
Species-specific patterns of anthrax mortality in wildlife. Only the most commonly reported
species are shown. Black and grey indicate probable and suspect cases respectively, as
defined in the methods. *549 ‘probable’ and 67 ‘suspect’ impala cases were detected.
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Fig. 3.
Maps showing (a) domestic dog seroprevalence and (b) buffalo and lion serostatus in
relation to soil alkalinity. LGCA, Loliondo Game Control Area; NCA, Ngorongoro
Conservation Area; SNP, Serengeti National Park.
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Fig. 4.
Timing of anthrax outbreaks in relation to rainfall. Months in which outbreaks of anthrax
occurred are indicated by dark grey bars. Outbreaks were defined as >10 cases including at
least one confirmed by microscopy. The thick grey line denotes mean monthly rainfall
(averaged across-outbreaks sites), and grey shading indicates the 95% confidence intervals.
Monthly rainfall at each outbreak site (Sopa, Seronera, Naabi and Maswa) are shown by
black lines.
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Fig. 5.
Mean annual antibody levels in Serengeti lions vs. mean annual rainfall. The symbol size
reflects the number of lions sampled and the line indicates the best fitting regression (R2 =
0.21, correlation coefficient =− 0.002, n = 20, P = 0.03).
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