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Abstract
Charles Darwin believed that all traits of organisms have been honed to near perfection by natural
selection. The empirical basis underlying Darwin’s conclusions consisted of numerous
observations made by him and other naturalists on the exquisite adaptations of animals and plants
to their natural habitats and on the impressive results of artificial selection. Darwin fully
appreciated the importance of heredity but was unaware of the nature and, in fact, the very
existence of genomes. A century and a half after the publication of the “Origin”, we have the
opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all
walks of life. These comparisons suggest that the dominant mode of genome evolution is quite
different from that of the phenotypic evolution. The genomes of vertebrates, those purported
paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements
where only a small fraction of the genetic material is dedicated to encoding biologically relevant
information. In sharp contrast, genomes of microbes and viruses are incomparably more compact,
with most of the genetic material assigned to distinct biological functions. However, even in these
genomes, the specific genome organization (gene order) is poorly conserved. The results of
comparative genomics lead to the conclusion that the genome architecture is not a straightforward
result of continuous adaptation but rather is determined by the balance between the selection
pressure, that is itself dependent on the effective population size and mutation rate, the level of
recombination, and the activity of selfish elements. Although genes and, in many cases, multigene
regions of genomes possess elaborate architectures that ensure regulation of expression, these
arrangements are evolutionarily volatile and typically change substantially even on short
evolutionary scales when gene sequences diverge minimally. Thus, the observed genome
archtiectures are, mostly, products of neutral processes or epiphenomena of more general selective
processes, such as selection for genome streamlining in successful lineages with large populations.
Selection for specific gene arrangements (elements of genome architecture) seems only to
modulate the results of these processes.

Introduction
Charles Darwin was the first to decipher some of the key features of biological evolution
and to describe a general mechanism that had, at least, the potential to generate the
remarkable diversity of existing life forms (Darwin, 1859). From the 21st century’s vantage
point, it is almost unfathomable that Darwin was able to come up with his theory without
having the idea of the genetic information encoding and replication, the concept that can be
denoted the “genome principle”. On the pure force of logic, Darwin concluded that
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evolution could proceed only through the interplay of the deterministic process of heredity
and the random process of heritable change. Under Darwin’s theory, the combination of
these two factors yielded natural selection, the mighty force that gradually perfects the
adaptation of organisms.

The elucidation of the genome principle through the pioneering genetic experimentation,
primarily, by the Drosophila group led by Morgan (Morgan, 1926)and bold theorizing of
Timofeev-Ressovsky, Delbruck, Pauling and others (Pauling and Delbruck, 1940, Timofeev-
Ressovsky et al., 1935) culminated in the discovery of the DNA structure, the genetic code
and the gene-product colinearity (see (Watson, 1963, Ycas, 1969) for early reviews), and
vindicated Darwin’s vision by establishing the mechanisms of heredity and mutation. After
the genome concept was established as a principle, a major, even if rarely spelled out,
conundrum has emerged: is the genome an optimally organized “blueprint” for an organism
that was shaped by Darwinian selection over eons of evolution, just like the organism’s
phenotype, or a more or less random string of genes? Indications that the genome is unlikely
to be an optimally designed instruction for an organism’s development appeared long before
genome sequencing became feasible, in the form of the so-called C-value paradox, i.e.,
apparent large differences in genome sizes of organisms of comparable phenotypic
complexity (Thomas, 1971).

In 1976, the first genome sequence of a life form, a bacteriophage, was reported (Fiers et al.,
1976), and, since then, sequencing of thousands of genomes from viruses, bacteria, archaea,
and eukaryotes has completely changed our understanding of genomes, their architectures,
and the relationships between them. Genome architecture can be defined as the totality of
non-random arrangements of functional elements (genes, regulatory regions etc) in the
genome. A completely unorganized genome (a random string of genetic elements)
potentially could be functional but the notion of architecture would not apply to it. Here I
briefly review the emerging principles of genome architecture in different walks of life and
argue that adaptive evolution of genome organization is not a viable concept. Instead, the
genome architectures seem to be shaped by a complex gamut of forces, apparently, partially
adaptive but largely neutral.

