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Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the
effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy
for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-
associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells.
Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential
to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing
parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design,
targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during
the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient
information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is
being made towards achieving this goal.

1. Introduction

Over 50 million women who live in areas of high malaria
transmission become pregnant every year, and thousands of
these women die [1]. Women in their first and second preg-
nancies are at particular risk of infection with Plasmodium
falciparum, which is a major risk factor for maternal and
foetal mortality and is implicated in 75,000–200,000 infant
deaths per annum [2, 3]. Selective accumulation of parasites
in the placental space results in maternal anaemia [4–6]
and infant low birth weight (LBW) [7–13] through preterm
delivery (PTD) [12, 13] and intrauterine growth restriction
(IUGR) [7, 10, 12, 13]. Malaria demands up to 5% of the
gross domestic product in sub-Saharan Africa [14].

Pregnancy-associated malaria (PAM) infection is one ex-
ample of a severe malaria syndrome, mediated by the surface
expression of variant surface antigens (VSAs) of P. falciparum

parasitised red blood cells (pRBC) that allow adherence to
vascular endothelium. In non-pregnant individuals, VSAs
adhere to the ubiquitous endothelial surface proteins inter-
cellular adhesion molecule-1 (ICAM-1) and CD36 or to
other pRBC or form rosettes around non-infected RBC.
Under high transmission settings with favourable breeding
sites for the vector Anopheles mosquito, adults acquire
natural immunity to VSAs, rendering them asymptomatic
[15, 16]. In contrast, women who are immune to these
parasites also display adverse consequences of infection when
they become pregnant; this has contributed to the previous
belief that pregnancy represents an immunocompromised
state.

Regardless of the extent of previous exposure to
P. falciparum during pregnancy, all pregnant women are at
increased risk of malaria and appear to be more attractive
to mosquitoes [17, 18]. Marked differences in symptoms
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are apparent between varying levels of transmission; PAM
in areas of low transmission can result in severe infection
and lead to foetal and maternal death [19, 20]. In these
symptomatic women, fever can induce uterine contractions
and increase the likelihood of PTD [21]. The presence of
symptoms results in prompt diagnosis and management
which reduces the incidence of unfavourable pregnancy
outcomes [22]. In contrast, women living in areas endemic
for malaria and hence possessing prior immunity tend to be
asymptomatic in pregnancy but harbour high, undetected
parasite levels in the placenta [16, 23]. PAM affects these
women in a gravidity-dependent manner: primigravid (PG)
women are more susceptible than multigravid (MG) women
[24]. After correction for age-related susceptibility, this trend
has been reported consistently and is more pronounced with
increasing transmission [25, 26].

PAM is managed during pregnancy with intermittent
preventive strategies using chemotherapeutic medications
or insecticide-treated nets. The World Health Organization
recommends that insecticide-treated nets and intermittent
preventive treatment (IPTp) should be used during preg-
nancy [1, 22]. IPTp consists of two doses of sulfadoxine
and pyrimethamine in the second and third trimesters [27].
A recent systematic review [28] demonstrates limited pro-
tection from PAM in some malaria-endemic regions. While
sulfadoxine-pyrimethamine treatment remains effective in
West Africa, and more so in three doses than two [29],
there is a need for novel interventions. Current efforts
to control the incidence of malaria infection are being
hampered by rapidly increasing numbers of insecticide-
resistant mosquitoes and treatment-resistant parasites [30].
Hence, production of a vaccine to protect women in high
risk areas is an urgent public health priority. This paper aims
to address our current understanding of this subject and to
determine whether enough is known about the interactions
between parasite and placenta to consider this a realistically
attainable feat.

2. What Is Placental Malaria and
Why Does It Occur?

Placental malaria (PM) is a subset of PAM which refers to
the pathological process whereby pRBC and inflammatory
cells accumulate within the intervillous space (IVS) of the
placenta. At delivery, PM can be measured by micro-
scopic examination of stained slides of placental blood, by
histopathological evaluation of placental biopsies [31] or
by semiquantitative polymerase chain reaction (PCR) [32].
Examination of blood smears is rapid, cheap, and easy but
does not allow assessment of past infection [33], whereas this
is possible with both histological visualisation of parasites
and PCR-assisted grading of pigment deposition. Both the
latter two methods have enabled recent determinations of
how long parasites may survive in the placenta: Leke et al.
[34] reported that the same parasites may be detected up to
98 days before delivery through PCR examination of parasite
polymorphism. Histology does not provide an accurate
diagnosis; absence of parasites or pigment at histology does

not necessarily mean that infection has not occurred [35].
Lack of effective and reliable measures to diagnose placental
pathology during pregnancy limits comparisons between
studies [33].

2.1. Peripheral and Placental Parasite Dynamics. It is neither
practical nor ethical to investigate placental parasite densities
during pregnancy due to the risk of inducing foetal loss.
However, placental parasite densities at term do not appear
to correlate with densities of parasites in the peripheral blood
which complicates diagnosis during gestation. Observations
that densities of parasites in the placenta may be far higher
than the densities in peripheral blood samples suggest that
parasites accumulate selectively in the IVS [8, 33]. The
IVS forms from the lacunae between foetal-derived syncy-
tiotrophoblastic villi, which emerge following fertilisation
and implantation of the blastocyst [36–38]. The placenta is
complete by the end of the 16th week of gestation. Placental
trophoblast invades the uterine wall, gaining blood supply
from the spiral arteries that pass through the endometrium
[38].

Placental parasite dynamics in the first trimester are not
known. A recent cohort study that examined the effects
of timing and frequency of P. falciparum infection on
pregnancy outcomes in 2,462 subjects was unable to evaluate
the effects in early pregnancy because only six women
in their first trimester attended the antenatal clinic where
recruitment was taking place [39]. This small number was
excluded from the study, but this demonstrates the difficulty
in gaining this stage of gestation. Density of peripheral
parasites peaks between 13 and 16 weeks of gestation,
suggesting that susceptibility to PAM is increased in the
first trimester [8, 40]. In addition, poor placental outcomes
are associated with earlier placental infections [41]. The
peak in parasitaemia was first identified in a large group of
women living in areas of high transmission [8]. Although
this figure is highly cited, the reliability of this finding is
limited by the two methods used for determining gestational
age; calculation from last monthly period is affected by recall
bias and fundal height measurement is unreliable before
24 weeks of gestation. Furthermore, malaria is known to
cause IUGR and therefore a reduction in uterine size, leading
to inaccuracy when utilising the latter as a determinant.
The reasons for the discrepancies in foetal measurements
between studies have been reviewed recently elsewhere [42],
and these inaccuracies demonstrate a need for standardised
methods for the provision of comparable data. The use of
ultrasound to determine gestational age is more accurate,
and it is hoped that increasing use of this method will
provide more robust results [43]. Subsequently, a decrease
in peripheral parasite density was reported after 16 weeks
of gestation [8]. The authors termed this “recovery from
infection”. However, it was observed that this reduction in
peripheral levels coincided with completion of placental
development, leading to the conclusion that parasites may
sequester in the placenta at this time [44]. Of note, both PG
and MG women “recovered” at the same time, supporting
this hypothesis [8]. Following delivery, women appear to
undergo rapid clearance of parasitaemia [45], and evidence
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suggests that subsequent to this they are at risk of peripheral
infection [40].

