Codon catalog usage and the genome hypothesis

R.Grantham, C.Gautier, M.Gouy, R.Mercier and A.Pavé

Equipe Evolution Moléculaire, Laboratoire de Biométrie, Université Lyon I, 69622 Villeurbanne Cedex, France

ABSTRACT

Frequencies for each of the 61 amino acid codons have been determined in every published mRNA sequence of 50 or more codons. The frequencies are shown for each kind of genome and for each individual gene. A surprising consistency of choices exists among genes of the same or similar genomes. Thus each genome, or kind of genome, appears to possess a "system" for choosing between codons. Frameshift genes, however, have widely different choice strategies from normal genes. Our work indicates that the main factors distinguishing between mRNA sequences relate to choices among degenerate bases. These systematic third base choices can therefore be used to establish a new kind of genetic distance, which reflects differences in coding strategy. The choice patterns we find seem compatible with the idea that the genome and not the individual gene is the unit of selection. Each gene in a genome tends to conform to its species' usage of the codon catalog; this is our genome hypothesis.

INTRODUCTION

The genetic code provides options among codons for all 20 amino acids of protein except methionine and tryptophan, which have single codons (see Figure 1 of reference 1). Choices among synonymous codons do not affect the nature of the protein produced but they may relate to expression of a gene. Indeed, mRNA expressivity (rate of synthesis of a protein and the total amount of it made) may be under the control of degenerate base use in the mRNA. This is still largely an untested hypothesis. It is, however, an important one since choices among third bases have often been considered "neutral", that is, of no influence on fitness of the phenotype. Messenger RNA expressivity may well

© IRL Press Limited, 1 Falconberg Court, London W1V 5FG, U.K.

turn out to be an adaptive phenomenon.

In order to better understand codon usage, we have studied all published mRNA sequences of more than about 50 codons. We here report three analyses on these sequences. Table 1 first shows number, name, symbol, length in codons and reference for each mRNA. Then Figures 1, 2 and 3 reveal the analyses. In Figure 1 mRNA are combined according to genome type (RNA or DNA virus, animal, etc.). Frequencies per thousand for each of the 61 amino acid codons appear in Figures 1 and 2 (initiator and terminator codons are excluded). Absolute frequencies are had by multiplying by number of codons (Table 1). Figure 2 presents frequencies in each individual gene (unless it is the only example of a genome type, in which case it is in Figure 1). This allows comparison of codon use not only among genes in the same or different genomes, but also between individual genes and the genome types of Figure 1. Finally, messengers with similar patterns of use of the code's degeneracy are seen as neighboring points in Figure 3. The spacings in Figure 3 are projections into two dimensions of distances calculated by correspondence analysis (2, 3) on codon third base frequencies. Other work has shown that the codon frequencies themselves give correspondence analysis distances that depend mostly on systematic choices between degenerate bases (4, 5).

DISCUSSION

It is not evident that distances between mRNA based on codon frequencies would depend mainly on degenerate base use. The other two codon positions could dominate in establishing these distances if proteins were relatively more different among themselves than are their mRNA. Elsewhere (4, 5) we have found that distances between proteins, determined by correspondence analysis on their amino acid frequencies, do not agree with distances between their mRNA, calculated from frequencies for the 61 codons in each messenger. However, frequencies of duet coded amino acids can particularly affect distances between mRNA (5). In order to eliminate all possible influence of protein composition, therefore, distances in Figure 3 were determined solely from quartet codons (1). Each of the eight quartet sets of codons has a complete choice of bases in codon position III. Figure 3 results from correspondence analysis on these quartet third base frequencies in each mRNA.

The structure in Figure 3 can be considered at several levels. First, animals lie to the right and viruses to the left. Next, there is grouping by genome or genome type: All papova virus (SV40 and BKV) genes lie together

(no. 51-56); immunoglobins (IG) fall in a nearby zone (no. 73-78). All mRNA of mammals except immunoglobins (MAM-IG) are grouped to the upper right (no. 79-90). Curiously, however, frameshift genes E of ϕ x174 and G4 (no.13 and 23) are near this mammal area. Other genes of these phage are mainly to the upper left of the figure. Finally, most IG have different coding strategies from other mammalian genes (compare, for example, MUSBLP and MUSK2, no. 73 and 80).

What do these groupings and distances mean? We can partly answer this question although the exact biological significance is unknown. The horizontal axis of Figure 3 roughly corresponds to GC content of the third bases (5). The rightmost mRNA often use C and G as third bases. Thus, with MUSBLP 90.5% of all quartet codons have C or G in position III, while the value is only 2.8% in the solitary yeast mitochondrial mRNA (no. 64) and 37.0% in MUSK2. This also explains positioning of the above E genes near mammals: their mRNA show more GC in quartet position III (68.9 and 64.7%, respectively) than do other phage mRNA. Likewise, vertical contrast exists between use of A and U. For example, quartet third bases in MUSK2 contain 42.6% A and 20.4% U while those in FDV5 (no. 33) have 4.1% A and 53.1% U. Consequently, in base choices for quartet codons papova virus mRNA resemble IG mRNA but differ greatly from other mammalian genes, for both GC content and use of A (1). Lastly, correspondence analysis groupings as in Figure 3 are very stable, whether the starting data are frequencies for all 61 codons, the 32 quartet codons, or for third bases of all codons or, as here, third bases of quartet codons. Some rationalization of this stable structure is found in the distribution of the isoacceptor tRNA for the codons (5-7). Coordination of codon usage with tRNA gene amplification and expression may eventually aid in understanding the genome hypothesis.

Our general goal in this work is to identify and understand the biological information in nucleic acid sequences. Our hypothesis, however, is so far mostly only descriptive. We observe that mRNA of the same genome are clustered by correspondence analysis on codon frequencies and that their proteins are not similarly grouped by analysis on the amino acid frequencies (4). Indeed, correspondence analysis on the proteins does not suggest classical systematics as does that on mRNA. In this very limited sense, messengers better reflect evolution than proteins do (4, 5). We do not yet know why.

This work was supported by CNRS LA 243 and GRECO Analyses des systèmes.

r

Table 1 mRNA Portfolio

No.	Species and gene	Symbol	No.codons	Ref.
1	Phage MS2 gene A	MS2A	392	8
2	Phage MS2 coat	MS2C	129	9
3	Phage MS2 replicase	MS2R	544	10
4	Phage 0 beta coat	OBVC	79	11
5	Tobacco mosaic virus gene A	TMVA	55	12
6	Tobacco mosaic virus coat	TMVC	158	13
7	Tobacco mosaic virus 30K protein	TMV30K	105	13
8	Turnip vellow mosaic virus coat	TYMC	188	14
9	Phage ϕX 174 gene A	FIXA	511	15,16
10	Phage ΦX 174 gene B	FIXB	119	15,16
11	Phage ΦX 174 gene C	FIXC	85	15,16
12	Phage ΦX 174 gene D	FIXD	151	15,16
13	Phage ΦX 174 gene E	FIXE	90	15,16
14	Phage ϕX 174 gene F	FIXF	422	15,16
15	Phage ΦX 174 gene G	FIXG	174	15,16
16	Phage ΦX 174 gene H	FIXH	326	15,16
17	Phage ΦX 174 gene J	FIXJ	37	15,16
18	Phage ΦX 174 gene K	FIXK	55	17
19	Phage G4 gene A	VG4A	553	18
20	Phage G4 gene B	VG4B	119	18
21	Phage G4 gene C	VG4C	83	18
22	Phage G4 gene D	VG4D	151	18
23	Phage G4 gene E	VG4E	95	18
24	Phage G4 gene F	VG4F	426	18
25	Phage G4 gene G	VG4G	176	18
26	Phage G4 gene H	VG4H	336	18
27	Phage G4 gene J	VG4J	24	18
28	Phage G4 gene K	VG4K	55	17
29	Phage fd gene 1	FDV1	347	19
30	Phage fd gene 2	FDV2	409	19
31	Phage fd gene 3	FDV3	423	19
32	Phage fd gene 4	FDV4	425	19
33	Phage fd gene 5	FDV5	86	19
34	Phage fd gene 6	FDV6	111	19
35	Phage fd gene 7	FDV7	32	19
36	Phage fd gene 8	FDV8	72	19
37	Phage fd gene 10	FDV10	110	19
38	Phage M13 gene 1	M131	215	20
39	Phage M13 gene 3	M133	423	20
40	Phage M13 gene 4	M134	59	20
41	Phage M13 gene 6	M136	111	20
42	Phage M13 gene 7	M137	32	21
43	Phage M13 gene 9	M139	31	21
44	Phage T7 gene 1	T7VG1	56	22
45	Phage λ gene CI	LAMCI	236	23
46	Phage λ gene CII	LAMCII	96	24
47	Phage λ gene cro	LAMCRO	65	24
48	Phage λ gene O	LAMO	298	25
49	Phage 434 gene CII	434CII	96	26
50	Phage 434 gene cro	434CR0	70	26
51	Simian virus 40 gene T	S40GT	626	27,28

