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Modern biological sciences are becoming more and more multidisciplinary. At the same time, theoretical and computational
approaches gain in reliability and their field of application widens. In this short paper, we discuss recent advances in the areas of
solution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations that were made possible by
the combination of both methods, that is, through their synergistic use. We present the main NMR observables and parameters
that can be computed from simulations, and how they are used in a variety of complementary applications, including dynamics
studies, model-free analysis, force field validation, and structural studies.

1. Introduction

Structure and dynamics studies of proteins and other biolog-
ical macromolecules involving the use of multiple techniques
are rapidly becoming the norm rather than the exception.
In addition to a wide array of experimental possibilities,
structural studies benefit from theoretical techniques whose
predictive abilities have increased tremendously due to both
methodological developments and the rapid increase of
available computer power. The joint use of nuclear magnetic
resonance (NMR) spectroscopy [1] and molecular dynamics
(MD) simulations [2] is becoming commonplace due to their
high complementarity: while NMR yields highly quantitative
data on dynamic processes, these data suffer from not being
easily linked to unambiguously identified motions. On the
other hand, MD simulations unambiguously describe atomic
motions, but they are predictions impaired by force-field
limitations and model approximations. Hence, combining
the strengths of experimental data from NMR and simu-
lation data from MD yields a more reliable understanding
of dynamics in terms of quantities and physical description

of motions, respectively. This has an impact on our ability
to study a variety of biological systems, from Alzheimer’s
disease-related amyloid peptides [3, 4] to the catalytic
properties of antibiotic resistance enzymes [5].

Solution NMR spectroscopy allows the study of proteins
in terms of both structure and dynamics. For proteins,
labelling with 13C and 15N is typically performed and
allows the observation, at atomic resolution, of most atoms,
since naturally abundant 1H is also NMR-active. Because
such isotope labelling has no effect on protein structure
and function, NMR can be considered a pseudo-label-free
technique. Most NMR dynamics studies focus on N–H
groups, which allows observation of a specific probe for
most residues, with the notable exception of prolines and N-
termini. A set of different experiment types are then available
to probe motions on different timescales, ranging from the ps
to several days (see Figure 1). However, NMR, as many other
spectroscopic or bulk techniques, is limited by averaging [6]
and experimental observations are thus driven by population
statistics. Therefore, even though quantitative dynamics
information can be derived from NMR, most of the time this
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Figure 1: Timescales of protein motions (a) with timescales acces-
sible to NMR experiments (b) and the approximate years these
timescales became accessible to MD simulations (c).

information is limited to determining timescales (rates) of
motions, rather than giving a direct physical description of
these motions.

MD simulations are a structural bioinformatics tech-
nique that uses Newtonian physics to describe the dynamics
of a system (such as a protein immersed in water molecules)
at the atomic level. Atoms are represented by charged point
masses. The force field (the expression of the potential energy
as a function of atomic positions) is used to compute forces
in the system and generate atomic positions and velocities
along a trajectory. Modern force fields and MD implemen-
tations and techniques were recently reviewed by Guvench
and MacKerell [2]. Timescales amenable to MD simulations
have increased by many orders of magnitude in recent years,
making MD a powerful probe of macromolecular dynamics
(see Figure 1).

Case [7], in a seminal 2002 article, predicted important
developments in the combined use of MD and NMR, with
a focus on spin relaxation experiments applied to the study
of both global rotational motions and the local dynamics
of individual spins. In this short paper, different aspects of
the joint use of NMR and MD are discussed. While this
document is not an exhaustive listing of all the work done
in the field of combined NMR and MD, it should give the
reader a broad picture of how these methods can be used syn-
ergetically. Computational docking using NMR constraints,
although not MD per se, is also discussed briefly. Our focus
is on solution NMR, and therefore joint applications of MD
and solid-state NMR spectroscopy (ssNMR) are not reviewed
herein. (Readers interested in MD-ssNMR studies will find
the recent work of Romo et al. [8] an interesting literature
starting point).

In the next section, we overview methods for calculating
NMR parameters and observables from MD trajectories:
spin relaxation rates, order parameters, and conformational
exchange. Then, applications of combined NMR and MD
for dynamics studies are presented, starting with a selection
of biological models that were developed using both MD
and NMR. Specific applications are then treated: model-
free analysis, force field validation, the special case of

backbone energetics, and long-timescale simulations. The
last section summarizes the use of MD simulations in
structural NMR studies, including structure determination
and ligand docking. We conclude with perspectives on future
usage of joint MD and NMR.