2.2. Why Do Parasites Sequester in the Placenta?. In preg-
nancy, the dominant receptor for adhesion is thought to be
the chondroitin sulphate A (CSA) component of the chon-
droitin sulphate proteoglycan (CSPG) [46–50]. Placental-
parasite variants that adhere to CSA show an absence of
binding to CD36 and ICAM-1 ligands, in contrast to parasite
variants taken from infected non-pregnant women [51–
53]. Selection of pRBC that adhere to CSA in vitro leads
to the loss of antigens that bind to CD36 and ICAM-1;
hence, it is thought that parasite variants that bind to CSA
are mutually exclusive to those that bind to ICAM-1 and
CD36 [47, 53–55]. In some instances placental parasites have
displayed binding to both CD36 and CSA [56]. This is an
infrequent observation and may result from the presence of
two antigenically distinct variant molecules on a single pRBC
[57]. However, mounting evidence supporting the mutually
exclusive behaviour of antigen presentation suggests that this
is unlikely [52, 58–60]. Placental-binding isolates are unable
to form rosettes and do not agglutinate when exposed to
immune serum from non-pregnant individuals [53, 61–64].

CSA is a sulphated glycosaminoglycan (GAG) present
on the syncytiotrophoblast in the intervillous space of the
placenta, located as a side chain on the tissue anticoagulant
thrombomodulin [65]. It appears during the 16th week of
pregnancy with the completion of the placenta. A plethora of
functions for proteoglycans have been identified, including
regulation of cell proliferation, differentiation, and adhesion,
as reviewed in [66]. Binding to placental CSA may alter gene
transcription or signal transduction or activate intracellular
signalling mechanisms that lead to increased expression of
inflammatory mediators [66–68]. CSA is expressed by nearly
all cells but it is unclear why parasites bind only to CSA
expressed by the placenta, although this may be explained
by the specific patterns of sulphation of placental CSA and
the structure it forms on the trophoblast membrane [69].
Previously, other placental molecules, such as hyaluronic acid
(HA) [70], have been implicated in placental binding of
pRBC [47], and some parasite lines have been shown to have
affinity for three receptors; CSA, HA, and CD36. However,
the strength of binding does not match that of CSA-parasite
adherence alone [71].

2.3. VAR2CSA: A Novel Antigen in PAM. It is now well
established that the parasite protein able to adhere to CSA in
the placenta is VAR2CSA coded for by the var2csa gene [58,
72]. This protein is a member of the P. falciparum erythrocyte
membrane protein 1 (Pf EMP1) family [16, 73]. Encoded by
the var multigene family, Pf EMP1 molecules vary greatly
between variants and strains, but each protein retains its
C-terminal intracellular domain, an extracellular domain,
and a single transmembrane helix [74]. The ectodomain,
responsible for discrete receptor-binding properties, consists
of multiple duffy binding-like (DBL) domains and cysteine-
rich interdomain regions (CIDRs) [74–76]. Table 1 summa-
rizes the lines of evidence that support the role of VAR2CSA.

Table 1: Evidence providing support for the integral role of
VAR2CSA in placental malaria.

Evidence Reference

Placental parasites selectively transcribe the var2csa
gene

[58, 72,
84]

The var2csa gene is relatively conserved between
PAM variants

[58, 85]

The var2csa gene is required for pRBC to adhere to
CSA

[86]

If the var2csa gene is knocked out or deleted,
adhesion to CSA no longer occurs

[84, 87]

VAR2CSA is selectively expressed on the surface of
pRBC that are identified in PM

[88]

VAR2CSA binds specifically to CSA expressed on the
placenta

[89, 90]

Men and non-pregnant women do not produce
VAR2CSA-specific IgG

[62, 88]

Levels of VAR2CSA-specific IgG correlate with parity [88, 91]

High levels of VAR2CSA-specific IgG protect from
adverse outcomes

[88]

VAR2CSA is a target of naturally acquired IgG
reactive with the surface of placental pRBC

[92]

VSAs that are thought to specifically cause disease in PAM,
such as VAR2CSA, are collectively referred to as VSAPAM [77].

2.4. Infection with Other Human Malaria Species. Infection
with P. vivax during pregnancy is associated with maternal
anaemia and foetal LBW [78–81], but is not thought to
increase the risk of PTD [79]. Pregnant women are at
increased risk of infection with P. vivax, although this species
does not appear to sequester in the placenta [35]. P. vivax is
suppressed by co-infection with P. falciparum, although co-
infection may lower the risk of severe anaemia [32, 82]. Little
is known about placental infection with P. malariae, P. ovale,
and P. knowlesi: both P. ovale and P. malariae can infect
pregnant women, but pregnancy does not appear to increase
susceptibility to infection with these species [7, 80, 83].

3. What Antibody Protection Is Acquired?

3.1. Antibodies to VSAPAM . Prior to the appearance of
the placenta during pregnancy, women are not exposed
to VSAPAM-expressing variants and therefore lack specific
antibodies [47, 62]. Serum taken from MG women with
previous exposure to these variants has been shown to inhibit
adhesion of pRBC isolated from PG women [47, 62, 93–95].
Inhibition of binding was assumed to be protective because
these same women proceeded to have several additional
successful pregnancies [62]. In contrast, immune sera from
PG women and adult men, with no previous exposure to
VSAPAM-expressing variants, could not prevent binding to
CSA [62]. Levels of pregnancy-specific antibodies have been
correlated with the degree to which binding of pRBC to CSA
is inhibited [63, 95, 96].
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Levels of protective antibodies increase with gravidity
[62, 63, 95, 96]. Inhibition of binding by antibodies con-
tributes to parasite clonal variation, antigenic switching
and hence immune evasion, although it has been reported
recently that antigenic switching may occur due to intrinsic
regulatory systems [97]. Antibodies are detected in both
PG and MG women; low levels have been detected at
14 weeks of gestation in PG women [91, 98], in con-
trast to previous reports of detection being possible only
after 20 weeks [95, 99]. Although these women appear
capable of producing antibodies, they may not confer
protection in PG women because the antibody repertoire
is not broad enough to inhibit binding of more than one
or two variants [99]. Complex infections with numerous
phenotypes may disrupt the ability to combat effectively
the response to a single variant. In addition, the presence
of non-specific, non-protective immunoglobulin (Ig) may
delay or interfere with the acquisition of memory B cells
[100].

3.2. How Do Antibodies Protect against Adverse Outcomes?.
Of the five classes of Ig, IgG is known to be the most
important in malaria immunity, and, in humans, the sub-
classes IgG1 and IgG3 have been found to correlate most
with protection from disease [25, 101]. IgG-mediated pro-
tection is thought to be achieved through anti-adhesion and
opsonic activity [102–104]. Anti-adhesion antibodies have
been shown to correlate with reduced levels of placental
parasitaemia and to act by promoting splenic removal of
parasites [62, 105]. The anti-adhesive properties of antibod-
ies have been studied more extensively than their cytophilic
properties [106]. Recent reports of correlations of opsonizing
VAR2CSA-specific IgG and protection from PM may indicate
that both means of parasite clearance need to be assessed in
vitro [106]. Furthermore, opsonic antibodies may be a more
specific predictor of outcome than overall IgG levels [106].
In one study, strong associations between levels of antibodies
and protection from anaemia were reported at delivery in
the absence of correlations with protection from LBW [106].
Anti-adhesive antibodies lower the parasite density, which
is associated with an increase in birth weight and length of
gestation [105]. Whether the increased birth weight is a result
of decreased chronic malaria or due to increased length of
gestation is not clear, but LBW is a major risk factor for infant
mortality [107].