Overview of the principles of genome architecture: two types of genomes
The genome layouts in different domains of life are fundamentally distinct (Figure 1).
Viruses have relatively small genomes that are, typically, jam packed with genes, and
overlapping genes are often used (Firth and Brown, 2006). Prokaryotes (archaea and
bacteria) have compact genomes, albeit with larger intergenic regions than viruses, and very
few (if any) long overlaps between genes (Lillo and Krakauer, 2007, Rogozin et al., 2002b,
Rogozin et al., 2002c). Many prokaryotic genes are organized into cotranscribed groups,
operons (Miller and Reznikoff, 1978, Salgado et al., 2000). Eukaryotes span an extremely
wide range of genome sizes, from those well within the prokaryotic range to those that are
orders of magnitude larger. They are all united by a distinctive gene architecture, the exon-
intron organization whereby fragments of the protein-coding sequence of a gene (the exons)
are separated by multiple non-coding regions, the introns, which are removed during
splicing (Roy and Gilbert, 2006). Due to the presence of introns and long intergenic regions,
the larger eukaryotic genomes are dramatically less compact than prokaryotic genomes (Fig.
2). In many unicellular eukaryotes, only a small fraction of the genes contain introns.
However, the spliceosome is universally conserved in eukaryotes (Collins and Penny, 2005),
and several independent evolutionary reconstructions have strongly suggested that ancestral
eukaryotes had intron-rich genes, with many lineages undergoing extensive subsequent loss
of introns (Carmel et al., 2007b, Csuros et al., 2008, Roy, 2006). These findings emphasize
that exon-intron organization is a general architectural principle of eukaryotic genes,
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notwithstanding the paucity of introns in many eukaryotes. Another sharp difference
between eukaryotic and prokaryotic genomes is that, typically, eukaryotes possess no operon
organization (but see discussion of exceptions below).

Although the distinction between the principles of genome organization in viruses,
prokaryotes, and eukaryotes is beyond doubt, the differences within each type of genomes
go a long way towards blurring the boundaries. It seems like every conceivable “rule” of
genome organization has its share of exceptions. The discovery of giant viruses and,
conversely, of bacterial and archaeal parasites and symbionts with tiny genomes forever
eliminated the separation of cellular and viral genomes by size (Koonin, 2005, Nakabachi et
al., 2006, Raoult et al., 2004). Neither is there an appreciable difference in the gene density
between the largest viral genomes and typical prokaryotic genomes (Iyer et al., 2006).
Similarly, the genomes of many, albeit not all, unicellular eukaryotes are highly compact,
almost “wall to wall” arrays of genes (with only a few tiny introns) that, in many respects,
resemble the genomes of prokaryotes more than genomes of complex, multicellular
eukaryotes (Lynch and Conery, 2003). Even the absence of introns in protein-coding genes
of prokaryotes has been disproved: some archaeal open reading frames, are after all,
interrupted by tiny introns (Watanabe et al., 2002). Conversely, the absence of operons in
eukaryotes is not absolute either as two unrelated groups of eukaryotes, kinetoplastids and
nematodes, possess a number of unique operons (Blumenthal, 2004).

As a generalization, it appears that genomes can be roughly partitioned into just two classes
(Figure 2):

1. Compact, relatively small genomes of viruses, archaea, bacteria (typically, <10
Mb), and many unicellular eukaryotes (typically, <20 Mb). In these genomes,
protein-coding and RNA-coding sequences occupy most of the genomic sequence.

2. Expansive, large genomes of multicellular and some unicellular eukaryotes
(typically, >100 Mb). In these genomes, the majority of the nucleotide sequence is
non-coding.

Of course, as always in biology, there are no sharp boundaries between the two types, with
the genomes of certain unicellular eukaryotes such as Apicomplexa apparently being
intermediate between “small” and “big” genomes. Nevertheless, the evolution of the two
classes of genomes seems to be shaped by distinct forces as discussed below.

Genome architectures and their evolution
Prokaryotes: the malleable operonic organization, partially conserved gene
neighborhoods, and the lack of synteny conservation