2. NMR Observables and Parameters from
MD Simulations

2.1. Spin Relaxation Rates. One of the most popular
approaches to the study of protein dynamics using NMR is
the recording of spin relaxation rates R1 and R2, as well as
steady-state heteronuclear nuclear overhauser effect (NOE).
R1 is the longitudinal relaxation rate, that is, the rate with
which nuclear magnetization returns to equilibrium after
being perturbed. R2 is the transverse relaxation rate, that
is, the rate with which spin magnetization coherence is
lost after being created. The steady-state heteronuclear NOE
corresponds to the cross-relaxation between two dipolar-
coupled spins [9]. These relaxation observables depend
on stochastic motions on discrete timescales, which are
combinations of the Larmor frequencies of the nuclear spins
involved. These data can be analyzed directly, although their
interpretation rarely allows the identification of the exact
underlying motion.

MD can be used to calculate R1, R2, and NOE values.
One approach is to compute data from spectral density
values themselves computed from the partitioned correlation
function reporting on the reorientation of the bond vector
under study (the vector linking two bonded atoms for which
motions are observed through NMR relaxation, e.g., N–H,
N–C, or C–H bond vectors) [10, 11]. Alternatively, reduced
spectral density values can be calculated from the experi-
mental data and compared to spectral density values [12]
extracted from MD, although the data content from such
an alternative approach is reduced compared to the more
direct one. Of course, these approaches, as others presented
below, suffer from the limited length of trajectories, which
introduces a discontinuity into the calculated correlation
function [11]. This is particularly true when bond vector
reorientation converges slowly, that is, the vector experiences
high mobility. Although MD can be used to help in the
interpretation of spin relaxation data directly, the analysis
of such data is generally performed within a mathematical
framework such as the model-free formalism (also known as
the Lipari-Szabo formalism [13, 14], see below).

2.2. Order Parameters. In the model-free formalism (re-
viewed by Morin [15]), spin relaxation rates are transformed
into more easily interpretable parameters such as the squared
generalized order parameter (S2), a quantitative indicator
of local order, and the conformational exchange parameter
(Rex), which is a semiquantitative indicator of μs-ms motions
(treated in the next section). S2 order parameters range from
zero to one and are a measure of the spatial restriction of a
chemical bond, in this case the N–H vector of the peptide
plan. At a value of 1, there is no internal motion whatsoever
in the bond vector. At 0, the bond is not constrained in any
way relatively to others.
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MD simulations can be used to calculate S2 [5, 16–19].
When calculated values fit well with experimental data, MD
simulations can be used with confidence for interpreting
underlying motions. The classic approach to MD-derived S2

is to compute the internal autocorrelation function for the
bond reorientation. The plateau value extracted from this
function at an infinite time corresponds to S2 [17, 20] (see
Figure 2). This plateau is reached when simulations converge
(i.e., when the accessible conformational space is adequately
sampled). Otherwise, the function is unconverged, leading
to a possible S2 overestimation. Moreover, if a single local
motion dominates the trajectory, the decay to the plateau is
exponential, and the area under the curve corresponds to the
internal correlation time τ, the timescale of motion charac-
terized by S2 (see Figure 2). In a variation of this approach,
the internal autocorrelation function does not use the MD
data in a chronological manner, but rather randomized,
with the function directly decaying to the plateau (S2) value
[5, 21]. Obviously, convergence cannot be assessed with this
approach. However, it allows the combination of multiple
trajectories in order to increase conformational sampling. S2

can also be computed from spherical harmonics summation
[17, 21], another technique that allows the use of multiple
trajectories. Agreement between spherical harmonics and the
autocorrelation function was used by Buck et al. [17] to
assess convergence.

The model-free formalism was derived by assuming
separation of global and local dynamics, that is, separation
of timescales for the global diffusion of the protein and the
local motions of the bond vector [13, 14]. For folded globular
proteins, this timescale separation is generally respected.
However, for unfolded proteins, where the global motions
can be much faster and coupled to local movements, such
separation might not be true. (It was later shown [22]
that timescale separability is not an issue in most cases; a
notable exception is when local motions considerably alter
the overall shape of the protein.) In order to mitigate the
issue of timescale separability, Prompers and Brüschweiler
[16] introduced a method called isotropic reorientational
eigenmode dynamics (iRED), which relies on the use of
MD simulations for the analysis of experimental NMR spin
relaxation data. In addition to being completely unaffected
by timescale separability (and thus well suited for the study
of unfolded proteins), this method can also evaluate if global
and internal motions are statistically separable. The method
uses principal component analysis (PCA) [23] evaluated
from MD simulations in order to extract reorientational
eigenmodes and amplitudes. The distribution of eigenvalues
allows the assessment of timescale separation. Finally, iRED
parameters are fitted to experimental data, allowing the
extraction of dynamics information, such as S2 values. The
method was applied to the iron responsive element RNA
by Showalter et al. [24], who could demonstrate that global
and local motions are not statistically separable, but rather
correlated for this small macromolecule. Maragakis et al.
[19] also proposed a solution to the separability problem,
where the full autocorrelation function (as opposed to the
local one) is used, thereby recoupling global and local
motions to simulate the effect of global tumbling on NMR
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Figure 2: Internal autocorrelation function for an imaginary bond
vector where S2 = 0.5, the plateau value as the function converges
towards infinity. The area between the curve and S2 is the local
correlation time (τ).