If a pregnant woman is unable to adequately clear
parasites, chronic infection of the placenta may ensue [94].
Guitard et al. [102], studying women in Senegal, found
that women could be divided into two groups. Pregnant
women were either infected with parasites that persisted
in the placenta until birth (from as early as 69 days
before delivery) or were constantly being reinfected with
new, antigenically distinct parasites, emerging throughout
gestation [102]. In this latter group, samples clear of parasites
were taken between those that contained parasites of new
genotypes, indicating that this group of women was able to
achieve effective parasite clearance between each infection.
Parity status, birth weight, and time of delivery did not

differ between the two groups, but women in the first
group described had significantly lower levels of VAR2CSA-
specific IgG initially, although levels were similar by the
time of delivery [102]. Absence of antibodies in pregnancy
may lead to long-lasting parasite genotypes sequestered in
the placenta, which may interfere with further antibody
production [102]. Lack of VSAPAM-specific IgG production
is associated with an increased risk of developing chronic
PM and anaemia [94]. Levels of VSA-specific IgG for non-
placental variants do not appear to confer protection against
poor pregnancy outcomes [94], but levels of these antibodies
appear to remain constant during pregnancy [25, 98]. Similar
levels of IgG that inhibit binding to ICAM-1 and CD36
have been found in non-pregnant and pregnant women
in the same transmission settings [25]. Mice with prior
immunity to P. berghei succumb to recrudescent parasites
during pregnancy and suddenly become symptomatic in the
second week of gestation [108]. Recrudescence poses a risk
for women who become pregnant after emigrating from an
area of malaria transmission.

3.3. Effect of Transmission Intensity on Antibody Acquisition.
Megnekou et al. [25] compared the antibody responses of
pregnant women living in two areas of Cameroon with
different levels of transmission (2.4 infective bites/day versus
0.1–1.1 infective bites/month) [25]. In the low transmission
setting, all women, regardless of age or parity, had signif-
icantly lower levels of IgG than women living in a high
transmission setting [25]. The sample size of the latter group
was smaller than the group from the low transmission setting
but the antibody responses reported are in keeping with
previous studies [109]. In the high transmission setting, PG
women produced VSAPAM-specific IgG much more rapidly
than those in the area of low transmission [25]. These
findings support earlier reports that indicate transmission
intensity is important for antibody acquisition [94, 105],
yet although these trends are well described, comparison of
results from different studies is limited due to vast variations
in transmission levels.

Where transmission intensity is greatest, even women in
their second pregnancy may have been exposed to enough
variants in their first pregnancy to be protected from PM.
MG women who live in areas of perennial transmission
may be less able to control mixed placental infections in
subsequent pregnancies than those in areas of seasonal trans-
mission, where polyallelic infections have been correlated
with LBW [102, 110, 111]. This indicates that the differences
in antibody responses are not simply divided by geographical
variations in transmission rates, which vary greatly across
areas of sub-Saharan Africa [112]. Few data have been
published on antibody levels in women with no previous
exposure to parasites [113]. Where pregnant women do not
appear to have been exposed during pregnancy, they have
been shown to be at risk of recrudescent infections that may
still cause PM due to previous exposure prior to conception
[114, 115]. Also, in non-immune mice, infection with P.
berghei is usually fatal and placental infection often leads to
spontaneous abortion [116].
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3.4. Effects of Treatment on Antibody Acquisition. If IPTp
is used correctly, continued exposure to parasite antigens
is alleviated [22]. Retrospective and prospective data have
found that increasing the dose of IPTp in the third trimester
reduces the production of VSAPAM-specific IgG [98, 117].
Observations from a longitudinal study suggest that levels
of antibodies in women taking IPTp remain low for the
duration of pregnancy, although antibody levels were seen
to fluctuate throughout gestation [98]. This may be due
to variation in the levels of parasite exposure, increased
virulence of certain phenotypes, or measured differences
following decay of IgG antibodies. These observations
indicate that women who have received treatment in their
first pregnancy will need continued therapy in subsequent
pregnancies and demonstrate that results from previous
cross-sectional studies may be inaccurate in representing
antibody responses during gestation. This particular study
does have its limitations; all women had favourable outcomes
and there was a lack of placental histological examination at
delivery [98].

Interestingly, immunity to malaria has been seen to
increase efficacy of antimalarial chemotherapy [118], and
this effect has been reported in PAM also [106]. This implies
that production of a vaccine would have an additional
benefit; if antibody levels do not reach those required for
parasite clearance, they are at least likely to increase the
efficacy of pharmacological interventions.

3.5. Antibodies Recognise Globally Distinct Parasites. Serum
from MG women can recognise a number of strains of
the VAR2CSA-expressing parasite variant. Distinct strains
are recognised by monoclonal antibodies (mAbs) although
maternal antibodies may cross-react with different var2csa-
transcribing placental isolates from distinct geographical
regions without previous exposure [71, 119]. Approximately
42% of pregnant women in a study cohort from Malawi
and Papua New Guinea reacted to two or more globally
isolated parasite lines [71]. The majority of these women
were MG. Many samples also had high levels of antibodies
to isolates from different regions. This may indicate limited
parasite global diversity [71]. High levels of cross-reactivity
seen in these populations may result from serum being
cross-reactive, but not necessarily cross-inhibitory, although
cross-inhibition by serum has been reported by Fried
et al. [62]. Cross-reactivity of serum is thought to be either
due to clonally conserved epitopes on individual VAR2CSA
molecules or to polymorphic epitopes that are found in all
isolates.

3.6. Maintenance of Protection. Levels of VSAPAM-specific
IgG decline post-partum [95], but they have been detected
at six months after delivery [98]. Previous studies have
demonstrated that in MG women after delivery, up to one
in 4,000 B cells show specificity for exposed epitopes of
VAR2CSA [120, 121]. Persistence of memory B cells has not
been examined, rendering a gap in our understanding of how
MG women are able to maintain immune memory once the
placenta has been expelled and antigenic exposure is lost.

4. What Other Immune Mechanisms
Are Involved in PM?

4.1. Cytokine Balance in Pregnancy. The cytokine balance in
pregnancy is shifted towards a predominantly anti-inflam-
matory response by the T helper (Th)2 subset of CD4+

T lymphocytes. This balance is mediated by the maternal
placental decidua and provides a specific environment to
allow persistence of the “semi-allograft” foetus (expressing
paternal antigens) within the mother. At the blastocyst stage
of pregnancy, Th1 proinflammatory cytokines, including
interleukin (IL)-2, tumour necrosis factor α (TNF-α), and
interferon gamma (IFN-γ) [122], are essential for implanta-
tion. IFN-γ is involved in remodelling of the spiral arteries
to achieve adequate placental blood flow and TNF-α is
necessary for induction of labour [123, 124]. Following
implantation, a Th2 response is favoured which permits
foetal development by production of the Th2 cytokines IL-4,
IL-5, IL-10, and IL-13 [125, 126] and transforming growth
factor β (TGF-β) [127, 128].