The operon, a group of co-transcribed and co-regulated genes, is one of the earliest and
central concepts of bacterial genetics (Jacob and Monod, 1961). An enormous amount of
variation on the simple theme of regulation by the Lac repressor developed by Jacob and
Monod has been discovered over the nearly 50 years since the operon model was
formulated. Nevertheless, the operon has stood the test of comparative genomics as the
principle of organization of bacterial and archaeal genomes (Salgado et al., 2000, Wilson et
al., 2007). Operons are much more strongly conserved during the evolution of bacterial and
archaeal genomes than is large scale synteny (see below). Still, comparative analysis of gene
order in bacteria and archaea reveals few operons that are shared by a broad range of
organisms (Itoh et al., 1999, Wolf et al., 2001). As noticed early on, these highly conserved
operons typically encode physically interacting proteins (Dandekar et al., 1998), a trend that
is readily interpretable in terms of selection against the deleterious effects of imbalance
between protein complex subunits (Papp et al., 2003). The most dramatic instantiation of
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this trend is the ribosomal superoperon that includes over 50 genes of ribosomal proteins
that are found in different combinations and arrangements in all sequenced archaeal and
bacterial genomes (Coenye and Vandamme, 2005, Wolf et al., 2001). Analysis of the
ribosomal superoperon and other, smaller, groups of partially conserved operons led to the
notion of an überoperon (Lathe et al., 2000) or a conserved gene neighborhood (Rogozin et
al., 2002a), an array of overlapping, partially conserved (known or predicted) operons
present in a collection of genomes. In addition to the ribosomal superoperon, notable
examples of conserved neighborhoods are the group of predicted overlapping operons that
encode subunits of the archaeal exosomal complex (Koonin et al., 2001) and the Cas genes
that comprise an antivirus defense system (Haft et al., 2005, Makarova et al., 2006, Rogozin
et al., 2002a) . The majority of genes in the überoperons encode proteins involved in the
same process and/or complex but highly conserved arrangements including genes with
seemingly unrelated functions exist as well, e.g., the common occurrence of the enolase
gene in ribosomal neighborhoods or genes for proteasome subunits in the archaeal exosome
neighborhood. The presence of these seemingly unrelated genes can be explained either by
“gene sharing”, i.e., multiple functionalities of the respective proteins, or by “genomic
hitchhiking”, a case when an operon combines genes without specific functional links but
with similar requirements for expression (Rogozin et al., 2002a).

The majority of operons do not belong to complex, interconnected neighborhoods but
instead are simple strings of 2 to 4 genes, with variations in their arrangement (Rogozin et
al., 2002a, Tamames, 2001, Wolf et al., 2001). Identical, or similar, in terms of gene
organization, operons are often found in highly diverse organisms and in different functional
systems. A case in point are numerous metabolite transport operons that consist of similarly
arranged genes encoding the transmembrane, ATPase, and periplasmic subunits of diverse
permeases. The persistence of such common operons in diverse bacteria and archaea has
been interpreted within the framework of the selfish operon concept, i.e., the notion that
operons are maintained not so much because of the functional importance of coregulation of
the constituent genes but owing to the selfish character of these compact genetic units that
are prone to horizontal spread among prokaryotes (Lawrence, 1999, Lawrence, 1997,
Lawrence and Roth, 1996) (see more on this concept below).

Comparative analysis of the arrangements of orthologous genes in archaeal and bacterial
genomes revealed a relatively small fraction of conserved (predicted) operons and a much
greater abundance of unique directons, i.e., strings of genes that are transcribed in the same
direction and are separated by short intergenic regions (Salgado et al., 2000, Wolf et al.,
2001). In benchmark analyses, directons have been shown to be highly accurate predictors
of operons (Moreno-Hagelsieb and Collado-Vides, 2002). Thus, the local organization of
archaeal and bacterial genomes seems to be governed by the operonic principle, with a small
number of highly conserved operons and a much larger number of unique or rare ones.

Notably, although the great majority of the conserved gene pairs in prokaryotes are
codirectional, in accordance with the operonic principle (Rogozin et al., 2002b), there is also
significant conservation of divergent gene pairs which reflects coregulation by virtue of
bidirectional transcription from symmetric promoters (Korbel et al., 2004). The degree of
genome “operonization” widely differs among bacteria and archaea: some genomes, e.g.,
that of the hyperthermophilic bacterium Thermotoga maritima, are almost fully covered by
(predicted) operons, whereas others, such as those of many Cyanobacteria, seem to contain
few operons (Wolf et al., 2001). What determines the extent of operonization in an organism
remains unclear although it stands to reason that this degree depends on the balance between
the rates of gnome rearrangement that disrupts operons and horizontal gene transfer (HGT)
that provides for survival and spread of operons (Lawrence, 1999, Lawrence, 1997, , 2003).
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Comparisons of the first sequenced bacterial genomes revealed little conservation of gene
order beyond the operonic scale (Dandekar et al., 1998, Itoh et al., 1999, Koonin et al., 1996,
Mushegian and Koonin, 1996). The degree of gene order conservation between genomes can
be conveniently visualized using a dot-plot where each point corresponds to a pair of
orthologs. Examination of these plots reveals rapid divergence of gene order (Figure 3) so
that, even between closely related bacteria, there are several breakpoints of synteny (Figure
3a), moderately diverged organisms show only a few extended colinear regions (Figure
3bc), whereas for any pair of relatively distant organisms, the plot looks like the starry sky
(Figure 3d). Disruption of synteny during evolution of bacterial and archaeal genomes
shows a clear and striking pattern, with an X-shape seen in the dot-plots. It appears most
likely that the X-pattern is generated by symmetric chromosomal inversions around the
origin of replication (Eisen et al., 2000). Such frequent inversions could be caused by the
high frequency of recombination in replication forks that, in the circular chromosomes of
bacteria and archaea, are typically located on both sides of and at the same distance from the
origin site (Tillier and Collins, 2000). Together with small deletions and insertions, the
symmetric inversions rapidly disrupt synteny during the evolution of prokaryotic genomes
(Figure 3). Although extensive genome rearrangement is seen even between genomes in
which the sequences of orthologous genes differ very little (Figure 3a), the rates of sequence
evolution and genome rearrangement show a strong positive correlation (P. S. Novichkov,
Y. I. Wolf, I. Dubchak, and EVK, unpublished results). This approximately clock-like decay
of the genomic synteny suggests that genome rearrangement in prokaryotes is a largely
neutral process that is affected by the same type of selective constraints that operate in
sequence evolution.