relaxation. Finally, Johnson et al. [25] created different helical
ensembles by modification of φ/ψ angles in order to compare
different approaches to the extraction of order parameters for
multiple different backbone bond vectors. Their approach
highlighted the fact that multiple analytical methods applied
to the same system can yield a complementary and self-
consistent picture of reorientational motions. In other words,
extracting S2 using different approaches allows inferences on
the underlying motions in action, whereas a single S2 value
(from a single approach) does not provide information on
the physical nature of this motion.

Whereas order parameters extracted from spin relaxation
data (using either the model-free formalism or the iRED
approach) report on the ps-ns timescale, residual dipolar
couplings (RDC, couplings observable for weakly aligned
samples) can be used to extract a broader timescale S2

ranging from ps to ms [26–28] (see Figure 1). The difference
between spin relaxation and RDC S2 can highlight the
presence of slower μs-ms movements. Motions on this phys-
iologically relevant timescale can improve the understanding
of protein function as they might be coupled to activity
[29]. As for the analysis of model-free order parameters,
the analysis of RDC S2 data also can benefit greatly from
combination with MD. Indeed, Salmon et al. [30] very
recently reviewed this particular application, highlighting the
fact that amplitudes of motions, as well as their distribution,
can reliably be extracted from the two techniques (in this
case, with accelerated MD simulations, discussed further
below), allowing cross-validation of both techniques and
increasing the confidence with which these data can be used
for the understanding of protein motions.
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2.3. Conformational Exchange (Rex). μs-ms motions, often
related to protein functions such as enzyme catalysis [29],
can be indirectly studied using a combination of order
parameters extracted from spin relaxation and RDC (see
above). A more direct approach is the extraction of a
conformational exchange term (Rex, also called chemical
exchange) either from model-free analysis of relaxation data
or from relaxation dispersion experiments. Rex arise from
μs-ms motions because these affect the magnitude of the
effective transverse relaxation rate R2. Rex values depend
on timescales of motion, chemical shift differences between
different conformers, and population weight of these con-
formers. Rex sums with the pure R2 (reporting on ps-ns
motions) to give the observed R2 [31]. However, interpreting
Rex in terms of physical motions is not trivial (with some
exceptions [32–35]). MD simulations could be useful in
interpreting experimental Rex parameters. Unfortunately, the
μs-ms timescale is currently barely accessible to all-atom
MD. This might soon change as simulations reaching the
ms timescale are now being produced [36] (see Figure 1),
although on special purpose hardware that is not commonly
available. Once this timescale is routinely simulated, it will be
possible to compare Rex values with observed slow motions
qualitatively, and possibly quantitatively by correlating Rex

values with timescales of motion for conformers with distinct
chemical shifts. Such comparisons will be facilitated by
the high accuracy with which chemical shifts can now be
predicted from 3D structure (reviewed by Wishart [37]).

Alternatively, accelerated molecular dynamics (AMD)
techniques can be used to probe the μs-ms timescale. AMD
are a variety of techniques designed to efficiently sample
low-energy conformations. This implies escaping energy
minima, often by artificially reducing the energy barrier
between low-energy conformations. AMD techniques were
reviewed by Elber [38]. Markwick et al. [21] showed that
AMD can be used together with NMR spectroscopy to study
multiple timescale motions in proteins. They used AMD
simulations of GB3 protein to quickly sample motions on the
ms timescale. Classic MD simulations were then performed
using AMD conformations as starting points, providing
insights into dynamics at different timescales (ms versus ns).
NMR relaxation and RDC data available for that protein were
in agreement with their findings.

3. Dynamics Studies

There are many examples in the literature of practical
applications of NMR and MD for the study of biological
systems. MD simulations are often used to facilitate the
interpretation of NMR dynamic experiments, and to find
new leads that can then be pursued experimentally; MD can
also be used to perform experiments that are inaccessible
to NMR and to focus on a single molecule rather than an
ensemble average. In turn, NMR validates simulations of
specific systems and thus their predictive power. Examples
are discussed below.