Levels of progesterone and oestrogen rise in the early
stages of pregnancy, and both promote a Th2 response [129].
Secreted by the corpus luteum, progesterone maintains the
endometrium, providing a welcome environment for the
blastocyst and for subsequent embryo development [126,
130]. Progesterone is a potent inducer of IL-4 and IL-5,
which oppose IFN-γ while inhibiting proliferation of CD8+

T cells [129]. Raised levels of this hormone may therefore
influence malaria immunity [130]. Relaxin is thought to
counterbalance Th2 activity of progesterone and promotes
development of T cells that produce IFN-γ so is likely to play
a more protective role in pregnancy [130].

4.2. Placental Malaria Affects Placental Cytokine Balance.
In non-pregnant individuals, both Th1 and Th2 cytokine
profiles are associated with protection, the former more
active in the acute phase, for parasite clearance, and the
latter during chronic infection [131, 132]. A “temporary state
of reduced immunity” [8], now recognised as a prevailing
Th2 response of second trimester pregnancy [125–128], is
thought to favour parasite persistence and has been suggested
to be responsible for the rise in parasite densities reported at
13–16 weeks [8]. Placental accumulation of pRBC appears to
stimulate Th1 cytokine release by macrophages [133, 134] to
aid parasite clearance, possibly through increased phagocytic
activity and by production of reactive oxygen species and
nitric oxide (NO) metabolites [133–136]. However, parasite
densities may need to reach a threshold before inducing Th1
responses in the placenta. In mice, strong Th1 responses
cause foetal loss, but in human pregnancies induction of
these cytokines has been associated with maternal anaemia,
spontaneous abortions, and PTD [137, 138].

Placental sequestration may induce local production of
TNF-α [134, 139]. Concentrations of TNF-α appear to
correspond to infiltration of monocytes and the degree of
sequestration [133, 135]. Macrophages activated by haemo-
zoin ingestion are thought to be the main source of both
TNF-α and IL-8 [140]. Elevated TNF-α levels can enhance
cytoadherence [141], promote monocyte recruitment [142],
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and affect hormonal regulation and structural integrity
within the placenta [143, 144]. Higher concentrations of
plasma TNF-α have been found in febrile, symptomatic
pregnant women and teenage mothers [145], perhaps indi-
cating an association with age-related immune acquisition.
Gravidity-related differences in TNF-α have been reported
inconsistently [145, 146]. The soluble TNF receptors, TNFR1
and 2, modulate the activity of TNF-α, and dysregulation of
their control mechanisms may be linked to the development
of severe malaria [147, 148].

High levels of IFN-γ have been found in placental and
peripheral blood samples [133, 134, 149], with significantly
higher levels found in infected pregnant women than non-
infected pregnant women [149]. IFN-γ is produced by
maternal CD8+ and CD4+ T cells and natural killer (NK)
cells, but it is produced also by the foetal trophoblast [133].
Typically, elevated levels of IFN-γ are not associated with
poor pregnancy outcomes [145] but have been correlated
with gravidity-dependent protection [146]. Protection, with-
out pathological consequences, is likely to be related to the
maternal ability to prevent IFN-γ levels from exceeding an
unknown pathological cut-off point. IFN-γ concentrations
have been found to be higher in MG women in acute PM,
and a subsequent drop in cytokine levels is observed, whereas
in PG women this cytokine peaks at a lower level but remains
there [133].

Migration inhibitory factor (MIF) is secreted from the
foetal syncytiotrophoblast, which may be as a direct result
of binding to CSA [68, 150]. MIF stimulates phagocytosis
of pRBC, and increased levels of MIF have been seen in
PM [150, 151]. MIF encourages accumulation of macro-
phages, which is consistent with the increased numbers
of macrophages seen on histopathological examination at
delivery [150, 151]. In one study of PG and MG women,
substantially higher levels of MIF were found in placental
sera than in peripheral sera, with greater concentrations of
MIF in placental samples from PG compared to MG indi-
viduals [152]. Hence, it is possible that an increase in MIF
may provide protection in the placenta. These differences
may play a part in gravidity-specific immunity, yet equally
the differences seen may be due to higher parasite densities
experienced in PG women or to raised steroid levels in PG
that are known to increase MIF concentrations. However, the
small sample size in this study limits the reliability of the data,
and future research is needed in this area [152].

It is currently not known how early Th1 responses may
be stimulated or whether these responses can be induced
independently of placental binding. However, a Th1 cytokine
response to clear parasites also appears to occur in MG
women who continue to have successful pregnancies. This
would indicate that the alteration in cytokine balance may
not be as detrimental to the foetus as might be expected. Sim-
ilarly, this may demonstrate the nature of the host/parasite
relationship because a rapid death of both mother and
foetus would be lethal for the parasite. Although numerous
studies have reported elevated levels of Th1 cytokines in
PM, it is not a consistent finding [153, 154]. Raised levels
of Th2 cytokines have also been found in PM which
may indicate a positive feedback response to restore Th2

dominance. Local upregulation of IL-10, which acts directly
on macrophages and causes a decrease in IL-12 production,
has been reported in multiple studies [133, 134, 146, 155].
In one study cohort, women with PM were reported to have
a predominant Th2 response which did not correlate with
parity, age or sex, but parasite densities were consistently
low [156]. TGF-β is thought to protect against severe PM,
demonstrated by extended survival of P. berghei-infected
mice when administered TGF-β [152], although raised levels
have not been consistently correlated with parasite densities
of women with predominantly successful outcomes [133].

Measurements of placental cytokine levels are limited
to post-partum examination. Peripheral levels of cytokine
concentrations do not correlate with cytokine levels in
the placenta or with numbers of CD4+ T cells measured
[145, 157]. However, cytokine responses can be examined
using P. berghei [108, 114, 158]. Murine models are simpler,
cheaper, and raise fewer ethical issues than simian models
although data from these should be used with caution due
to differences in the architecture of human and murine
placentas [159]. In addition, mice show a similar Th1–
Th2 shift during pregnancy to that seen in humans [160].
Data from cross-sectional studies which examine cytokine
dynamics during pregnancy are difficult to use because of
the type-one error incurred by measuring numerous levels
of cytokines that do not increase or decrease independently
[133, 156]. Discrepancies between studies could further be
accounted for by the short-lived persistence of cytokines in
the blood, indicating the need for more intense sampling
or development of methods of cytokine quantification
with increased sensitivity and specificity. Women may be
more susceptible to malaria during pregnancy due to a
reduction in T cell numbers. Reports of decreased T cell
responses could be due to sequestration of T cells in
the IVS [157, 161]. Parasite-specific T cell proliferative
responses may be increased in MG women who exhibit
protection from PM; Fievet et al. reported that MG women
produced increased levels of Th1 cytokines to CSA-adhering
strains of P. falciparum but not to non-CSA binding strains
[162].

4.3. Involvement of Other Lymphocytes. Cytotoxic CD8+ T
cells are implicated in the protective immune response to
pre-erythrocytic malaria parasites [163]. Their role in PM
has not been determined, primarily since in murine models
their function beyond the liver stage of the Plasmodium
life cycle remains controversial [164]. It has been a long
held opinion that the mechanism of activation of CD8+ T
cells precludes a protective role against blood stage malaria
[165]. This is because CD8+ T cells are stimulated by anti-
gens in association with major histocompatibility complex
(MHC) class I molecules which are not expressed by RBC.
However, reticulocytes (immature RBC) express MHC class
I molecules and numbers of reticulocytes increase during
pregnancy, and these can be infected by mature parasites
[166]. CD8+ T cells may potentially play a protective role in
PM if they are found to respond to these antigens. Recent
observations of raised levels of CD8+ T cells in pregnant
women with absent PM following parasite clearance may
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indicate that they may have an anti-parasite effect via a non-
IFN-γ pathway [167].