Although gene order in prokaryotes is poorly conserved, there are discernible patterns of
global genome architecture. Most prokaryotic genomes contain a single, bidirectional
replication origin site that appears to be a special point in the genome with respect to the
global genome architecture (Mott and Berger, 2007). By definition, a bidirectional origin is
the switch point between the leading and lagging strands that in bacteria and archaea are
replicated in different modes, continuous and discontinuous, respectively. In most
prokaryotes, the leading and lagging strands show substantial asymmetries in nucleotide
composition, gene orientation and gene content (Rocha, 2004). Typically, the leading strand
is characterized by a greater density of genes than the lagging strand, and a substantial
majority of the genes on the leading strand, especially, highly expressed and/or essential
ones, e.g., those coding for ribosomal RNAs and proteins, are co-oriented with replication
(Brewer, 1988, Nomura and Morgan, 1977, Rocha and Danchin, 2003a, 2003b). Usually, the
patterns of gene distribution are explained by different versions of the polymerase collision
model that postulates selection for minimizing the chance of head-on collision between the
replicating DNA polymerase and the transcribing RNA polymerase that are both more likely
and more damaging than codirectional collisions (Brewer, 1988, Nomura and Morgan, 1977,
Rocha, 2004). The exact mechanisms that affect the overall layout of bacterial and archaeal
chromosomes require much further analysis but the general conclusion seems clear that the
mechanisms and rate of chromosomal replication are important factors that determine the
genome architecture.

Eukaryotic genomes: what determines their architecture?
The distinctive feature of eukaryotic genomes that sharply separates them from prokaryotic
genomes is the presence of spliceosomal introns that interrupt protein-coding genes.
However, the content and density of introns differ dramatically, from 1-2 introns per
genome in some unicellular eukaryotes (e.g., diplomonads) to a mean of 5-8 introns per gene
in vertebrates (Logsdon, 1998, Rodriguez-Trelles et al., 2006, Roy and Gilbert, 2006). Most
of the eukaryotes have relatively small introns (20-200 nucleotides) but some, e.g., plants
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also possess a fraction of long introns whereas in mammals the average length of intron is ~
2 kb, and there are many extremely long introns (Gibbs et al., 2004). Considering this
variance of intron densities and sizes, it is all the more notable that introns are, on average,
well-conserved elements of the eukaryotic genome architecture. Indeed, for instance, among
vertebrates or green plants, nearly all intron positions are conserved, and up to 30% of intron
positions are conserved even between orthologous genes from animals and plants (Fedorov
et al., 2002, Rodriguez-Trelles et al., 2006, Rogozin et al., 2003, Roy and Gilbert, 2006).
The causes of such striking conservation of the positions of seemingly non-functional
elements like introns remain unclear although multiple effects of introns on expression
regulation have been demonstrated (Maniatis and Reed, 2002, Nott et al., 2003), in line with
the possibility that, to some extent, introns are maintained by purifying selection (Carmel et
al., 2007a). In addition to their effect on the expression of the “host” gene, some of the
animal and plant introns harbor genes for small non-coding RNAs (Brown et al., 2008) or
even protein-coding genes (Yu et al., 2005), adding an extra level of complexity to the
genome architecture.