The 36 residue villin headpiece helical subdomain
(HP36) was studied in its unfolded state by Wickstrom et al.
[39]. Local structure in the unfolded state is thought to be

important to protein folding. However, it is difficult to mea-
sure experimentally because those structures convert rapidly
to the folded state. An approach to study local structure is the
use of peptide fragments. HP36 is made of three α helices.
Corresponding fragments (HP-1, 2, and 3) were studied by
NMR, where a small helical propensity was detected in HP-1
and 3. However, the presence of multiple conformations
at equilibrium leads to ambiguities in data interpretation.
To palliate limitations of the experimental methods, the
fragments were simulated using replica-exchange molecular
dynamics (REMD), an accelerated sampling technique [40].
REMD facilitates overcoming energy barriers and thus makes
it possible to analyze folding, an event that would normally
happen on a timescale much longer than that accessible
to standard simulations (see Figure 1). Cluster analysis of
the fragment conformations shows that there is a local
stabilized structure in HP-1 identical to the helix observed
in complete HP36. Fragments HP-2 and HP-3, on the other
hand, show little helicity. Cooperative folding in HP36 could,
therefore, start by local helix formation in the HP-1 region.
These simulations are validated by the agreement between
experimental and simulated J-couplings.

Using implicit solvent, Kent et al. [3] developed a model
of the aggregation of β-amyloid fragments (Aβ). Since
Aβ aggregates on μs or longer timescales, simulations of
such atomistic models are expensive. Using NMR order
parameters for peptide Aβ(10–35) and a 10 ns explicit solvent
simulation of the same fragment as reference data, they
benchmarked the accuracy of force fields CHARMM, OPLS-
AA, and Amber combined with their Shen-Freed implicit
solvent model. Order parameters varied considerably with
force field, but CHARMM22 displayed good agreement
with experiment. After a 30 ns equilibration time, their Aβ
model exhibits high flexibility, consistent with experiment,
and maintains the strand-loop-strand motif that promotes
aggregation through a solvent-exposed hydrophobic patch.
Further work on Aβ peptides using both MD and NMR
was performed by Fawzi et al. [4]. They used new high-
field experiments on the Aβ(21–30) fragment to validate
simulations using the Amber ff99SB force field with the
TIP4P-Ew water model. They found that 13C relaxation
parameters are in good agreement with predicted values.
Their explicit solvent model describes accurately the struc-
ture and dynamics of the complete Aβ(21–30) peptide.

Ferner et al. [41] studied the dynamics of two YNMG
RNA tetraloops at different temperatures using both NMR
and MD simulations. This represents a particular chal-
lenge for both techniques. With NMR, careful choice of
temperature-dependent parameters (such as bond length
and CSA) is required for model-free analysis. MD force fields
are parametrized to reproduce room temperature physical
properties, so the actual effect of simulation temperature on
protein dynamics is hard to predict. The thermal stability and
biological function of both loops is known to be temperature
dependent. Even though agreement between experimental
and MD-derived S2 decreases as the temperature is increased
above room temperature, the authors are still able to
observe, both in experiment and simulations, the same loss
of stacking interactions between first and third bases that



Journal of Biomedicine and Biotechnology 5

leads to RNA melting. RNA dynamics were also studied
by a joint MD-NMR approach by Frank et al. [42]. They
generated ensembles of RNA conformations for two variants
of the transactivation response element (TAR). They did
so by selecting snapshots from MD trajectories according
to the fit between simulated and experimental RDCs. The
dynamic ensembles obtained showed that ligand binding
to TAR involves an adaptative recognition mechanism and
important conformational changes in RNA.

Fisette et al. [5] used NMR relaxation and order
parameters to validate β-lactamase TEM-1 simulations. In
turn, simulations and PCA were used to interpret relaxation
data in terms of physical motions. Multiple simulations
were shown to be necessary to sample the conformational
space of flexible loops. Simulations show their limits in
the catalytically-relevant Ω loop, where motions on slow
timescales (μs-ms) that promote substrate gating cause dis-
crepancies between NMR and MD S2. In more recent work
(Fisette et al., in preparation), effects of substrate binding on
TEM-1 and PSE-4 class A β-lactamases were studied by MD
simulations, overcoming a limitation of NMR experiments:
rapid enzyme turnover makes relaxation experiments in
presence of saturating substrate levels impossible; the only
experimental workaround is the use of covalent inhibitors or
variant enzymes, which would significantly affect dynamics
around the active site.

Interested in the dynamics of a small flexible RNA
fragment, Musselman et al. [43] used a domain-elongation
approach to perform different NMR spin relaxation exper-
iments, and compared their results with MD-predicted
relaxation (R1, R2, and NOE), as well as model-free (S2 and
τ) parameters. The domain-elongation approach developed
by Zhang et al. [44] consisted in adding several Watson-
Crick base pairs on one side of the RNA under study using
unlabelled (i.e., NMR-invisible) nucleotides to slow down
global diffusion and, thus, both decouple local and global
motions and allow a higher sensitivity to fast dynamics. For
Musselman et al. [43], this approach was useful in allowing
a defined reference frame for analysis of MD, an otherwise
difficult task with such a flexible entity where local and global
motions are coupled. The RNA displayed a complex mixture
of local and global dynamics on multiple timescales. Whereas
the fast motions were detected by both spin relaxation and
MD, slower motions were indicated by MD as well as RDC
data.