4.4. Innate Immunity in PM. Dendritic cells, macrophages,
NK cells, NK T cells, and γδ T cells interact non-specifically
with foreign pathogens [168]. γδ T cells are known to be
important in non-specific targeting of P. falciparum [168]
although their role, in addition to that of dendritic cells and
NK T cells, has not been studied in PM thus far.

NK cells rapidly produce TNF-α and IFN-γ which can
inhibit replication of P. falciparum [169], and their presence
is implicated in the antibody-dependent NK-mediated lysis
of pRBC [170–172]. Unique subsets of NK cells are involved
in the maintenance of early pregnancy, although alterations
in NK cell behaviour may predispose to infection [173].
In an endemic area, a higher proportion of activated NK
cells were found in the placenta, and this was associ-
ated with an absence of accompanying parasitaemia [167].
Interestingly, numbers of NK cells were not increased, but
higher concentrations of IFN-γ were measured. If women
could stimulate immediate IFN-γ release, they were able to
control parasitaemia more effectively [167]. Unfortunately,
this study only looked at women with favourable birth
outcomes, and high numbers of NK cells have previously
been associated with poor outcomes [174]. Whether or not
this is related to the concentration of IFN-γ rather than to
the number of cells remains to be seen. In contrast, decreased
activity of NK cells has been linked to severe PM episodes
[175], which may be due to the absence of NK recognition of
parasite antigens, and therefore IFN-γ is not produced [176].
This finding is from in vitro experiments, where no other co-
stimulants are present, which is unlikely to be the case in vivo
[176].

4.5. Chemokines & Macrophages. The presence of mononu-
clear cells in the placenta has been correlated negatively
with birth weight [135]. Stimulation of these cells promotes
secretion of chemokines which contribute to the initiation
of the inflammatory cascade [133]. Both CXC/α and CC/β
chemokines may increase locally in PM, namely, IFN-
γ inducible protein (IP-10), monocyte chemoattractant
protein 1 (MCP-1), macrophage-inflammatory protein 1α
(MIP-1α), and macrophage-inflammatory protein 1β (MIP-
1β) [17, 133]. These substances have been associated with
angiogenesis, haematopoiesis, and protection from intra-
cellular pathogens [133]. Local activation is supported by
observation of greater densities of activated monocytes in the
placenta than are found in the peripheral circulation [177].

Chemokine activity aids both parasite and antigen clear-
ance through recruitment of monocytes and macrophages.
In addition to phagocytosis, macrophages present antigen
to T cells [177]. Although primarily host protective, these
processes have been associated with adverse effects. Figure 1
shows the probable interaction of each chemokine in PM.
Subsequent recruitment of inflammatory cells creates a self-
propagating and positive feedback loop.

4.6. Complement. Phagocytosis is further mediated through
complement activation. In vitro observations using plasma

from non-immune donors indicate that if complement
deposition is prevented, 80–95% of phagocytosis of pRBC
is prevented [178]. Thus, complement may play a supple-
mentary role to uptake of antibody-opsonised pRBC in
macrophage clearance observed in semi-immune women
[178]. However, as seen with cytokine levels, excessive levels
of complement activation may contribute to the pathogen-
esis associated with inflammation. In healthy pregnancies,
complement component 3 (C3) is reduced by expression of
CD55, CD59, and a membrane cofactor protein which are
expressed by the placenta to limit local damage [129, 179].
PG women with PM have been shown to have over 50%
more complement at delivery than non-infected pregnant
women, although this particular study did not compare levels
with MG women [180]. Nevertheless, excess complement
activation may overwhelm complement regulatory proteins
and contribute to placental injury.

Raised levels of complement component 5a (C5a),
activated by C3a, have been found in women with PM [180].
Excessive levels of C5a have been identified as a mediator
of placental and foetal injury in mice, often resulting
in spontaneous abortion and IUGR [181]. C5a enhances
macrophage and neutrophil activity, and excessive levels
indicate that regulation of complement activation has been
lost [182]. Parasite products may also increase expression
of the C5a receptor on monocytes [182]. Levels of activated
complement need to be examined in a larger group of women
with PM and correlated with gravidity, pregnancy outcomes
and degree of inflammatory infiltrate [180].

Presence of complement and TNF-αmay increase expres-
sion of CSA receptors on the syncytiotrophoblast [183].
Complement and cytokine release by macrophages may
occur before placental binding takes place because Toll-
like receptors of the innate immune response are known to
respond to the P. falciparum toxin glycosylphosphatidylinos-
itol (Pf GPI), promoting local inflammation [182]. Placental-
dwelling macrophages may secrete tissue factor which
initiates the clotting system; clot formation can plug the
intervillous space and disrupt blood flow [184].

4.7. Cortisol Is Increased and Prolactin Is Decreased in PG
Women with PAM. Raised levels of cortisol during preg-
nancy have been correlated with parasite load, with signifi-
cantly higher levels in PG women than in MG women [185].
Cortisol is known to increase MIF-1, decrease CMI, suppress
NK cell activity, and delay antibody production and may
decrease IL-10 responses [175, 186, 187]. These factors could
explain why PG women are more susceptible to PAM than
MG women. Unfortunately, this study is confounded by the
young age of PG study participants compared to the MG
women (mean ages 18 and 30, respectively) [185]. In an
area of unstable transmission, women of all gravidities were
found to have raised levels of cortisol compared to non-
infected pregnant women [188]. Prolactin is thought to be
host protective in PAM, but it may be influenced by changing
cortisol levels [175, 186]. A study that reported a correlation
between low levels of prolactin in women with high parasite
densities also found that in these women levels of IL-10 were
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also low [188]. High levels of cortisol in these women may
have been responsible for this [188].

4.8. Co-infection with HIV Increases PAM Susceptibility.
Human immunodeficiency virus (HIV) alters the typical
gravidity-specific pattern of malaria risk by shifting the
burden from primarily PG and secundigravid women to all
pregnant women. In a retrospective analysis of 11 reports
published over a15-year period, the proportional increase of
P. falciparum infection during pregnancy attributable to HIV
was estimated to be between 5.5 and 18.8% for populations
with HIV prevalences ranging from 10 to 40% [189]. In
addition, viral load has been found to increase with malaria
infection in pregnant women [189, 190].

Lower levels of VSAPAM-specific IgG and decreased levels
of opsonic IgG activity have been reported in women who are
HIV positive [191]. HIV infection lowers numbers of CD4+

T cells, with lower levels correlating with more severe disease
[192]. HIV infection further impairs cytokine responses; IL-
12 may be reduced so an early Th1 shift may not occur,
leading to loss of the protective rise of IFN-γ [193].

5. How Do Local and Systemic Responses Lead
to Poor Outcomes?

Table 2 summarizes the key maternal and foetal outcomes
of placental malaria and the immunological basis for the
pathological process leading to each outcome. Absence
of VSAPAM-specific IgG allows sequestration of pRBC in

the placental space. Unopposed inflammation may lead
to loss of microvilli and focal necrosis [33]. Placental
damage stimulates cytotrophoblast proliferation resulting in
a thickened cytotrophoblast membrane which may decrease
the exposure of placental and foetal tissues to inflammation
[194]. Maternal-foetal transfer of nutrients, oxygen, and
waste products may be compromised by mechanical blockage
and inflammatory cells [31].