Comparison of gene orders between eukaryotic genomes reveals considerable conservation
of synteny over long evolutionary spans (hundreds of millions of years), e.g., among
vertebrates or insects. Indeed, approximately 50% of the orthologous genes in human and
fish belong to conserved synteny blocks (Consortium., 2004). A detailed comparative
analysis of 12 sequenced insect genomes reveals a nearly full range of synteny conservation,
from 99% in different species of Drosophila to ~10% between flies and honeybee (Zdobnov
and Bork, 2007). Remarkably, it has been convincingly shown that the rate of synteny loss
during the evolution of animals is, at least, roughly, proportional to the rate of amino acid
sequence divergence in orthologous proteins, so that at ~50% mean sequence divergence, all
traces of ancestral gene order are lost (Zdobnov and Bork, 2007, Zdobnov et al., 2005). In
full agreement with the results of prokaryotic genome analysis (see above), the
approximately clock-like decay of synteny suggests that the change of gene order is a
neutral, rather than an adaptive, process, that is partially constrained by purifying selection
although, in the case of large eukaryotic genomes, it cannot be ruled out that these genome-
wide observations obscure important differences between the driving forces of gene order
evolution in different genome regions. . These observations indicate that, compared to
prokaryotes, eukaryotes show a much slower decay of synteny: even at ~90% amino acid
sequence identity, prokaryotes lose all synteny beyond the conserved operons (Figure 3). It
seems likely that the mechanism of origin-centered inversion that is highly active in
prokaryotes but absent in eukaryotes is, at least, in part, responsible for this dramatic
difference in the rates of synteny decay.

As opposed to prokaryotes, where the operonic principle governs the local arrangement of
genes in the genome, it seems certain that there is no such simple organizing principle in
eukaryotes. The great majority of eukaryotic mRNAs are monocistronic, so there is no
single, dominant mechanistic basis for clustering of functionally linked genes in eukaryotic
genomes (but see below on more subtle causes that might still favor such clustering in some
cases). The major exceptions include the genomes of kinetoplastids (trypanosomes and
leishmania) in which the majority of genes are organized in operon-like units that are
transcribed as polycistronic mRNAs. However, unlike the case of prokaryotes, the
kinetoplastid transcripts are not translated directly but instead are processed into
monocistronic mRNAs via a distinct process called trans-splicing (Clayton, 2002). The
nematodes represent a less extreme case of eukaryotic operonization, with approximately
15% of the genes clustered in operons whose polycistronic transcripts are also processed via
trans-splicing (Blumenthal and Gleason, 2003, Guiliano and Blaxter, 2006, Qian and Zhang,
2008). The operons in nematodes show considerable conservation even among distantly
related species (Guiliano and Blaxter, 2006). However, the operons in nematodes and
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kinetoplastids are completely unrelated to each other or to the prokaryotic operons
indicating that operons have independently evolved in at least two eukaryotic lineages.

Beyond the unusual cases of operonization in kinetoplastids and nematodes, there are
multiple, biologically important exceptions to the general lack of clustering of functionally
related genes in eukaryotes. Typically, clusters of functionally related genes comprise
tandem duplications Perhaps, the most spectacular of these are the clusters of Antennapedia
(ANTP)-like homeobox genes (Hox, ParaHox, EHGBox, and NK clusters) that encode key
regulators of animal development and seem to be, to a varying degree, conserved in all
animals (Butts et al., 2008, Chourrout et al., 2006, Ferrier and Holland, 2001, Larroux et al.,
2007). Evolutionary reconstructions based on comparative-genomic analysis indicate that
the last common ancestor of the extant animals possessed a “Mega-cluster” of ANTP genes
that subsequently independently and differentially deteriorated in different animal
lineages(Butts et al., 2008, Ryan et al., 2006). The partial conservation of Hox and other
ANTP gene clusters is likely to be maintained by purifying selection owing to the spatio-
temporal colinearity whereby successive activation of genes in a cluster contributes to the
progressive action along the anterior-posterior axis in the course of development (Ferrier
and Minguillon, 2003, Monteiro and Ferrier, 2006). Among other notable clusters of
duplicated and functionally similar genes are the thousands of vertebrate genes for olfactory
receptors that are organized in multiple clusters (Niimura and Nei, 2005, , 2006), clusters of
genes encoding various components of the vertebrate immune system (Hughes, 2006, Kelley
and Trowsdale, 2005, Nei and Rooney, 2005), plant genes encoding proteins involved in
pathogen response (Friedman and Baker, 2007), and many other, smaller clusters.