No.	Species and gene	Symbol	No.codons	Ref.
52	Simian virus 40 gene t	S40PT	173	27.28
53	Simian virus 40 gene VPl	S40VP1	361	27.28
54	Simian virus 40 gene VP2	S40VP2	351	27,28
55	Simian virus 40 gene VP3	S40VP3	233	27,28
56	Virus BK gene t	BKVPT	171	29
57	Hepatitis B virus surface antigen	HBVSA	225	30,31
58	Escherichia coli lac l	ECOLAC	359	32
59	Escherichia coli ribosomal protein Lll	ECOL11	141	33
60	Escherichia coli ribosomal protein Ll	ECOL1	233	33
61	Escherichia coli ribosomal protein L10	ECOL10	164	33
62	Escherichia coli ribosomal protein L7/L12	EC0712	120	33
63	Salmonella paratyphi ampr gene	SAPAMP	285	34
64	Saccharomyces subunit 9 mitochondrial ATPase	SACMT9	75	35
65	Saccharomyces iso-1 cytochrome C	SACCC1	108	36
66	Psammechinus miliaris Hl histone	PSMH1	85	37
67	Psammechinus miliaris H2A histone	PSMH2A	123	37
68	Psammechinus miliaris H2B histone	PSMH2B	102	37
69	Psammechinus miliaris H3 histone	PSMH3	135	37
70	Strongylocentrotus purpuratus H2A histone	SPUH2A	123	38
71	Strongylocentrotus purpuratus H3 histone	SPUH3	102	38
72	Chicken ovalbumin	GALOVA	385	39
73	Mouse K2 immunoglobukin	MUSK2	117	40
74	Mouse immunoglobulin light chain MOPC 21	MUSLC	107	41
75	Mouse immunoglobulin λ l-type light chain	MUSL1	173	42
76	Mouse VAHI immunoglobulin	MUSVL2	165	43
77	Mouse MOPC-41 light chain immunoglobulin	MUSVL41	129	44
78	Mouse immunoglobulin y-1 constant heavy chain	MUSPH21	153	45
79	Mouse hemoglobin beta	MUSBGL	146	46
80	Mouse beta lipotropin	MUSBLP	48	47
81	Rat growth hormone	RATGH	215	48
82	Rat prolactin hormone	RATPLH	132	49
83	Rat preproinsulin	RATPPI	107	50
84	Rabbit hemoglobin alpha	RABAGL	141	51
85	Rabbit hemoglobin beta	RABBGL	146	52
86	Bovine corticotropin beta lipotropin	BOVCBL	264	53
87	Human alpha chorionic gonadotropin	HUMACG	115	54
88	Human hemoglobin beta	HUMBGL	132	55
89	Human pregrowth hormone	HUMPGH	216	56
90	Human chorionic sommatomammotropin	HUMCSL	168	57

.

	SS	RNA	UTRUS	SS DNA	1	DS DN	A VIRUS	
Cadan	MO 1-8	PHAGE 1-4	FLANT 3-8	VIRUS 9-43	ALL 4-4-57	PHAGE 45 - 50	PAPUVA 51-56	hbusa 67
Ara CGA	8	6	11	5	8	16	0	0
<u>ngo</u>	10	15	6	15	14	27	9	4
0.66	5			3			1	4
660 650	20	23	14	21		15	20	9
AGH	12	4	20		13	6	28	4
Fair Fild			- 13	4	15			
CUC	17	28	15	15	19	12	12	31
CUG	8	11	6	18	17	19	13	31
CUIJ	13	14	12	30	23	25	22	18
UUA	16	17	16	24	20	13	28	18
<u> </u>	12	6	18	17	16	12	21	18
Ser UCA	19	15	24	18	11	10	9	27
000	12	13	14	13		4	7	22
00.6	19	21	17		4			13
000 000	20	22 1 A	17	30	10	14	18	18
AGU	11	4	17		14	13	ว่อ	22
Thr ACA					16	17	14	27
ACC	26	23	38	12	20	22	18	22
ACG	9	- 9	9	8	4	6	ë	13
ACU	32	32	31	25	18	13	25	13
Pro CCA	10	8	11	7	13	10	13	40
	16	10	22	5	8	3	10	31
000	11	14	8	10	8	14	e	.9
01- 110			10	17	17			22
HIA GCH	-19	19	10	10	22	31	14	4
600	17	20	14	15	11	22	â	4
ĞCÜ	22	24	21	35	40	42	41	17
GIY GGA	17	12	- 21	8	18	13	23	27
GGC	11	16	5	22	11	12	11	- 9
GGG	10	16	5	5	11	10	12	18
GGU	22	34	10	37	14	16	12	. 9
Val GUA	16	19	12	13	11	7	15	9
GUC	27	23	31	14	4	6	2	4
605	16	14	17	8	12	9	15	18
			24		- 24	26	23	<u>18</u>
AAG	28	28	28	19	70	70	24	13
Asn AAC	34	48	29	18	24	35	13	
AAU	28	24	32	27	18	11	26	18
GIN CAA	17	17	16	26	26	24	29	13
CAG	21	29	13	21	21	22	20	18
His CAC	3	5	1	4	4	Ø	7	4
CAU	3	3	3		9	8	12	0
610 6AA CAC	18	11	25	23	36	38	39	a
GHG Den LOF			- 22	18	32	41	26	9
EAU	25	10	70	23	24	26	24	4
Tyr TAC			16	23 10	28	10	38	<u> </u>
UAU	6	5	18	26	15	11	21	17
Cys UGC			<u>1</u> 0		- ii -		18	22
ปรม	3	4	2	8	9	3	10	40
Phe UUC	18	20	16	24	16	22	5	40
	18	11	25	26	25	16	35	31
LIE AUA AUC	15	10	19	<u>,8</u> _	.9	5	12	18
AUU	20	20	24	15	17	29		31
Pet All					20	<u> 26</u> 72		- 22
Tre UGL		15			27		24	<u> </u>
., 000	. c.	10	· 1	10	20	17	C4	38