Perinatal mortality rates are higher in infants born with
IUGR [195]. Risk of IUGR is increased if infections include
complex multiallelic variants [98, 102], are increased in
frequency, or occur during the second trimester rather than
the third [39]. A major limitation of our understanding of
the pathological mechanisms involved in PM surrounds the
processes that lead to IUGR. The first trimester is a critical
period for foetal organogenesis; the majority of growth takes
place in the second trimester, and organ and cell maturation
are completed during the third trimester. Prior to placental
completion, early accumulation of pRBC in lacunae may
induce complement activation or cytokine release which
could impact negatively on embryogenesis. The majority of
LBW babies born to mothers with PM are uniformly small,
implying that growth restriction has been symmetrical and
most likely occurred in the first trimester [109].

Raised levels of activated soluble inflammatory mediators
are likely to cause pathology when unregulated during PM.
TNF-α has been associated consistently with foetal LBW
[145], either through IUGR [135, 139] (associated with
accumulation of high concentrations of monocytes during
chronic placental infection) or through PTD [133]. IFN-γ,
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Table 2: Maternal and foetal outcomes of pregnancy-associated malaria.

Effect Possible pathogenesis Transmission Likely protection References

MOTHER Anaemia Severe malaria: erythrocyte destruction BOTH Maternal IgG
[133, 135,

162]

IL-10: immunosuppression, affects RBC
progenitor cells, reduces available iron
concentrations in plasma

[209–211]

TNF-α: inflicts oxidative stress on RBC
membranes, suppresses erythropoiesis
secondary to local inflammation

BOTH
Maternal IgG? [212, 213]

Non-PAM causes of anaemia: iron deficiency,
nutrient deficiency, HIV infection, hookworm
infestation

[192, 214,
215]

Gestational
hypertension

Impaired trophoblast invasion, cytokine release BOTH? [216]

FOETUS Preterm delivery Maternal anaemia LOW T cell memory? [133, 212]

Acute parasitaemia

TNF-α: associated with acutely high
parasitaemia

IL-10: contributes to anaemia

Spontaneous
abortion

TNF-α: necrosis of implanted foetus LOW
[138, 196,

217]

IFN-γ increases risk of uterine contraction,
activates NK cells that induce abortion

Low birth weight,
IUGR

TNF-α: chronic parasitaemia, damages local
placental tissue leading to impaired
maternal-foetal exchange

HIGH Maternal IgG
[133–

135, 140]

Second trimester infection

INFANT Congenital malaria Passage of parasites ? Maternal IgG [205]

↓ ability to clear
parasites

T cell priming: CD4+CD25+ regulatory T cells
induced, secrete IL-10, suppresses IFN-γ

? Maternal IgG [205]

although not associated convincingly with LBW [135, 139],
can induce NK cells which may be involved in malaria-
associated spontaneous foetal loss [196]. However, it is more
likely that IFN-γ has a protective role in PM. PTD may be
caused by a low TNF-α: IL-10 ratio (due to raised levels of
both TNF-α and IL-10 in the placenta), maternal anaemia
secondary to an augmentation of IL-10, or a sudden acute
increase in TNF-α concentration [133]. Active inflammation
with monocyte infiltration may also lead to dysregulation of
the insulin-like growth factor (IGF) axis which is upregulated
in the normal placenta to support growth [197].

Vascular endothelial growth factor (VEGF) and angio-
genic factors, including angiopoietin 1 and 2 (ANG-1, ANG-
2), are important in the control of vascular development
and remodelling during placental development [180]. The
soluble receptor of VEGF, sVEGFR1, opposes VEGF to
inhibit trophoblastic invasion. Raised levels of sVEGFR1
have been associated with excessive levels of C5a; either
C5a or the presence of parasite products that activate com-
plement may be responsible for this [180]. Dysregulation
of angiopoietin levels has been reported in women with
peripheral parasitaemia, and was correlated more closely
in women who had LBW babies [198]. These levels were
measured at delivery, but disturbance of the balance of these

growth factors could occur earlier in gestation and impact
negatively on foetal growth.

These findings support the hypothesis that the pathogen-
esis of PM is similar to that of pre-eclampsia (PE). A case-
cohort study reported an absence of relative risk between
PM and PE whereas, although this type of study design does
not provide a causal link, a correlation was seen between PM
and gestational hypertension [199, 200]. Gestational hyper-
tension may result from impaired placental blood flow, pos-
sibly from shallow trophoblast invasion and poor placental
vascularisation, or from mechanical blockage of blood flow
[201]. Reduced placental perfusion, endothelial dysfunction,
and placental ischaemia are thought to contribute to IUGR
[201].

Women who harbour complex infections are at increased
risk of anaemia, while the infants born to these women are
more likely to have infected cord blood and increased risk
of malaria in the first 30 months of life [202]. Although
parasite infection of cord blood is common [154, 203]
and newborns may harbour an asymptomatic parasitaemia
[204, 205], disease is rare [77, 205]. Protection from disease
may be due to foetal haemoglobin being composed of
different globin subtypes than adult haemoglobin, decreased
infant exposure due to swaddling and transfer of maternal
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Figure 2: Summary of immune interactions and outcomes in placental malaria. The box shows the interactions that are thought to be
protective in multigravid women.

antibody [205–207]. PM may prime foetal immune T
cells in utero to favour a Th2 cytokine response due to
exposure to maternal cytokines [205–207]. Inflammation
may disrupt IgG transporters in the syncytiotrophoblast,
thereby reducing placental transfer of IgG in response to
other pathogens including measles virus and Streptococcus
pneumoniae [33].

6. Current Vaccine Prospects

In order to produce an ideal vaccine for PAM, all the
protective responses that occur in natural infections need to
be stimulated. Figure 2 summarizes the potential immuno-
logical interactions in PM and the protective responses that
occur in MG women. Current vaccine developments have
had varied success. The ideal candidate for a PAM vaccine is
the VAR2CSA molecule, the structure of which differs to that
of other Pf EMP1 molecules. It comprises six DBL domains
and a CIDR, all of which display polymorphism between
strains [69, 116]. From 32 isolates from a sample of pregnant
women in Senegal, not one shared an identical sequence
in the DBL5 domain [102]. The var2csa gene that codes
for VAR2CSA displays significant levels of polymorphism,
demonstrated by the number of possible unique antigens

that have been produced. However, it is more conserved
than other var genes, and VAR2CSA retains 75–83% of its
amino acids between isolated strains [208]. This engenders
confidence that there are a limited number of antigens
possible. However, the degree of antigenic variation between
globally isolated parasite lines has not been determined.