Beyond the relatively obvious clustering of paralogous genes, comparative genomics yielded
many indications of non-random gene organization in eukaryotic genomes (Hurst et al.,
2004, Michalak, 2008). Significant clustering has been observed among genes that can be
considered related by a variety of criteria. Many reports have documented clustering of co-
expressed genes. Thus, it has been shown that approximately 25% of the yeast genes that are
expressed in the same stage of the mitotic cell cycle are clustered on chromosomes, i.e., at
least one of the immediate neighbors in this set of control genes is expressed at the same
stage (with <5% clustered genes expected by chance) (Cho et al., 1998). Similar findings
have been reported for the nematode C. elegans, even after the contribution of operons was
subtracted (Lercher et al., 2003, Roy et al., 2002). A comprehensive analysis of expression
patterns among Drosophila genes indicated that ~20% of the genes form co-expression
clusters (at least 10 times more than expected by chance) (Spellman and Rubin, 2002), and
even more impressive clustering has been reported for genes that are expressed in the same
tissue in both Drosophila (Boutanaev et al., 2002) and mammals(Bortoluzzi et al., 1998,
Caron et al., 2001, Versteeg et al., 2003). However, the relationship between the observed
clustering of coexpressed genes and clustering by gene function turned out to be complex. A
significant but far from complete functional coherence was observed between clustered
coexpressed genes in yeast (Cohen et al., 2000) and Arabidopsis (Williams and Bowles,
2004); by contrast, in animals, there seems to be little clustering of genes that are both co-
expressed and belong to the same functional category (Fukuoka et al., 2004, Spellman and
Rubin, 2002). A comparison of clusters of coexpressed genes in human and mouse genomes
revealed significant conservation, in support of the functional significance of these clusters;
however, the clusters encompassed less than 5% of the genes in each genome (Semon and
Duret, 2006).

When eukaryotic genome architecture was analyzed explicitly from the functional
perspective, it was shown that genes for enzymes of the same metabolic pathway are
significantly (according to a scoring scheme developed to analyze the statistics of gene
clusters) clustered in all analyzed genomes. The fraction of pathways that showed significant
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clustering varied widely, from approximately 98% in yeast to about 30% in Drosophila (Lee
and Sonnhammer, 2003). Notably, however, this analysis found no coherence between gene
clustering in different eukaryotic genomes, i.e., pathways that showed gene clustering in one
genome were typically not clustered in others.

The mechanisms of co-expression of clustered genes in eukaryotic genomes, obviously,
have to do with co-regulation of transcription and can be classified into local ones, such as
the utilization of bidirectional promoters or common enhancers, and global ones, such as
distinct chromatin structure that translates into similar expression patterns of genes in the
corresponding region of a chromosome (Hurst et al., 2004). Although chromatin-level
regulation is often considered important (Cremer and Cremer, 2001, Sproul et al., 2005), the
small size of the majority of clusters of co-expressed genes suggests that, at least in
mammals, local mechanisms of co-regulation could be decisive (Semon and Duret, 2006).

Evolutionary patterns and forces affecting genome architecture: chance
and necessity

Probably, the single major conclusion from all the comparative analyses of genome
organizations in prokaryotes and eukaryotes is the lack of uniformity and the plurality of
evolution patterns, and underlying mechanisms. With regard to genome architecture, what is
true of E. coli definitely does not apply to the elephant or even to the fly. The operonic
principle of gene arrangement in prokaryotes is the only indisputably strong trend of genome
organization but it only affects the short-range gene order. Demonstrable long-range trends
definitely exist, such as the preferential positioning of prokaryotic genes on the leading
strand or clustering of coexpressed genes in eukaryotes. However, all these trends are
“statistical”, i.e., relatively weak, and also, highly variable even between genomes of
relatively close organisms. In line with this lack of overriding trends in genome
organization, synteny is not a trait that is generally conserved over long evolutionary
distances (that is, such distances at which amino acid sequences of most proteins
substantially diverge). Major exceptions, such as the partial conservation of the ribosomal
superoperon in bacteria and archaea, and of the homeobox gene clusters in animals, are
notable and can be attributed to functional constraints. However, these cases encompass
only a small fraction of genes in genomes and only affect relatively short-range synteny. In
prokaryotes, where inversions around the origin point are common, and so is HGT, complete
deterioration of long-range synteny is often observed even between organisms that share
nearly complete sets of highly conserved orthologous genes (Figure 3). Although, apparently
owing to the absence of origin-centered inversions and low incidence of HGT, there is more
synteny conservation in eukaryotes, almost none of it carries across phyla, and there
definitely are no pan-eukaryotic gene clusters that would be comparable in their level of
conservation to the ribosomal operons or ATPase operons in prokaryotes. Thus, in general,
genome architecture is a highly variable, volatile feature of organisms.