			DS	. DNA				
Codon	BACT	MITOCH	YEAST	ALL ANT	ANT-MAM	ALL MAM	15	MAM-TE
	58-63	64	65	65-90	65-72	73-90	73-78	79-90
Dra FED	7	0	9				7	<u>من ان ان ان</u>
	20	2	6	14	າດັ	6	1	
000	20			14	20	7	4	12
666	2	e	e		2	6	3	8
CGU	20	8	e	10	21	7	1	.9
AGA	2	13	28	8	14	6	12	3
AGG	R	a	A	11	12	11	9	11
Leu FIIA	7	17					11	
- Ceo 000	7	10	á	25	27	24	26	24
000				23	21	24	20	24
1.116	59	e e	ษ	42	21	51	16	68
CUU	7	0	.9	10	16	7	7	7
UUA	6	147	9	3	1	4	11	1
11115	6	a	46	ē	10	7	10	ċ
San UCO		67						<u>}</u>
367 004		67		10		11	24	3
<i>u</i>	14	e	e	17	11	20	17	22
UCG	4	8	9	3	2	4	1	5
ucu	18	8	19	17	17	17	29	11
AGC	9	A	A	29	19	21	27	18
A 511	6	à	Â	15	11	17	77	10
The ACA	¥		10	17	17	17		
ADD ADD		21	17	13	13	13	26	
AUC	21	e	28	26	28	25	30	23
ACG	6	0	8	8	10	7	4	9
ACU	24	0	28	18	13	19	36	11
Pro CCA	6	13	28	12	13	12	20	-
rrr	5	à	ĩ	.17	12	10	17	21
000 666				11	12	18	13	21
	20	e	e	6	2	. 8	5	9
	1	13		12	11	13	13	12
Ala GCA	40	53	A	16	29	11	20	6
GCC	18	13	37	38	49	34	22	49
ECE.	20	â	, a	ć	, c	5		
	70	67	20	25	71	27		
GLU	10	0/	- 20		31	23		24
GIY GGH	4	27	e	14	23	10	20	5
660	31	0	19	26	21	28	16	34
GGG	5	8	19	11	13	11	9	11
6611	31	197	74	19	19	18	25	15
TIAT LID	74	67	a			7	5	1
rur			ő	10	25		~~	
600				19	20	16	23	13
606	14	н	19	31	22	35	17	44
GUU	42	13	9	9	12	7	7	7
Lys AAA	65	27	56	19	29	15	17	14
AAG	11	a	93	54	74	45	24	56
ASD DAL	21		46	27	21	20	20	20
AAU		17	40	27	21	23	23	2.7
HHU EL OAA	<u>_</u>		19	<u>y</u>	6	18		<u> </u>
GIN CHH	14	13	19	12	17	10	11	9
CAG	23	8		31	29	32	30	32
His CAC	6	0	19	19	9	22	8	29
CAU	4	a	19	18	9	10	11	10
ELU GAA	57	17	42		27			
CAC	14	10.	10	75	77	70	21	23
Ann CAC				33		30		4,3
HSP GHL	36	13	28	23	11	21	22	30
GAU	19		9	16	11	18	23	16
Tyr UAC	10	8	28	21	23	20	20	20
UAU	4	13	19	12	3	15	17	14
Cue IICC	4	Â				12		16
11711		17	10	ő		14	10	10
060			17			11	18	<u></u>
rne uuc	12	80	19	29	18	33	30	35
	12	13	19	14		16	13	<u>18</u>
Ile AUA	3	a	e	4	3	4	7	3
AUC	28	27	19	25	40	28	21	19
ا ا ا ا	18	97	19	11	10	11	10	۰¢
Mat OUT		27	10	12-	12	16	1.4	12
Tro III			1.7					
17P UGG	3	4	9	12	1	16	23	12

004 D	cí	ţa	2	e e	=	5 N	E1	2.7	Ľ.	ŀ	<u>,</u> a	2	4Υ	æ (1	5	a	Чċ	ΞĻ	3	e G	ľ	40	z č	1	đ	<u>к</u> с	1	i.	æ i	9	(e	E F	192	۲ľ	~~	46	614	13	v ç	er	~~	6 4 0 4	۴	53 59	1.	r.
0154 C	ei	70	2	e ;		, 3	6 4	7	а (-	4 ü	¥.	с. 1	¢ (-	10	a	2	<i>a</i> c	2 9	, a	4	5	zΰ	01	51	æ ;	19	, c	ζ,	=	¥ 0.	e v	2	6	~ 4 ~ 0	22	19	ø	9 9 M	5	5 G	м с М	2	a a	24	12
07.4 R	25	67	1	œ	z	2 9	æ	α	α	= :	<i>c</i> 0	: œ	¢	2	ŀ	(N	¢	25	αc	ca	7	F	æ (χ	74	52	αe	-	ŝ	e i	rd:	0	77 Q	191	œ	x k	22	5	a	ωŗ	-	17	(4) M	æ	52	đ	a
0154 A	90	x v	15	4 (n in	a.	Вć	H.	-	20	×.	52	ч,	ł	- œ	0	27	N 1		. ¥	4	ž	e g	9	11	۰,	:=	0	8		č 7	22	đ	-	2 9	12	=	24	8 8 8	- u	<u> </u>	n n	0	6 81	50	31
FTX K	ine In	20	2	Œ (-	ž	b G	<u>М</u> 2	in r in s	26	í a	č,	8,	e i	ç	2	æ	ŝ	e e	. 9	18	z	a ¦	ŝa	31	æ	a c	-	ä	e j	2	6 %	92 32	a	92	<i>z c</i>	5.7	<u>e</u> 2	18	00 a	5	9	a a	81	36 36	đ	a
FTX J	1.1 A (, a	108	¢ (zł	z a	¢.	23	a i		: 9	G	54	c (5 h	: a	G	22	a c	: N	n. N	-	æ i	r 4	a	81	с и ,	10	a	æ,	a .	ŝ	æ a	54	5	2 0	e o	5 Q	e	e (e e	æ v	æ	a a	æ	22