Vaccine developments with VAR2CSA have been ham-
pered by the difficulty in producing a recombinant protein of
this size. To overcome this issue initially, individual domains
of VAR2CSA have been studied to determine if a particular
region of the molecule is responsible for receptor binding
and induction of antibodies. The individual domains are
shown in Figure 3. Three of the six DBL regions (DBL2-X,
DBL3-X and DBL6-ε) are known to bind to CSA, but the
remaining three (DBL1-X, DBL4-ε, DBL5-ε) display limited
affinity for CSA [218, 219]. It has proved difficult for study
groups to adequately assess binding of different DBL regions,
as interactions between recombinant proteins (expressed by
Escherichia coli, baculovirus or Pichia pastoris constructs
[220–222]) and CSA in vitro may not be representative of
native binding [223]. Furthermore, studies that have elicited
adhesion inhibition have observed it in assays of CSA on
plastic mounts [103, 220, 224], which, whilst they provide
an easy laboratory method of assessing adhesive properties,



Malaria Research and Treatment 11

DBL6-ε DBL5-ε DBL4-ε DBL3-X DBL2-X DBL1-X

Figure 3: The duffy binding-like domains of the VAR2CSA molecule. Between each DBL region is an interdomain region that appears to be
important for both binding properties and antibody induction. Each region has a differing degree of affinity for the CSA molecule on the
placenta and individually the domains do not appear to display as strong binding ability as the whole VAR2CSA molecule. Recent evidence
suggests that the first four domains are the most important for forming a quaternary structure that forms a complex binding site [228].

do not contain the same levels of sulphation as CSA on
the syncytiotrophoblast. The most promising method to
study adhesion behaviour is to use BeWo cells from human
choriocarcinoma that provide a placental construct on which
CSA is naturally found [90, 220, 224].

Antibodies have been induced in mice and goats with
recombinant DBL3, DBL4, and DBL5 domains [104, 220–
222, 225, 226]. Antibodies to DBL3 and DBL5 recognised
other VAR2CSA-expressing strains from diverse geographical
regions, whereas cross-reactivity was not observed following
immunisation with DBL1, 4, or 6 [227]. Despite displaying
cross-reactivity, these antibodies did not inhibit binding,
suggesting that only surface reactivity may occur with in
vitro-induced antibodies. Interestingly, the most effective
anti-adhesion antibodies have been induced in rats with
DBL4 domains [225]. This domain is thought to display
the lowest binding affinity for CSA but is highly conserved
between variants [225]. It is not known if the same antibodies
would be induced in vivo. The DBL5 domain displays 66–
81% conservation between isolates, and strain-transcending
adhesion inhibition has been seen under flow conditions
using BeWo cells lines and antibodies induced in mice and
goats [220].

Single domains from non-placental Pf EMP1 may also
bind to CSA in vitro [103] but with much weaker affinity than
binding of whole VAR2CSA [104]. The full-length version
induces anti-adhesion antibodies that are highly strain-
specific [227]. Whole recombinant VAR2CSA has now been
produced, and, although the ability to induce antibodies
using this construct has been inconsistent, these findings
demonstrate that all domains may be as important as each
other in mediating binding and antibody stimulation [103,
104, 227]. A combination of epitopes on each domain may
form a binding complex or unique binding site by forming
a quaternary structure [69]. If this is the case, individual
polymorphisms in DBL regions may come together to
alter the binding site of VAR2CSA, which would account
for the cross-reactive but not adhesion-inhibitory strain-
transcending responses described [69]. Convincing evidence
is emerging that supports the formation of a binding site
from the first four domains and interactions with the CIDR
and interdomain regions [228, 229]. These results may also
indicate that finding a globally conserved epitope is unlikely.
Inconsistent induction of antibodies with whole constructs
could be caused by differing expression methods employed
or could indicate limitations of using such a large immuno-
gen [104, 227]. Although the biochemical interactions are
beyond the scope of this review, our understanding of the
true nature of parasite antigen-placenta interactions may

not be far enough advanced for effective vaccine trials
[69].

Induction of cytophilic activity by IgG molecules has
been shown to be an effective immune mechanism [106], but
this has been largely ignored in vaccine development studies
to date. Perhaps a novel way forward would involve shifting
the focus towards induction of these antibodies: specifically,
whether they may be induced using single domains or whole
antigens; and, if inducible, whether they display the same
degree of specificity as anti-adhesive antibodies. The lack of
identification of a conserved epitope thus far should not be
considered disheartening as even antibodies that stimulate
a protective response against one or two variant lines may
be beneficial in PG women to help lower parasite load and
increase efficacy of treatment [98].

Induction of antibodies by single domains and whole
VAR2CSA has not yet been tested in humans, and it is likely
that single variants will produce differing antibody responses
to those found in naturally mixed allelic infections. Evidence
suggests that the ability of a construct to induce antibodies
depends greatly on the animal being immunised; a recent
study observed that immunisation responses varied greatly
and unpredictably between mice, rabbits, and rats [229] and
the same is likely to be true with humans. Even if VAR2CSA
could be used, the highly specific antibody repertoire gained
from this would only confer protection against one parasite
strain. Naturally, it takes at least one pregnancy to acquire
inhibitory antibodies. It is not currently known if, or how,
immunity develops to strains simultaneously, and this may
further complicate trials of antibody stimulation in vivo.
If an epitope is identified that allows women to develop
inhibitory antibodies rapidly to a range of strains by focusing
the immune response, it could provide better protection than
that which is naturally acquired. Currently, findings indicate
that a number of allelic variants will be needed in a vaccine
due to the high levels of polymorphism within the parasite
population.

A clear association has been shown between the presence
of anti-adhesion antibodies and weight gain of foetuses, but
precise pathological mechanisms by which antibodies reduce
or inhibit associated inflammation are unknown. The inhi-
bition of binding may decrease inflammation by preventing
activation of signalling pathways on the syncytiotrophoblast
that lead to cytokine production. The incomplete under-
standing of these mechanisms raises questions regarding
how antibodies provide protection. The continued study of
individual binding domains of VAR2CSA may increase our
knowledge of these mechanisms even if these studies do not
lead to viable vaccine possibilities.
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The timing of a VAR2CSA vaccine must be considered.
Judging by the appearance of placental variants in the second
trimester, a vaccine would be most effective given before
pregnancy but could also provide protection if given during
the first trimester. This is improbable, however, because
the majority of pregnancies in developing countries are not
confirmed until the second trimester due to socioeconomic
and cultural reasons affecting access to primary health care.
Theoretically, stimulation of mAbs using individual domains
may be possible in prepubescent girls and repeated over
successive years, but this is unlikely to be feasible. The
lack of understanding of how immunological memory is
maintained hinders the validity of this option. Antibodies
have been seen to persist for six months without continued
antigen exposure [121], but it is uncertain if they would
continue beyond this. This indicates that decay of antibodies
may occur by the time a woman becomes pregnant if
the vaccine is given too early, although this may depend
on the specific Ig subclasses that are included in the
vaccine.

A VAR2CSA vaccine would be limited in its protective
target group. Women who lack naturally acquired immunity
are not protected from peripheral binding variants and a
VAR2CSA would not inhibit binding of these parasites,
resulting in peripheral infection. Furthermore, selection
pressure exerted by such a vaccine is likely to increase global
antigenic diversity. Continued efforts to identify conserved
epitopes are the aim of non-PAM vaccines, and proof of prin-
ciple studies have led to phase III trials (reviewed in [230]).
The most advanced candidate, the RTS,S vaccine against the
circumsporozoite antigen, provided 25.6–59% protection in
phase II trials and became the first malaria vaccine to reach
phase III trials [231]. While this extensive study across seven
sub-Saharan countries will not be completed before 2014,
preliminary results show grounds for qualified optimism
[232, 233]. It is unclear what protection this may provide
during pregnancy because it is unlikely to achieve sterile
immunity and despite women having antibodies against
non-VSAPAM and other parasite proteins prior to pregnancy,
the immunity that develops is not adequate to prevent
pregnancy-associated infection.