What are, then, the evolutionary forces that shape genome architecture? Of course, there are
multiple ones. Clearly, genome organization is neither random – no genome is simply an
arbitrary string of genes - nor a fully optimized design selected to encode the optimal
phenotype. The principal explanatory framework for understanding evolution of genome
organization can be drawn from the population-genetic theory of evolution of genomic
complexity that was recently expounded by Lynch (Lynch, 2007, Lynch and Conery, 2003).
The theory maintains that genetic changes leading to an increase of complexity such as gene
duplications or intron insertions are slightly deleterious and can be fixed only when
purifying selection in a population is weak. Therefore, substantial genome complexification
is possible only during population bottlenecks, given that the strength of purifying selection
is proportional to the effective population size. Under this concept, genomic complexity is
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not adaptive but is brought about by neutral population-genetic processes under conditions
when purifying selection is ineffective. Complexification starts off as a “genomic
syndrome” although complex features subsequently become subject to adaptive selection.
By contrast, in “highly successful”, large populations, purifying selection is intense, so that
the prevailing mode of evolution in these prokaryotes is genome contraction. Most of the
prokaryotic genomes and genomes of many unicellular eukaryotes do not pass the
“complexification threshold”, the result being compact, streamlined genomes with a
relatively small number of genes, short intergenic regions, and few selfish elements. By
contrast, the genomes of multicellular eukaryotes are beyond the threshold, so fixation of
multiple duplications as well as proliferation of transposable elements (TEs), the latter also
facilitated by sex (Lynch, 2007), become possible.

Of course, all these trends are far from being hard principles, and there are bacterial
genomes with more than 12,000 genes (Schneiker et al., 2007) as well as genomes of
unicellular eukaryotes (e.g., Chlamydomonas (Merchant et al., 2007)or Trichomonas
(Carlton et al., 2007)) that are at least as complex by any criteria as the genomes of
multicellular animals or plants. Furthermore, some prokaryotic genomes (e.g., the
crenarchaeon Sulfolobus solfataricus (She et al., 2001)) and genomes of unicellular
eukaryotes (e.g., Trichomonas vaginalis (Carlton et al., 2007)) are among those with the
highest content of TEs. Apparently, the evolution of even these, relatively small genomes
depends on the balance between the pressure of purifying selection, itself dependent on the
population size and mutation rate, the intensity of recombination processes, and the activity
of selfish genetic elements.

Where in the evolution of genome architecture can we see clear imprints of selection, in
particular, positive selection? It seems that selection is an important factor in the evolution
of operons. Operons can easily form by chance, in a completely neutral fashion, through
genome compactification (streamlining) which leads to the formation of tightly spaced
strings of codirectional genes, directons (Salgado et al., 2000, Wolf et al., 2001). Those of
the randomly assembled operons that consist of functionally linked genes provide a selective
advantage to their carriers owing to the possibility of co-expression and co-regulation, so
such operons are fixed in evolution and often become widespread via HGT. This view of
operon evolution incorporates the selfish operon hypothesis according to which operons are
maintained as selfish elements via HGT (Lawrence, 1999, Lawrence, 1997, , 2003) but also
includes a distinct effect of positive selection that is amplified by HGT. So operons can be
reasonably viewed as partially selfish elements whose survival depends both on their
selective value for the carrier organisms and on random HGT.

The role of HGT in the persistence of operons is indirectly but, in my view, strongly
supported by the fact that no strings of genes homologous to prokaryotic operons are
detectable in eukaryotic genomes (Y.I. Wolf and EVK, unpublished results). Regardless of
the exact scenario for the origin of eukaryotes, the genome of the last common ancestor of
the extant eukaryotes must have acquired diverse operons, at least, as part of the DNA
transferred from the mitochondrial endosymbiont, and possibly, also from the archaeal
(under the symbiotic hypotheses of eukaryotic origin (Embley and Martin, 2006, Martin and
Koonin, 2006)) or protoeukaryotic (under the archaezoan or related hypotheses (Kurland et
al., 2006, Poole and Penny, 2007)) host. The lack of any traces of such inherited operons in
eukaryotic genomes suggests a ratchet-type scenario of operon elimination: once an operon
is gone, in the absence of appreciable HGT, the loss is virtually irreversible.

Conversely, reconstruction of the evolutionary dynamics of operons in nematodes yielded a
“easy come, slow go” scenario, with the rate of gain substantially exceeding the rate of loss
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(Qian and Zhang, 2008). Thus, it appears that operons that are randomly created by
recombination are subsequently maintained by purifying selection.