FIX H	Œ(y 1+	'c	αı	÷	z a	TY.	N.N.	r, I	r b	. U	. Ve	4 'C	a i	d	. 0	e C	34	<i>a</i> 0	5 9	50	þ	4 '	4 g	a,	77	<i>ح</i> ا		: 0	5	N.	4 ~ v ∞	27	4.4	4	z 0	2;	3	49	Μų		6 M	m n	a	M 64	115	0
ETX G	œ!	, 0	v:	¢ (1	Ξŀ	11	21	11		9	i M	4 V	G (4		2	4 A			Ъ	e	м (z 4	k	Ŀ	e i	4	M.C.	9	8	35	22	a	44	• 2	s :		46	γġ	0:	22	5 Y O	a	40	11	v
214	a,	ā a	۲. ۲	a (<u>,</u>	5 0	n,	40	v: (1 kr	0	49	αı	ck	, r 2	~	50	lr; c	: 4 0	92	h	o (44	5	28	æļ	gr	s ins	ŝ	s:	22	<u>.</u>	27	4	٥Ķ	7.0	38	33	r ŗ	ç u	n Irc	2%	ur, i	∿ 1 9	26	21
ETX E	¢.	- 7		c (2	: <u>(</u>	a N	11	ар К	4	7 G	: <u>e</u> .	a	2;	=	12	13	11	e e	: [·	2	-	٩ļ	22	a	¢	<i>c</i> 0	-	E.E.	25	=	4 4 4 4	e i	æ	e e	r a	::	- -	11	ې ه	-	11	4 4 a	e :	: 2	22	2.2
214	ε	(a	47	a (<u>z</u> (E M	1	ĸ	E l	ų,	5 N	e.	20	¢,	-k	50	50	56	G 1		Чd	F	N.,	2 9	20	13	æ 1	-	80	82	99	ξr	23	56	M	z 1.	e e	2 20	56	r ģ		52	82	æ	л I.	13	N
in tr	¢,	á a	<u>8</u>	1. (7	-	; a	5	35	<u>, </u>	2	ç a	12	35	ц 4 с	sk	: a	24	12	e e	5 9	e e	e	æ;	5 C	2	2	æ ?	, a	۰ <i>č</i>	e	s:	4 K	æç	2	e	- K	æ	64	32	<u>e</u> :	<u>_</u> e	r a	() 4 4 V	21	a 5	21	24
े. भ	57	a v	ь. Г	97 Q	=	5 Q	¢	17	α (z	r a	e	17	¢ (zk	2 00	e,	34	~ •	5 0	: 00	14	œ (x ç	2	17	<u> </u>	a	1	œ	5	ž 00	7	2	2	<u>)</u> «	29	-	4	2.2	-	۲7 ۲	4	a	а 5	a	α
X L L	¥	1 4	23	<u>م</u> و		(<u>e</u>	a.	27	7		z a	2	18	ke l	¢	1 10	81	18	n;	4	ŝ	18	αį	5. U	α	ý,	4 (. a	e e	9	6	6 E	50	22	53	x ē	<u> 7</u> :	60	25	4 6	5	å I Ø	4 2	œ	23	9 12	4
т <i>ч</i> м Г	Z I	r, kr	ir.	¢ (Ξŀ	5	ŀr,	11	a I	-	77	ā	٢	6	z lu	5	y 2	32	N 1 N 1	2	1	ŀ.	M M	c /	=	íć,	æ ;	+	Q 4	æ	95	23	16	52	16	<u>ت</u>	22	20	1	24	-	6	2	=	11	16	
1 MIL ZAN	õ	i a	9.	4 X (=	: G	đ	0.2	<u>,</u>	10	, a	6	91	ā (¢ 0	3	¢	10	æ ĉ	ä	ŝ	10	ē.	r ä	38	¢	23	<u> </u> a	. 6 6	51	80	4 IG X 1	6.9	æ	e	z a	84 C	10	86	еĉ			8 Q	e	<u>6</u> 8	38	a
TMII C	γ e	z 'c	v	23		. 6	a	a	9 (9 (20	, a	đ	44	2.0		<u>e</u> ve	6.	63	<u>0</u> , (c 14	. o.	61	10 Q	ų Ľ	01	đ	æ	2	E	22	57	e 4	s i	38	2	: c	5	4	v	2.4		5 V	A 2	8	2 9	ы	61
TMU Å	ã i	ç a	ЧY М	æ ;		í a	ŝ	5.1	e ;	¢,	<u>ç</u> 2	37	đ	ñ d	=	2	2	13	e ;	9	đ	95	¢,	ž¥	41	đ	<i>z</i> 0	19	35	8	2;	ę ję	£2	e	ŝ	5 G	a٢	5	81	<u>к</u> а	-	, a	e y	18	c c	в	e
טצנו נוצט	a i	, a	5.5	<i>c</i> (-	: [ŝ,	13	in e	= -	<i>2</i>	5	8 18	¢ (s h	ŝ	a	53	đ	ŝ	5	5	M	62	2	11	۲. P	52	5	æ ¦	5	ŝ	5.7	52	s,	5 C	a i	a	5	M a		, a	c c	2	r a	e	a
c SW	v 2	í r	ыć	N. 4	, ,	ŝ	1	1 3	ŗ,	,	: Q	ă	N.			ç Ç	1.7	2	()	. N	2	5	M	(%	5	1.7	č k	1	ŝ	21	4	29	5.1	E.	2	۲r	2.5	2	3.5	<u>ئ</u>		t 9	<u></u> 2	2	7 2	17	17
esw W	<i>c</i> 0	(G	23	æ c	-	<u> </u>	đ	15	œ e	s	12	ž	ъč	R ^e	•	E.	α	31	40	.α	15	4	20	t p	15	54	α (t'e	Ē	2	F F	ę «	47	α	2	t 2	20		œ	F. ª	-	c 00	n a	a ;	1 F	16	15
WS Q	ñ,	Q	18	αĉ	•	5	ir:	ŗ	9 U	28	5	20	1.1	α		. M	15	86	a h	9	13	8	F, e	ćΰ	v:	51	<u>1</u> 2	18	81	£ 8	3	23	87 4	24	N.	ic in	2.7	-	20	E 9		<i>2</i> 0	25	8	e r	18	12
	36	5	1121	<u>a</u> {		19	1112	(III)	all	500	10	5	10		2	18	55	cu	ac	38	cu	1.4	58	33	90	8	55	al I	E.	5		90 90	20	A.	50 10	iã	a d	2	911			: 5	53	3	11	51	i i i
			C	গাও		i ci i	5	0	23				0	a	14. 3	i ai	a	a	014	: 0	Ċ	2 010	51	s 6	10 10	e	юC	0-1-1	ų	6		ч зү.) А	A Sh B	610 0			0 119	45P 6	G	13 H 12 H		55	ti arta arta	110 1	a a	Met A	Tro (1