A vaccine against P. falciparum will not protect against P.
vivax which is a major problem in regions where transmis-
sion of P. falciparum is low, such as the Indian subcontinent.
The protection gained from maternal anaemia due to mixed
infections may be lost through a P. falciparum-specific
vaccine. Further to this, the placental-binding property of P.
falciparum to CSA has provided a selective advantage, but P.
vivax is known to accumulate in the placenta. More recently,
severe syndromes associated with P. vivax have been reported
in children, which could indicate increasing virulence in this
parasite [234]. Similar receptors to the VSAs have been found
on the membrane of the P. vivax pRBC, but sequestration is
currently not thought to occur [35].

As yet, it is not clear if vaccination with single domains
or whole VAR2CSA is recognised by T cells. In the early
stages of determining which epitopes stimulate protection,
it is essential that T cell responses are considered in vaccine
trials. Natural expression of antigens on pRBC may stimulate

specific antibodies in a different way, and natural interactions
of T and B cells may also determine efficacy.

If VAR2CSA is the key antigen in immune acquisition
in PAM, then it may prove possible to answer the questions
below:

(i) To which part of the molecule do antibodies react?

(ii) In models, are antibodies produced to isolated do-
mains?

(iii) Do these antibodies confer the same protection as
natural antibodies?

(iv) What class of antibodies are produced using a vac-
cine?

(v) How long do memory B cells persist?

(vi) Can T cell responses be induced?

(vii) If T cells are stimulated and produce a protective re-
sponse that generates IFN-γ, then will a TNF-α re-
sponse that harms the placenta also be induced?

(viii) Will protective innate mechanisms be stimulated by a
vaccine?

(ix) What end points would we use to measure the effect-
iveness of a vaccine?

7. Areas for Future Research

There are a number of areas that require further research to
increase our understanding of both the pathogenesis and im-
munology of PAM. These include the following:

(i) pathological processes occurring in the first trimes-
ter;

(ii) pathological mechanisms leading to anaemia and
LBW with P. vivax infections;

(iii) trials of new methods of diagnosing placental malaria
infection;

(iv) analysis of peripheral cytokines as possible surrogate
markers;

(v) longitudinal studies in low transmission settings and
longitudinal studies of cytokine dynamics;

(vi) whether the responses that lead to immunity and the
responses that lead to pathology can be distinguished;

(vii) how hormones contribute directly to susceptibility in
PAM;

(viii) longitudinal studies to examine how infant cohorts
are affected;

(ix) further analysis of the burden of PAM outside Africa.

The majority of studies described in this review are
cross-sectional or retrospective analyses of antibody and par-
asite dynamics in pregnant women. Levels of both parasites
and antibodies fluctuate during pregnancy, and true repre-
sentations of these dynamics can only be obtained through
longitudinal studies [34, 98, 102]. In addition to the need for
more robust studies, there is a risk that by focusing attention
on a small part of the pathological processes occurring in
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PM, we will lose sight of what we already know. For example,
although binding of CSA does not occur until the second
trimester, the processes may not be as crucial to pathogenesis
as currently thought: if binding to CSA increases gene expres-
sion and secretion of inflammatory mediators, such as MIF-1
that promotes macrophage aggregation, then inflammatory
processes will not begin until after week 16. We cannot be
certain of the development of inflammation because there is
no way of assessing when this begins in pregnant women.
The detection of peripheral levels of inflammatory markers,
such as raised levels of TNFR1/2, sVEGR1, C5a, and IL-
10, would be an ideal method of diagnosing active PM in
asymptomatic women. However, no marker has been found
to correlate adequately with the degree of inflammation.
The pathological processes of PM are dynamic throughout
gestation, but the presence of parasites in the placenta may be
detrimental to embryo development before binding occurs.
This could potentially be studied using var2csa-null variants
in vitro using BeWo cells.

8. Conclusion

Is PAM vaccination possible? At present, the creation of a
vaccine looks unlikely. Not enough is known about specific
binding interactions between CSA and VAR2CSA, and
globally conserved epitopes have not been identified. These
hurdles, combined with the task of including all necessary
parasite strains in a single vaccine and the risk that a vaccine
could potentially lead to an increase in the prevalence of
other malaria species not covered by the vaccine, do not
favour vaccine development. If growth mechanisms are most
affected in the first trimester, a VAR2CSA vaccine would
be ineffective at reducing the burden of IUGR. This paper
has, however, identified some of the gaps in our knowledge,
and filling these may lead to ways of overcoming these
obstacles. Even if a vaccine is able only to stimulate the
production of a small antibody repertoire this could boost
treatment effects and decrease the financial burden of PAM.
In the light of growing resistance of P. falciparum to current
chemotherapeutic regimens, even a vaccine that could result
in lower doses and increased efficacy of these regimens
has potential value, and research to that end should be
welcomed.
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“Strain-transcendent immune response to recombinant
VAR2CSA DBL5-ε domain block P. falciparum adhesion to
placenta-derived BeWo cells under flow conditions,” PLoS
ONE, vol. 5, no. 9, Article ID e12558, 2010.

[221] M. A. Nielsen, V. V. Pinto, M. Resende et al., “Induction
of adhesion-inhibitory antibodies against placental Plas-
modium falciparum parasites by using single domains of
VAR2CSA,” Infection and Immunity, vol. 77, no. 6, pp. 2482–
2487, 2009.

[222] M. Avril, M. M. Cartwright, M. J. Hathaway et al., “Immu-
nization with VAR2CSA-DBL5 recombinant protein elicits
broadly cross-reactive antibodies to placental Plasmodium
falciparum-infected erythrocytes,” Infection and Immunity,
vol. 78, no. 5, pp. 2248–2256, 2010.

[223] P. Fernandez, N. KViebig, S. Dechavanne et al., “Var2CSA
DBL6-ε domain expressed in HEK293 induces limited cross-
reactive and blocking antibodies to CSA binding parasites,”
Malaria Journal, vol. 7, no. 9, article 170, 2008.

[224] F. Yosaatmadja, K. T. Andrews, M. F. Duffy, G. V. Brown,
J. G. Beeson, and S. J. Rogerson, “Characterization of



Malaria Research and Treatment 21

VAR2CSA-deficient Plasmodium falciparum-infected ery-
throcytes selected for adhesion to the BeWo placental cell
line,” Malaria Journal, vol. 7, no. 3, article 51, 2008.

[225] P. A. Magistrado, D. Minja, J. Doritchamou et al., “High
efficacy of anti DBL4ε-VAR2CSA antibodies in inhibition of
CSA-binding Plasmodium falciparum-infected erythrocytes
from pregnant women,” Vaccine, vol. 29, no. 3, pp. 437–443,
2011.

[226] M. Avril, M. M. Cartwright, M. J. Hathaway, and J. D. Smith,
“Induction of strain-transcendent antibodies to placental-
type isolates with VAR2CSA DBL3 or DBL5 recombinant
proteins,” Malaria Journal, vol. 10, no. 1, article 36, 2011.

[227] M. Avril, M. J. Hathaway, A. Srivastava et al., “Antibodies
to a full-length VAR2CSA immunogen are broadly strain-
transcendent but do not cross-inhibit different placental-
type parasite isolates,” PLoS ONE, vol. 6, no. 2, Article ID
e16622, 2011.
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