3.1. MD-Guided Model-Free Analysis. When applying the
model-free formalism, a model selection step is neces-
sary to decide on the inclusion of different parameters
and timescales, the basic idea being to identify the most
statistically-relevant model and parameter set yielding a
good fit of the experimental data. Model selection protocols
and parameter accuracy of the model-free formalism were
studied by Chen et al. [11] using MD simulations. They gen-
erated a 10 ns trajectory of dihydrofolate reductase ternary
complex and computed relaxation parameters (R1, R2, and
NOE) from it. Afterwards, they used model-free analysis and
compared different model selection approaches to extract
dynamic parameters from the artificial relaxation data.

These parameters were then compared to those computed
directly from the trajectory using autocorrelation functions.
Simulations thus served as a reference where the motions
are perfectly known, while the model-free analysis had to
reconstruct the spectral density from R1, R2, and NOE,
measurements that provide only partial information on
the dynamics. Their results showed that, as proposed by
d’Auvergne and Gooley [45], the use of not only Bayesian
Information Criteria (BIC) [46] but also Akaike Information
Criteria (AIC) [47] in the case where multiple magnetic
field data are recorded are superior compared to the then
generally used step-up hypothesis approach involving F-tests
[48]. Indeed, these information theoretical criteria provide
a better balance between bias and variance (less under- and
over-fitting) and lead to more reliable model selection, while
also being less computer intensive.

MD simulations can also play a direct role in model
selection, as was recently shown by Fisette et al. [5]. In this
approach, model selection proceeds as usual with statistical
tests for the comparison of experimental and back-calculated
values, but is helped for cases where the tests yield a similar
statistical score for different models (i.e., when different
models reproduce equally the experimental data). In these
ambiguous situations, projections of the orientation of the
bond vector in the course of MD simulations are used to
evaluate the motion type and decide on the best model. Even
though this approach should, in principle, allow the correct
identification of local motions, it suffers from two problems
with regards to the Rex parameter. The first is obviously the
timescale probed by the trajectory. The second is the case
where the Rex contribution arises not from motions in the
bond vector itself, but rather from movements in nearby
atoms that affect the electronic environment of the bond
vector on the μs-ms timescale; such motions are undetected
in the projection of a given bond vector.

3.2. Force Field Validation. If we are to trust the predictive
capabilities of a given force field, that force field should
reproduce experimental observations within its range of
application. The classical, additive force fields used for
MD simulations of macromolecules are developed using
quantum mechanics (QM) properties (geometry, vibrational
modes, solvation energies, etc.) and experimental data.
Unfortunately, the direct fitting of a force field to proteins
or even small peptides is impossible since such systems are
not tractable by QM calculations at the required theory level.
Instead, final parameter sets are used for protein simulations
that are then compared to experimental results. Hen egg
white lysozyme [17, 18, 49–52] and ubiquitin [19, 50–53] are
often used as model systems since they are small and very
well characterized experimentally. NMR observables used
for force field validation include root-mean-square deviation
(RMSD) from NMR structural ensembles [49], NOE (mea-
surement of inter-proton distances) [49, 54], scalar spin-
coupling constants [52, 55, 56], and chemical shifts [57, 58].
Direct comparisons of spin relaxation parameters [53] are a
lot less frequent. Instead, relaxation-derived quantities such
as S2 [5, 17–19, 49, 50, 53, 59–61] are used. RDC-derived
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order parameters [52, 60, 62] are increasingly used for long-
timescale simulations.

A detailed validation of a GROMOS force field parameter
set (45A3) by Soares et al. [49] used a variety of NMR
data and two 3.5 ns simulations of lysozyme. They used a
crystallographic structure as the simulations starting point.
Interestingly, trajectory RMSD shows that the trajectories
stay closer to the X-ray structure than to the lowest-energy
NMR conformer. This is probably indicative of trajectory
dependence on initial conditions, a topic that was further
studied by combined NMR-MD studies, and which will be
discussed later on. Soares et al. [49] also compared predicted
NOE with experimental values. Their results suggested the
new GROMOS parameter set violated experimental NOE
constraints slightly more than the previous set (43A1).
However, studies by Zagrovic and van Gunsteren [54] later
showed that comparing NMR and MD-predicted NOE may
not be a good indicator of simulations quality due to the
nonlinear effect of r−3 or r−6 averaging [63] and focus
on experimentally observed NOE that produces artificially
good agreement between the two techniques. Predicted spin-
coupling constants were also used by Soares et al. [49] to
assess force field quality. Both three-bond 3JHNα- and 3Jαβ-
coupling constants converged to experimental results for
most residues. For some, however, trajectory length was
not sufficient to achieve a meaningful comparison. Lack
of conformational space sampling in MD simulations to
reproduce NMR observables is also an important issue,
which will be presented below.