È.	4	<u>,</u>	ł	a a	r	"2	¥ 9	(<u>9</u>	2	đ	22	ж Х	z 2	120	Ξ	81	a a	ž	~	α. 0	ç «	ŝ	a a	¢ 4	e la	a a	9	4 y	5.9	<u> </u>	10;	47. S	22	6 14 M	đ	a a	45.	1ª 2	81	50
211	<i>.</i> .	z c	10	c e	. 9	G	с. р	5	đ	î; î	e T	ut e Ve	s K	e î	26	Ř	<i>a</i> a	. <i>G</i> .	a	æ i	a	a	а (с М	æ ç	a	æĥ	5	e e	æ a	<i>a</i> a	<i>c</i> 0	z (.) e	2 2	aa	65	۲2 ۲۲	42 42	a a	2	AA
21M	æ (z 1	a	<i>و</i> با		a I	c 1	i c	13	s į	ŝ	a c	5 G	1.0	<i>. a</i>	æ	<i>c</i> 0	a a	đ	<i>a</i> a	- 3	I.	a a	12	11	ы М	Ē	<i>a</i> a	2 4	29	<i>a</i> :	=;	31	E H	31	a FE	<u>م</u> بر	2.2	1.	e e
EIN	a	z 9	0	a a	: a	ž	с с 6	28	5	<u>a</u> c	z c	4 د د	n a	e :	2 2	ä	ь о ,	<u>.</u>	æ	<i>a</i> 0	5 17	54	e õ	οų	3	¢ 0	74	36 27	0.0	31	e e	e a 1	28	2/9	36	¢ 0	r. r.	00	60	z σ.
	e.	, a	a.	G (3	4	G	с. с 1	s (2	irt Qr≠	. t.	ie (z a	e 0	. a	5	e 1.	đ	17	<i>c</i> a	5	2	e i	æ i	55	a a	85	42	6.8		<i>a</i> 0	5 A C	2 9	7 a	34	a a	~ 3 ~ 3	2 2	1	1.7
2.1	n; e	r a	0	n, 1r	h	tr; i	بد . ا	22	G	<u>م</u>	: : :	5	. م	~ 4	t er	4.4	ir; h	. r.	5	o 1	. Ir:	20	<i>م</i> تو	N N	5	40	11	12	10	10	a. 1	200	200	20.	5.5	ω <u>₹</u>	40	6. r.	2	10
20	a	2 9	82	2 0	•	14	a [् २ जन्म	4	<i>c</i> , o	, r	а с 1	r le	æ 1	. 9	4	<i>a</i> a	. <u>7</u>	53	40	t Ir	2	0 Q	4 1	0	0.2	e.	- 10	4 1	4 10	e :		0	igir.	22	o. Ir.	lr o	7 2	N	
20 1 1 1 1	æ.	2 0	52	a a	2	æ,	9 K	. 0	3	ی ک ^ر ار	n La	ic e	: n	9.1	. c	0	o- 0	e a	2	<u>د</u> م	21	α		æŗ		<i>2</i> 2	7	n a	0.4	œ 0		na i	L.	10	5	<i>e</i> 0.	οŋ	σœ		a a
7 F	e c	<i>t a</i>	æ	a a	. a	a i	0, 0	2.4	a.	40	<u>د</u> ب	\$:	, c	r ç	, a	4	<i>a</i> 7	2	æ	5. y	<u>e ye</u>	2	æ 4	æ o	4	<u>م</u>	4	83	<i>a a</i>	43	a 0	64.	• 00	4 4	ŝ	- -	9.92	a		24
пи F 8	<i>a</i> (<i>z c</i>	2	2.6	5	e.	<u>د</u> ا	ç e	=	<i>ع</i> ب	- a.	<u>م</u>	1 5	- C	. c	æ	<i>z</i> 0	. a	æ	c. c	- 7	2	- -	=0		29	-	e. e	<i>z a</i>	n n		ca :			1	e ::	n a			
2 110	æ	. r	7	<i>a a</i>	4	35	а - -	: ::	5	<u>o</u> c		5	e a	<i>z</i> :	. a	a	0 9	: 9:	æ	o. g	. 9.		εŅ	0.9	0	 		<u>.</u>	00	00			5 0. j	y y y	У		ν. •• •	00	0	
14	a i	. 6	52	n u	d						(a	Бе		51	21				M	a a	5 yr.	~	α. (v)	æ g	6	N M	a	nn au Irr, Irr	œ m	P. N	a .	din e			5	G Q	in n M N		2	
11 V.	<i>a</i> :	- 2 (5	ν.	n n	e:	о. •	2 G	E	Y	 	c (r.	Ч	n ie	~ ·	. 0.		- -	m vin	-	n, 0	re Nic	0	~ 	~ ~		- a . a	ιr. α	17: 17 10: 14	00 00	~ 4 ~ 4					m 2	~ a c	• •	4.	4	
19	6.5			e in		e, 1	~ ~	- 14	2	0 4 0 4		ي د د	- . a	~ a u	: i r:		r, ir	; b r;	3	- • •	. In:		- -	10.1	e r	• 0	2	а н. м ис	~ i r.	0 A]		6 6	2	0 h	~ ~		4	<u>ן</u>
1. E	<i>a</i> 0	2 3	e	6 G	ŀ	ic i	-	- A				<i>к</i> (. Ir		x 10	• •	r.	* 0		7	יע ה ה	0 10. N			M	N	0.4				12		M		n, ñ]	
9 a. 2		- . M	С.	" סיני	-	• • •	n n N h	i M	2	(,) (~)		۹.		i e v o	5		~ ~		-	a 2		ř.	- 2		-		4	2	Ť.	F à		12.9			Ĩ	16	-	2	2	22
<u>б</u> а т			ج «	~ ~			- 1-	- T	-	~ •		ю.;				~			ñ -			à	22	10			č	G R	9. F	20		4		4	55	12	~ 0	4 M	4	1
К.					-	21	C K	. r.	5	~	2	ě.	. 2	.2.4	. 2	2	ξe	ur.	2	2.9		8	2 22	<i>a</i> a	9	98	đ	0 G	9E 3E	582	e a	5 <u>7</u> 2		Ξ <u>Υ</u>	đ	8 J 8	e e	a a	18	r a
1	~ {	č			14	4	5 9		2	् ७ भ		9. C				=	29	: œ	2	2.0	, e	<u>ء</u>	4 G	a v	4	<i>a</i> a	a	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	e e	4 4	2.0	<i>a</i> . a	a	z 4	4	aa	c c	22	4	4
a Lin	сę	<u>e</u> m	a	14 IZ	ľ	ē,	2.02		3	° ?	· · c	ŗ,	< 1*	5.0		<u>5</u>	c 'c		~	0,0	140	2	4	м у И	2	ũκ	ž	4 K	2 R.	5 F.	r u	ic i	18	a M	12	<i>a</i> a	o. 0	м 5	25	۲.
064 6	e i	. 9	11	<i>a a</i>	1:	- 1	1 ~	Ř	4	e a	212	ŝ	: 'C	5 C 17 C	e	2	Υ.V.		28	x x	; te	6	с M Q	a :	-	4 7	4	α 'c	\$ 2 2	νř	20	17	12	14	11	y a	55	a 5	4:	==
л. 1	æ ö	2	40	<i>c c</i>	ĥ	4	2 10	4	2	. 5	С	4 c 0 c	: C	7 I 7 I	0	N	<u>e</u> 0	5	45	, r	с г.	S.	A M	a h	ž	o v	ž	8 n	a a	40	44	23	18	32	F.	٩r	8 Z	a õ	29	ŝā
ш7.4 Е	a c	2 2	c	<i>a a</i>	5	ð (i ii	, ir	5	i n	. 9	a c	÷۵	ð a	ĉ	-	2 0	E.	2	- :	ē.	=	22	a :	2	23	z	4 4 0 0	б, а	5 9	F.ª	20	: = '	z ::	a	e ć	92	٩Ņ	=:	- R
ų.	490	000	USU USU	2010	elle.	910	200	ei II i	500		NOR HOR	1010 VUR	Eler	かいな	906	11.14		200	100	a	2.12	1011	18	100	elle		THE	000 100	aari aari	1244	Call Call	200	Lar.	UHI I	liAll	נובה נובה	נווונ	alla alli:	HIL	1111
	B14				110				l	195				14.		ļ	ŝ			a I			2.4		1511			57	r su	015	H15	212	Ace	12		3	e 44	411		a'r