In multicellular eukaryotes, the relatively small population size and relatively low
characteristic mutation rates translate into comparatively weak purifying selection, so that
various degrees of genome enlargement and complexification become possible. Hence the
formation of large clusters of tandemly duplicated genes, a feature that can be viewed as an
increase in genome ordering. However, the counter trend is also apparent, namely, the
increased activity of transposable elements that leads to an increase in genomic disorder. In
vertebrates, this mobilization of transposable elements is particularly dramatic so that the
genomes consist mostly of TE-derived sequences (Makalowski, 2000). In an already
familiar pattern that is a crucial part of the neutral paradigm of the evolution of genomic
complexity (Lynch, 2007), the TEs comprise an important source for recruitment
(exaptation) of new regulatory and, possibly, even structural sequences (Jordan et al., 2003,
Thornburg et al., 2006).

To what extent gene clustering in eukaryotes is affected by selection and what the targets of
this potential selection are remain widely open questions. As such, co-expression of adjacent
genes cannot be considered evidence of selection because, when genes are located in the
same chromatin domain, up- or down-regulation of one gene can accidentally cause a
concordant change in the expression of the other owing to the effect of chromatin
remodeling (Spellman and Rubin, 2002). Such co-expression does not necessarily confer
any benefits on the organism and might not be subject to selection (Hurst et al., 2004).
Clustering of genes that are directly functionally associated, such as enzymes in the same
pathway (Lee and Sonnhammer, 2003), is hard to explain without invoking selection.
However, the lack of significant evolutionary conservation of such clusters is surprising and
suggests that either the selective pressure that leads to fixation and persistence of these
clusters is quite weak, or that relative importance of clustering (and the ensuing co-
regulation) changes rapidly in the course of evolution (or both).

Conclusions
The evolution of genome architecture appears to be defined by a dynamic balance between
forces that enhance disorder, primarily, various forms of intragenomic and intergenomic
recombination including HGT, and the ordering effects of selection (Figure 4). The result is
a complex genomescape that encompasses a variety of non-random features, particularly,
local ones, that emerged with participation of selection, but is far removed from an
optimally designed architectural blueprint for an organism. On the whole, the large-scale
organization of genomes appears to be, mostly, random and, indeed, evolves rapidly (at
least, compared to protein sequences) and in an approximately clock-like manner. Thus, in a
sense, the title of this article is not fully appropriate, as there is no such thing as global
genome architecture although elaborate local architectural features are shaped by selection
and play crucial roles in the functioning of all genomes.
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Figure 1.
The distinct genome architectures of prokaryotes, unicellular eukaryotes and multicellular
eukaryotes.
Genes are shown by rectangles with the arrowhead indicating the direction of transcription.
Exons are shown by rectangles without arrowheads. Intergenic regions are shown by straight
lines, and introns are shown by squiggly lines. The schematic is not to scale.
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Figure 2.
Genome size versus the number of protein-coding genes for selected organisms from
different divisions of life.
The plot is on a semi-logarithmic scale. Black squares, large DNA viruses; green diamonds,
bacteria; red diamonds, archaea; blue circles, unicellular eukaryotes (including fungi);
orange circles, multicellular eukaryotes (plants and animals). The data were from the NCBI
Genome Project database (NCBI Genomes 2008).
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Figure 3.
Comparison of gene orders in prokaryotic genomes.
In the genomic dot-plots, each point corresponds to a pair of orthologous genes identified as
bidirectional best hits in BLASTP comparisons of the complete sets of protein sequences
encoded in the corresponding genomes (Tatusov et al., 1997).
(a) nearly complete colinearity with a few breakpoints: Borrelia afzelii strain PKo vs B.
burgdorferi starin B31.
(b) moderate genome rearrangement in bacteria, X-shaped pattern indicative of inversion
around the origin of replication: Xanthomonas axonopodis pv. citri strain 306 vs X.
campestris pv. campestris strain 8004.
(c) moderate genome rearrangement in bacteria, X-shaped pattern indicative of inversion
around the origin of replication: Pyrococcus horikoshii OT3 vs P. abyssi GE5
(d) Extensive genome rearrangement in bacteria: Streptococcus gordonii str. Challis
substrain CH1vs S. pneumoniae D39.

Koonin Page 18

Int J Biochem Cell Biol. Author manuscript; available in PMC 2012 February 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
The evolutionary forces affecting genome architecture
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