3.3. Backbone Energetics. An important limitation of MD
simulations is that, as longer timescales become accessible,
force field quality, integrator stability, and other problems
that were not apparent before can be revealed and negatively
impact simulations quality. N–H-squared order parameters
S2 were instrumental in validating the φ and ψ dihedral
angle corrections necessary for common protein force fields
when simulations began probing the many nanoseconds
timescale. Before that correction, classical force fields would
overestimate the flexibility of secondary structures. In some
cases [64], short helical peptides would fold as π helices
rather than the experimentally proven α helices. Cross-map
term corrections (CMAP) were developed by MacKerell Jr
et al. [65] for the CHARMM force field to account for
secondary structure stability while keeping other parame-
ters unchanged. CMAP is a detailed grid of the dihedral
potential of φ and ψ angles that was integrated to the
CHARMM22 force field as a supplemental term. A 25 ns
lysozyme trajectory acquired by Buck et al. [17] compared
predicted N–H S2 to experimental ones. Results showed that
CHARMM22/CMAP predicted S2 that were consistent with
experiment, while in absence of CMAP secondary structures
were much too flexible.

Similar corrections were performed for the AMBER force
field: in the ff99SB parameter set, φ and ψ dihedral angles
were reparametrized [50] to achieve a better balance of
secondary structures. Validation included a comparison of
experimental and predicted S2 for lysozyme and ubiquitin,
showing much better agreement for the new parameters.

Showalter and Brüschweiler [53] also used ubiquitin simula-
tions to validate AMBER ff99SB, but compared experimental
and back-calculated relaxation data in addition to relaxation-
derived order parameters. Showalter et al. [59] also showed
that the modified backbone energetics in ff99SB improved
the description of amino acid methyl side-chain rotation,
suggesting a direct relation between main- and side-chain
dynamics.

Even with this correction, however, modern force fields
for proteins are still scrutinized through comparison with
NMR results, revealing limitations. For instance, discrepan-
cies in predicted and experimental J-couplings led Best et al.
[55] to suggest that current force fields might be too helical
as they overpopulate the α conformation of polyalanine
peptides in water. Another study of short peptides by
Wickstrom et al. [56] used NMR scalar coupling constants
as reference data and also showed shortcomings in Amber
ff99SB for Ala3 and Ala5 peptides and the TIP3P and
TIP4P-Ew water models. Another NMR-MD comparison by
Trbovic et al. [60] highlighted deficiencies in the OPLS-
AA and AMBER (ff99SB and ff03 parameter sets) force
fields. Using over 50 short (2.4 ns) simulations of the B3
immunoglobulin-binding domain of streptococcal protein
G (GB3), they compared MD-predicted S2 to experimen-
tal values determined by both spin relaxation and RDC
experiments. Their results indicate that the three force fields
overestimate the flexibility of amide N–H vectors at the
borders of secondary structure elements and in loops. They
suggest that an imbalance between hydrogen bonding and
other terms may be the cause of the problem. Even though
these studies concluded the impact on the accuracy of
typical protein simulations is small, NMR-MD studies of
small peptides may lead to force field improvements in the
future.

3.4. Diffusion and Long-Timescale Simulations. Molecular
dynamics rely on the ergodic hypothesis for simulating phys-
ical parameters; adequate conformational space sampling on
the timescales of the biological processes being studied is
required. This is rarely possible for large macromolecules,
as is clearly shown by trajectory dependence on starting
coordinates. For lysozyme, Koller et al. [18] showed that
starting structure had a significant impact on MD-derived
order parameters. Since those are increasingly used to
assess force field quality, caution must be taken to acquire
trajectories at least an order of magnitude longer than
the solute global tumbling time. Genheden et al. [61] also
studied the effects of starting structures, trajectory length,
and S2 calculation method on MD-derived S2. Using the
carbohydrate-binding domain of galectin 3 in the free and
lactose-bound states, they compared predicted order param-
eters with experimental data from NMR spin relaxation.
They conclude that the use of multiple trajectories (ten) of a
length of 125% of global tumbling (10 ns in their case) yields
the best results. In both studies, the improvement obtained
from longer or multiple trajectories was significant only for
a small number of residues that are either very flexible (with
S2 < 0.7) or involved in slow dynamic events. Similar results
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were observed by Fisette et al. [5] in a joint MD-NMR study
of TEM-1 β-lactamase.