EH	22	4 4	z	20	^c r	5	28	5	e,	~	6 , 1		. r.	22	~		ĻΝ	æ	1	2	: <u>(</u>	112	57	e ¦	20	ća	¢	ង	() i r () •	e e	ή	r 6	e	4	0 4	r.,	ľ	4	ľ.	5	90		5 92	9	94	· ^	12	æ
PSM H28	a	e		z a	с 8)	æ	í, a	59	Ø	e,	81	e a	¢	4	٤	29	Ċ	. 6	Ē	2 (r ä	E	6	æ e	2 9	6	9	5	æ 0	6	9	£) &	62	æ	n 63	82	e a	4	10	9	φ. 00	00	E q	. e i	æ ç	10	28	æ
PSH H2A	œ	N.M.	æ	÷.	e '9	αţ	4 V 4 V	2	æ	16	<i>ا</i> و	x a	4	œ	œ	c c	(Q	: oc	15	4 (r a	24	4	æ ;		2	16	Ŧ	æ r	R	8	4 K	49		ę α	œ (200	20	16	œ !	<u>د</u> ۵۰	æ (20	c 00	9 7 C	16	80	8
PSM H1	ø	12	6	2:	60	•	1	í a	ø	12	e i	22	1	æ	æ	<u>،</u> ز		18	21	æ (22	35	4	5	• :	27	52	æ	7	10	2	35	12		1	2:	1	4	27	2	20	•	z 7	<i>, 6</i>	2 G	90	12	æ
SAP	ĸ	53	4	6,	e,	а, 1	, a	(A.	18	14	λ;	2	12	ĸ.	ă	4 :	- 10	37	24	- :	- ^	er.	28	4 (ě.	1 1	8	82	<u>ه</u> ۲	. N	21	24	a	=	2 4	23		2	8	<u></u>	: *	~ ·	4	* C	8	38	32	14
FC0	ø	e	æ,	0 0 0	50	e.	s o V	ç a	æ	œ	e	00 G	23	œ	đ	e (2 0	: 10	4	e į	<u>`</u> a	22	đ	e (10	0 Q	đ	2	80 a	c 00	67	188 8	æ	æ	50 G	æ	177	6	42	~	£ 6	•	si.	5	e i	82	52	ø
ECO	æ	30	e i	19 19	z a	e.	Σļ		v	e	æ	ic V	c 92	¢	æ	e ;	é a	40	=	<i>a</i>	ŝa	04	81	4 (0 l	ŝ	z g	æ	2	2	n a	43	Ňď	k	2	<u>.</u>	6	2 5	2	20	8	2 G	6	z ș	e 8	e ș	9 81	38	8
L1 FCD	æ	21	æ	10 C	z a	e.	4 0	, a	ø	ø	e	D . C	E	1.3	đ	4	ž a	5 9	4	a ¦	k a	4	4	2		5 N	đ	62	6) C	e N.	69	98 14	25	æ	4 4 M	0,1	20	0	47	4	20	æ	z.	4 M	69 6	94	56	9
111	æ	7	đ	4 4	z a	•	z g	đ	ø	a	9	e M	. 1	¢	N	æ	í a	i le M	h.	<i>a</i>	د م ان	2	IC.	æ	÷	. 4	e	54	4 M) P	. 4	28	۲.	2	a	- -	æ	D Y	3	32	N	~ ~	~	B (ي م	æ;	22	35	B
1 40	11	S8	۰c	le P	× G	-	х с 1	s v	4	2	11	23	22	2	14	M I	55	- °C	k	2	. a	4	61	5	x P	7 N	:=	17	αų	68	22	80	1	o.	2 V 14	=	xo	(4	61	58	× 7	-	6	~ ~	h. :	<u>, 8</u>	22	s
RKU PT	æ	¢	æ	a ;	4 ~ ~	æ	e ç	4	32	15	12		5 V.	s to	v	بى		6 M.	k	18	εĶ	9	s Ve	æ	22	x a	y ve	e	21	6 Y	18	20 A	-	8	ς, κ. - α	2	2	in M	52	4	22	7	53	200	20	۲ م 1	41	41
2.41	ø	¢	đ	o j	₹G	0	4 7	• 1	5	56	ĒΙ	o. c	5 Y	0.	62	£I	ę	5 G	0	٤ı	a 7	1	El	æ	65	7. P	, o ,	2	ي ج	20	1ž	7 O	13	7	25	0.1	2	5	21	æ	27	e		4 M	o, c	2	0	56
540	a	¢	¢	e e	27	=	κa	1	N.C	92	11	60	5 17	0	28	21	,	5 F	-	0 . I	εų	23	-	¢	~6		4	28	80 29	5 N	56	φu C		23	6 0 0 0	0.1	•	1	50	2	D. 10	æ		Ð 7	<u>.</u> .	5 M	6	50
141	đ	đ	M	e (2 4	le.	× •		. 0.	52	y'	٥٥	5 4	α	17	92	ņ,	s M	92	4	a 1	-	M	đ	36	y u	8	7	Ξ,	×α	42	5	6	e ,		k :	200	0 V 0 M	98	5	<u>*</u> `	=	αŀ	ي 80 28 ر	œ e	e Me	22	8
540	đ	ø	æ	a į	2	2	z ç	(F	44	12	B	60	e N	æ	y	¢ į	2	٢Ŭ	k	đ.	æö	22	v	e j	2	4 4 4	5 VO	12	2.	s v	21	69 6 9	2	23	2	æ	2	5 M		5	0.0	4	2	200	20	e (1	52	35
54A 57	a	n i	n,	æ	£ 2	=	z i	5 M	6	44	14	w e	5	e	22	16	20	1 7	4	91	æ o	¢	α	a j	44	4 9	22	61	r. e	v į	8	50 20	P	U.	20	œ		50	6	46	2 2	9	2	N 10	16	6 G.	27	16
434 CRN	63	1. 1	đ	a (z 4	θ	4 0	2	6	4	4	<i>c</i> .	5 4	æ	e,	a	4	+ 0	a	æ	0,0	4	5	62	4	S a	e.	- 62	4	z a	6	12	-	æ	68	•	Ð,	1	0	4	<u>4</u> a	æ	•	4 4	e e	5	29	14
474	31	21	æ	2	= 7	12	23	z v	đ	ĩ	1.1	æ;	ā	Ē	10	10	<u>,</u> ,	z ğ	ä	đ	ž a	: A	đ	E		<u>,</u> a	e.	ä	e ;	<u>,</u> 9	4	44		ä	22	æ	z	1 A	Ē	2	c a	æ	æ	~ ~	a :	4 6	42	IE.
LAW	M	1.4	M	æ (z M	~	M P	ž ľ	N	M	~		14	N	a	74		t N	44	M	ž i	42	24	đ.	2	- () - N	ä	ä	æ i	\ 9 2	Ø	22	44	R	50	~	z	50	44	41	r ř	2	re le	<u>=</u> :	m	3	22	412
CRU	ň	ĨΣ	đ	<i>a</i> (z a	a	r, 1	í a	r,	đ	a	a i	2 9	12	15	42	ę.	z r	2	5	r a	44	51	11		27	ř	đ	12	2 9	ŝ	ŝ	44	æ	4 7 G	2	r;		a	46	a y	a	aļ	2 2	F. :	2 6	15	a
NU	31	51	a	20	z 2	a	<u>z</u> ;	2 0	đ	16	e.	a i	e g	ä	10	1.0	20	z ä	10	¢	ā a	12	đ	2	6	2 9	3	æ	æ ç	z a	2	4 4 C 0	1	ä	<u>7</u> 7	æ	± ;	ŝ	4	ä	a a	a	a	<i>ه</i> م	a i	4 G	42	112
NO.1	a	4	æ	43	- 4	4	x •	4 6	ŝ	4	21	<u>, </u>	5 M	5	21	21	r,	4 C	74	đ	4 k	32	2	a j	2	4 č	5	22	4.	40	4	5.0	æ	22	œ g	e.	4	e v	2	12	<u>5</u> 5	œ	4	27	4	0 M	74	13
	an Ca	50	55	5	g ig	đ	5		en en	511	1.4	5	11	ę	120	104		12	50	55	52	E B	ę	20		g G	i i	1511	4II	110	(iii)	90	10	110	au	ar	III III	Id	ar.	AU		22	100		a)		111	<u>(</u>
	Ara C	0	0	0	a a	1101	00		z	2	1 105	23		D C	a	Thr A	u <	10	0.0	2	~ •	012	e			2 U 7		9	2 160	20	: 0	4 27	A nat	a		HIS			940 1	9		1 ST()	2	a = equ	110 0	τα	Mat A	Tro U

.

Fig. 2 (iii)

US1 MUH		2	10	, a	. a	18	۴	4	S	6	0	æ	6	96	4	2	¢,	6	20 C	5,5	<u>.</u> .	٩	c .		2	4	5	ie	¢	æ	54	œ '	æ	æ,	e ;	4 G	١	e đ	36	٩	00	12	12	<u>ч</u>	÷	<u>y</u> u	2	7	ά,	-	4 – 2 V	5	4 û	E.	16
HUM PGH	•	. o	. 0	, tr		53	6	46	2	o .	ir;	æ	2	35	ir)	4	23	2	29	<i>.</i> .	r, 1	r	v 0	5 6	: a	•	ŝ	đ	4	a	2E	4	•	e :	-	~ a	-	n N M	42	æ		2	ir.	2:2	-	÷, •	20	4	4		4 °	•	() ()	4	0
HUM BGL	•	6 9	5 9	9	. G	53	Þ	23	86	ø	æ	æ	æ	5	æ	e,	5	2	î h	3	E (c	ġ	5 9	29	gla	5	e	38	æ	61	¢	F .	e i	2	- k	1	3 1 3	38	œ	a i	4	15	2	Į,	C 8	¢	13	e i	2	3 8	<u>م</u>	a a	8	5
HUM	•	5 9	5 9	9	1	12	Þ	0 ,	~	o,	θ	17	~	32	0 1	2	æ	D , R	_ 0	<i>.</i> (65	9	50	\ 0	` 0	ŕ	•	0	م	đ	0	a j	2	21	Ŗ,	ç	ŗ	88	35	æ	0 V	24	17	2:	1	њ (с	-	4	æ.;	ì	ç 1	o 1	0,9	26	æ
ROU CBL	d	5 6	ç 0		4	00	•	5	4	œ	0	4	æ	5	11	4	4	-	5	29		•	6 G	2	ļ	6	44	42	11	4	61	2	=	e (⁰⁰ 1	5, T		* %	23	4	4 4	1	4	2	ž	ŝα	5	α	ř.	4	<u>2</u> 4	e :	~ a	19	5
RAB RGL	¢		5 9	. q	đ	21	æ	4	110	6	æ	ø	a	21	æ	21	e j	N,	z ;	4	5	•	- a	9		j,	41	, N	4	a	4	N	r,	<i>a</i> :	2 :	n n X	ł	3	22	22	æ i	17	22	22	4	N.N	4	ĸ	đ I	ŀ	ŧñ	æ	e 1.	~	4
RAB AGL	•	. 9	51	. N	. a	ĸ	e	4	66	æ	ø	~	æ	8č	æ	21	2	~	÷;		5	2	5 6 N	3.	. N	-	. 2	-	N	a	52	æ	~	æ	•	~ a		27	12	~	G 1	12	ĸ	12	č	ž a	h	14	~ •	=	è e	ء ا	2	~	~
847 PP1	•	5 0	• 0		g	a	a	28	183	61	æ	0	æ	2	æ	e.	0	•	7. Ç	20	5 0	z k	, <u>c</u>	2	2	þ	2	a	6	0	19	2	2	æ	2	4 0	•	5 °	61	٩	00 M	2	æ	21	ē	· 2	1	θ	22	2	χo	æ	• •	0	61
RAT PLH	•	6 9	5 9	e in	ç a	æ	R	œ	θE	38	ø	15	æ	ŝ	æ	5	œ	-	2 0 C	b (5		5 0		28	5	4	G	53	53	æ	œ	œ	æ j	N,	ို့ရ	2	E M	51	2	95	32	5	8	2	÷ 9	5	53	œ (x o	z a	2	4 M	15	α
RAT GH	8	200	ç #	, o	, lin	n Ins	æ	۲Ŀ,	å	lr)	ir,	0	o ,	4	o'	tr, j	E.	r	Ð,	5	z (>. a	00	ġ	0	þ	2	0	4	r,	4	4	•	æ	•	D, G		26	14	•	0.0	4	æ	<u>:</u>	2	4 / 10	2	61	7.	,	; ñ	2	1	38	7
a 19 Sim	¢	ē		56	3	0	e	21	21	æ	æ	æ	æ	2	æ	e :	4	æ	Ð.,	5	•	5	5 4	20	; a		21	5	æ	ø	4	2	ົລ	\$		4		44	53	æ	a i	\$	đ	e i	-	ñ 9	4	a	<i>a</i> (z (2 Y	e ;	4 (12	10
RGL	¢		- 1	. q	. a	4	ŀ	27	62	r	a	7	a	4	đ	2	2	~ŀ	÷.;	2	÷;	7	6 1	. a	1	ŗ	ŝ	a	5	12	8)¥	æ,	ົ	æ	2	6 4 6 7	ŀ	~ <u>8</u> 9	10	2	æ,	4	14	~;	ì		à	a	. 1	1	ĩ'n	۲	4 1.	14	2
SUM	¢	5 1	. 9	9	5 N	. n .	a	20	51	ĸ	N	æ	r	E.	æ	59	5	2	21	3	• ;	-	5	5 N	. v	0	M	Ņ	51	r	92 5	N. 1	٩	æ ;	5	ća	e r	36	0.2	چ		14	21	21	2	ęŗ	24	a	ď,	z (ç z	~ ;	4 M	26	X
MUS UL 4	¢	5 0	c 0	0	2	N N	æ	53	53	16	53	23	œ	54	æ	3	M.	2	°C ;	Ę,	æ i	4	é o	c 0	• a	-	2	¢	16	k	23	¢	F.	¢.	2	2 9	5	<u>,</u> 00	œ	æ	5	a	đ	F. 1	×	5.0	2	٤d	æ ;	ž	Č Ř	2	F 6	16	12
2 JU SUM	`	۰ <i>۱</i>	6 9	. 9	с (đ	42	4 00	8	21	81	æ	30	ά	æ	24	2	5	4	ŝ,	5	ŝ	4	6 9	- 2	-	, a	e	40	4	e.	2	÷	æ	8	0 7	ŀ	c 'c	2	۲	Υġ		21	5.	c	2 6	24	5	5	4	¥.2	ă	22	18	YE.
L J L J	`	c 4	. 9	0 9	s vo	0	È	4	23	v	'e	æ	5	2	v	53	12	2	40	Ň	•	à	N 4	9	i r	1	1	đ	33	20	v	\$	2	e j	N I	Q 1	- 2	U M	52	2	k P ç	9	5	2	3	200	2	2	a i		ζ, c	2	~ ~	ø	62
U.C.	•	D e	. 0	9	. 9	0	e	0	0	đ	σ,	5	36	2	2	0	5	82	2.	Ş	7	÷	65		, a	-	ő	đ	5	o	01	đ	•	0	22		: 9	. 4 V V	4	ő	0 Ç	0	9	21		28	2	2	۰ :	2.) a	Z.	0.0	0	0
K2 K2	¢	• •	5 Q	. 9	: ^	5	~	0	9	a	æ	17	72	0	æ	7	ž	5	7	2	z (¢	20				i d	a	đ	4	0	21	2	6	~ 1	í a	-	7 O	36	2	u v a a	0	17	24	=	2 F	26	4	<i>a</i> ;	4	, M	æ	<u></u>	21	Уč
Gal	•	5 4	9		20	¢	•	22	% %	ć	α	ė.	51	21	M.	8	N.	2	23	z	z (3	č h	9	e y		i n	a	20	2	10	r.	α	21	2	t n	9	23	18	ž	5	α	10	4	2	2 6	ă	x	M. I	-	22	œ	4 2	42	α,
EH UAS	ę	5	r 9	ģ) a	2	5	ā	2	Вć	æ	đ	a	ä	Z	ä	e.	æ,	2	5	z	Ξ.	E 8	í a	. a	R	0	a	4	96	9¢	ž	2		2	2 9	5	33	z	æ	a o	9	a 1	ā i	4	z a	00	e	<i>z</i> .	=	í a	a :	ā š	18	a
NdS NdS	•	c †	ę	e ð	t a	16	¢	5	ž	16	đ	15	15	α	a	16	α	œ	æ i	£ !	<u>د</u>	2	<u>e</u> 4	5	: a	c e	1	¢	4		55	15	Ň	=	4	24	5	3.5	41	¢	<i>4</i> 0	0	α	E.	×	2 Q	12	α	<i>a</i> (=	z v	<i>a</i> :	4 a	8	æ
				30	010	9110	LIII.	Cinc	000	cuu	uua Anna	SUD	11:4	000	non	non	AGC	111	80.8 80.8		50	1.11	16			200		ŝ	1105	51.4	USD I	222	100	CITP CITP			24.4	100	aar.	IIII		.0	CAU	SAD	, E.	10	100	Idi	1215	11.11		alita		31115	16.6
		5				-	110	,		,	2		10	-	-	-	-		È.	-			5			Ę			-	E	Ĩ	~	-	1				š	Asn.		5	Hic	-			9.9	74		248			4	- 4	Mate	7.0

64

REFERENCES

- 1. Grantham, R. (1978) FEBS lett. 95, 1-11.
- 2. Benzécri, J.P. (1973) In L'Analyse des données 2. l'analyse des correspondances, Dunod, Paris.
- 3. Hill, M.O. (1974) Appl. Statist. 23, 340-354.
- 4. Grantham, R. and Gautier, C. (1980) Naturwissenschaften, in press.
- 5. Grantham, R., Gautier, C. and Gouy, M. in preparation.