With MD trajectories now routinely reaching 100 ns, the
global tumbling of small proteins is becoming an object of
study in simulations. Global tumbling is easily measurable
using solution NMR spectroscopy. Wong and Case [51]
made an extensive study of three water models (SPC/E,
TIP4P-Ew and TIP3P) and four proteins (ubiquitin, binase,
lysozyme, GB3). Extracting the diffusion tensor for these
solutes required simulations of 20 to 100 times longer than
the rotational tumbling. Their study highlights how current
water models make protein diffusion too fast in simulations.
The diffusion constant of the popular TIP3P model is known
to be about twice that of water at room temperature, but
even for SPC/E and TIP4P-Ew models, whose diffusion
constants are nearer experimental values, the rotational
diffusion constants of all studied proteins were too large
when compared to NMR results. In the first published work
involving a μs trajectory, Maragakis et al. [19] also observed
a diffusion constant about twice the experimental value for
ubiquitin using SPC water molecules. Now that even longer
timescales are becoming accessible, theoretical approaches
need to be improved once again, this time with optimized
water models. However, major changes in water models are
likely to require modifications to existing forcefields, since
these potentials are interdependent. Water models and their
limitations were reviewed by Guillot [66].

Finally, simulation stability on the μs timescale has
received attention in recent work by Lange et al. [62].
They used NMR RDC experiments, which are sensitive
to dynamics from ps to ms, and compared them with μs
simulations of ubiquitin and GB3 for a variety of force fields.
Interestingly, they noted that past 25 ns, increasing trajectory
length improves RDC fit only marginally. In some cases,
longer trajectories yield worse synthetic RDCs, suggesting
that the accumulation of force-field imprecision outweights
the increased conformational space sampling and the protein
behavior starts to deviate from its native state. PCA [23]
was used on all MD ensembles to find correlations between
RDC mismatches and structural changes. They showed
that after several hundred ns, high free energy states are
overrepresented and transitions to nonnative states happen
at a higher frequency. They also demonstrated that the use of
particle mesh Ewald (PME) for the treatment of electrostatics
is necessary to obtain an accurate RDC fit. Recently, two new
sets of parameters for the Amber force field were developed
using NMR observables, with the explicit goal of improving
the quality of long-timescale simulations. The first one,
named ff99SB-ILDN, was developed by Lindorff-Larsen et al.
[52] and is limited to reparametrization of χ1 dihedral angles.
They used simulations of small model peptides to identify
the residue types with rotamer populations that differed
most from expectations based on statistical analysis of the
Protein Data Bank (PDB). Full scans of the potential energy
surface (PES) of the χ1 angles of these residues were then
performed. A new torsion term in the Amber force field was
introduced and replaced the previous one, and parameters
for that term were fitted using the QM results. Afterwards,
validation was performed with globular proteins (lysozyme,

BPTI, ubiquitin, and GB3) by comparing calculated 3J
scalar couplings and side-chain RDCs to experimental data
from the literature, showing noticeable improvements over
ff99SB. The second set of parameters is the work of Li
and Brüschweiler [57, 58] and uses NMR chemical shifts
from the BioMagResBank (BMRB) [67] as a reference for
direct force field parametrization. This is a novel approach,
as NMR observables are usually used for validation only,
because systematic exploration of the parameter space is
too expensive when simulating entire proteins. Here, the
authors used an initial trajectory that was reweighted for each
new parameter set using Boltzmann’s relation. Parameter
fitting was done by comparing theoretical and experimental
chemical shifts of C, Cα, and Cβ atoms of each residue and
adjusting the potential of backbone dihedral angles φ and
ψ. Very recently, Li and Brüschweiler [68] extended their
method to use RDC in a similar way, either alone or in
combination with chemical shifts. The resulting parameter
sets perform better for reproducing NMR data and exhibit
lower RMSD between trajectories and X-ray crystallographic
structures.

As the timescales amenable to MD simulations continue
to increase, and ms simulations become possible [36], NMR
will most certainly continue to serve as a powerful exper-
imental reference for force field validation and develop-
ment.

4. Structural Studies

Protein structure determination with NMR data, since its
first uses, has been helped by computational approaches,
such as distance geometry optimization [69]. Simulated
annealing approaches have been used for the calculation of
structures based on NMR constraints (NOEs, paramagnetic
relaxation enhancements (PREs), chemical shifts, coupling
constants, RDCs, etc.) [70]. The approach consists of
incorporating the experimental constraints and weighing
them with a given force field in simulations performed at
high effective temperature (to reduce energy barriers and
allow the structure to relax and minimize its energy and the
violation of experimental constraints). The temperature is
then lowered slowly until a converged structure satisfying
both experiment and physical constraints is obtained. In the
end, a family (group) of low energy conformers (generally
10–40) is used to represent the structure. This approach
and more modern implementations have been available
in programs such as CYANA (DYANA) [71–74], XPLOR-
NIH [75, 76], CNS [77, 78], and ARIA [79, 80]. Recently,
MD has, however, been used in an increasing number
of approaches different from strict NMR-constraints-based
structure calculation, with some examples given below.