- Garel, J.P. (1974) J. Theor. Biol. 43, 211-225.
 Osterman, L.A. (1979) Biochimie 61, 323-342.
 Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Merregaert, J., Min Jou, W., Raeymakers, A., Volckaert, G., Ysebaert, M., Van de Kerckhove, J., Nolf, F. and Van Montagu, M. (1975) Nature <u>256</u>, 273-278.
- 9. Min Jou, W., Haegeman, W., Ysebaert, M. and Fiers, W. (1972) 247, 82-88.
- 10. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raeymaekers, A., Van den Berghe, A., Volckaert, G. and Ysebaert, M. (1976) Nature 260, 500-507.
- 11. Escarmis, C., Sastry, P.A. and Billeter, M.A. (1978) J. Biol. Chem. 253, 8390-8396.
- 12. Jonard, G., Richards, K., Mohier, E. and Gerlinger, P. (1978) Eur. J. Biochem. 4, 521-529.
- 13. Guilley, H., Jonard, G., Kukla, B. and Richards, K.E. (1979) Nucleic Acids Res. 6, 1287-1308.
- 14. Guilley, H. and Briand, J. (1978) Cell 15, 113-122.
- 15. Sanger, F., Air, G., Barrell, B., Brown, N., Coulson, A., Fiddes, J., Hutchinson III, C., Slocombe, P. and Smith, M. (1977) Nature 265, 687-695.
- 16. Fiddes, J.C. (1977) Sci. American 237, 55-67.
- 17. Shaw, D.C., Walker, J.E., Northrop, F.D., Barrell, B.G., Godson, G.N. and Fiddes, J.C. (1978) Nature 272, 510-515.
- 18. Godson, G., Barrell, B., Staden, R. and Fiddes, J. (1978) Nature 276, 236-247.
- 19. Sugimoto, K., Sugusaki, H., Okamoto, T. and Takanami, M. (1978) Nucleic Acids Res. 5, 4495-4510.
- 20. Van Wezenbeek, P. and Schoenmakers, J.G.G. (1979) Nucleic Acids Res. 6, 2799-2818.
- 21. Huselbos, T. and Schoenmakers, J.G.G. (1978) Nucleic Acids Res. 5, 4677-4698.
- 22. Mc Connell, D.J. (1979) Nucleic Acids Res. 6, 3491-3503.
- 23. Sauer, R. (1978) Nature 276, 301-302.
- 24. Schwarz, E., Scherer, G., Hobom, G. and Kössel, H. (1978) Nature 272, 410-414.
- 25. Scherer, G. (1978) Nucleic Acids Res. 5, 3141-3156.
- 26. Grosschedl, R. and Schwarz, E. (1979) Nucleic Acis Res. 6, 867-881.
- 27. Fiers, W., Contreras, R., Haegeman, G., Rogiers, R., Van de Voorde, A., Van Heuverswyn, H., Van Herreweghe, J., Volckaert, G. and Ysebaert, M. (1978) Nature 273, 113-120.
- 28. Reddy, V.B., Thimmappaya, B., Dhar, R., Subramanian, K.N., Zain, B.S., Pan, J., Ghosh, P.K., Celma, M.L. and Weissman, S.M. (1978) Science 200, 494-502.
- 29. Dhar, R., Seif, I. and Khoury, G. (1979) Proc. Nat. Acad. Sci. USA 76, 565-569.
- 30. Valenzuela, P., Gray, P., Quiroga, M., Zaldivar, J., Goodman, H.M. and Rutter, W.J. (1979) Nature 280, 815-819.

- Charnay, P., Mandart, E., Hampe, A., Fitoussi, F., Tiollais, P. and Galibert, F. (1979) Nucleic Acids Res. 7, 335-346.
- 32. Farabaugh, P. (1978) Nature 274, 765-769.
- 33. Post, L.E., Strycharz, G.D., Nomura, M., Lewis, H. and Dennis, P.P. (1979) Proc. Nat. Acad. Sci. USA <u>76</u>, 1697-1701.
- 34. Sutcliffe, J. (1979) Proc. Nat. Acad. Sci. USA 75, 3737-3741.
- 35. Hensgens, L.A.M., Grivell, L.A., Borst, P. and Bos, J.L. (1979) Proc. Nat. Acad. Sci. USA 76, 1663-1667.
- 36. Smith, M., Leung, D.W., Gillam, S., Astell, C.R., Montgomery, D.L. and Hall, B.D. (1979) Cell <u>16</u>, 753-761.
- 37. Schaffner, W., Keenz, G., Daetwyler, H., Telford, J., Smith, H. and Birnstiel, M. (1978) Cell 14, 655-671.
- 38. Sures, I., Lowry, J. and Kedes, L.H. (1978) Cell 15, 1033-1044.
- 39. Mc Reynolds, L., O'Malley, B.W., Nisbet, A.D., Fothergill, J.E., Givol, D., Fields, S., Robertson, M. and Brownlee, G.G. (1978) Nature <u>273</u>, 723-728.
- 40. Seidman, J., Leder, A., Nau, M., Norman, B. and Leder, P. (1978) Science <u>202</u>, 11-17.
- 41. Hamlyn, P.H., Brownlee, G.G., Cheng, C.C., Gait, M.J. and Milstein, C. (1978) Cell <u>15</u>, 1067-1075.
- 42. Bernard, O., Hozumi, N. and Tonegawa, S. (1978) Cell 15, 1133-1144
- 43. Tonegawa, S., Maxam, A.M., Tizard, , Bernard, O. and Gilbert, W. (1978) Proc. Nat. Acad. Sci. USA 75, 1485-1489.
- 44. Seidman, J.G., Max, E.E. and Leder, P. (1979) Nature 280, 370-375. 45. Rogers, J., Clarke, P. and Salser, W. (1979) Nucleic Acids Res. 6,
- 3305-3321.
- 46. Konkel, D.A., Tilghman, S.M. and Leder, P. (1978) Cell 15, 1125-1132.
- 47. Roberts, J.L., Seeburg, P.H., Shine, J., Herbert, E., Baxter, J.D. and Goodman, H.M. (1979) Proc. Nat. Acad. Sci. USA 76, 2153-2157.
- 48. Seeburg, P.H., Shine, J., Martial, J.A., Baxter, J.D. and Goodman, H.M. (1977) Nature <u>270</u>, 486-494.
- 49. Gubbins, E.J., Maurer, R.A., Hartley, J.L. and Donelson, J.E. (1979) Nucleic Acids Res. 6, 915-930.
- 50. Ullrich, A., Shine, J., Chirgwin, J., Pictet, R., Tischer, E., Rutter, W.J. and Goodman, H.M. (1977) Science 196, 1313-1319.
- 51. Heindell, H.C., Liu, A., Paddock, G.V., Studnika, G.M. and Salser, W.A. (1978) Cell <u>15</u>, 43-54.
- 52. Efstratiadis A., Kafatos, F.C. and Maniatis, T. (1977) Cell 10, 571-585.
- 53. Nakanishi, S., Inoue, A., Kita, T., Nakumura, M., Chang, A.C.Y., Cohen, S.N. and Numa, S. (1979) Nature 278, 423-427.
- 54. Fiddes, J.C. and Goodman, H.M. (1979) Nature 281, 351-356.
- 55. Marotta, C.A., Wilson, J.T., Forget, B.G. and Weissman, S.M. (1977) J. Biol. Chem. 252, 5040-5050.
- 56. Martial, J.A., Hallewell, R.A., Baxter, J.D. and Goodman, H.M. (1979) Science <u>205</u>, 602-607.
- 57. Shine, J., Seeburg, P., Martial, J., Baxter, J. and Goodman, H.M. '1977) Nature 270, 494-499.