Three-dimensional protein structure prediction has long
been one of the ultimate goals of theorists. A very successful
approach has been with the program ROSETTA [81] from
the Baker lab which implements ab initio approaches.
Whereas first implementations were solely based on theory
(not using experimental data), newer implementations use
raw NMR data such as chemical shifts (CS-ROSETTA)
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[82, 83], a combination of backbone chemical shifts and
unassigned NOE data (CS-DP-ROSETTA) [84], or a combi-
nation of backbone chemical shifts, amide proton distances
(from NOE data) and RDC data (CS-RDC-ROSETTA)
[85]. This combination of ab initio approaches with easily
obtained NMR data (mostly excluding the tedious assign-
ment of side-chain resonances) allows rapid and accurate
structure predictions to be made, a good compromise to full
structure determination.

NMR data has also been used in conjunction with
already available structures for helping the docking of ligands
to potential binding sites [86]. The HADDOCK (High
Ambiguity Driven protein-protein DOCKing) approach has
been particularly successful in this [87, 88], first by using
solely chemical shift perturbation data, but later including
RDC data [89], as well as diffusion anisotropy data extracted
from spin relaxation experiments [90] or pseudocontact
shifts [91]. Morelli et al. [92] proposed a combined MD-
NMR approach for the study of protein complexes. Named
restrained soft-docking, the method uses chemical shift
perturbation as a guide for a specific docking algorithm
(BiGGER). Flexibility of amino acid side chains at the
protein-protein interface are taken into account, but global
fluctuations are disallowed, making the method most appro-
priate for small and medium complexes of globular proteins.
Results showed excellent agreement (RMSD) with experi-
mentally elucidated complexes for a selection of complexes:
EIN/HPr, Barnase/Barnstar, Tom20/Presequence, Cyt c/Ccp.
These complexes have interfaces that range from about 1000

to 2200 Å
2
. The HSQC NMR experiment generally used

to determine chemical shift perturbation typically requires
about an hour. Combined with the performance of the
docking algorithm, this makes the technique a powerful tool
for structural genomics projects and the search for protein-
protein complexes that can facilitate the identification of
lead compounds for drug design. Developments of combined
NMR and docking methods were reviewed by Morelli and
Rigby [93].

The description of unfolded proteins is a particularly
challenging area where, again, NMR and MD are very com-
plementary. In this context, NMR observables are used for
the validation of ensembles of conformers which are aimed
at representing the situation of unfolded proteins in solution.
Chemical shifts [94], scalar couplings [95], RDCs [96, 97],
and PRE effects [98, 99] are different NMR observables
which can be effectively used in such approaches. Different
techniques exist such as the flexible-meccano algorithm
by Bernadó et al. [100], in which random conformational
sampling based on amino acid propensity and side-chain
volume is used for the construction of typically 100,000
conformers. Another random sampling approach is that of
Jha et al. [101] using a self-avoiding statistical coil model
based on backbone conformational frequencies found for a
subset of protein structures deposited in the Protein Data
Bank (PDB). The ENSEMBLE approach [102, 103] uses
Monte Carlo approaches and MD simulations in order to
create relatively small ensembles of conformers for which the
populations weights are then optimized using experimental

NMR data interpretation
using MD trajectories

Structure

calculation

Forcefield refinement
using NMR observables

MD NMR

SAXS EM EPR CD MS · · ·

Figure 3: Summary of the relationship between solution NMR
spectroscopy and MD simulations, as presented in this paper, along
with a listing of other complementary experimental techniques.

data. The maximum occurrence approach (termed MaxOcc)
[104, 105] also uses weights (in this case defined as the
maximum fraction of time a conformer can exist such that
experiment data is well reproduced). The originality of this
approach lies in the fact that only one conformer is evaluated
within the ensemble in order to avoid overfitting of the
limited experimental data. Such approaches that model the
distribution of conformers are very useful for the study of
unfolded proteins. In particular, the combination with NMR
is very effective at characterizing the persistence of secondary
structures as well as hydrophobic clusters in unfolded states
[106–109].

5. Conclusions

The variety of applications covered in this paper, the
importance of NMR developments such as RDC, and the
increase of the timescales tractable by MD simulations
indicate that the joint usage of MD and NMR has a bright
future. NMR will be indispensable in the development
and refinement of force fields and water models able to
accurately simulate both global and local protein motions
on the μs-ms timescales. MD is already an integral part of
NMR structure determination, and simulations will become
commonplace as a complement to NMR dynamics from
relaxation or RDC to facilitate data interpretation (see
Figure 3). The overall availability of both experimental and
simulated data in databases such as the BMRB [67] for
NMR and the Dynameomics repository [110, 111] for MD
will facilitate further comparisons and enhance synergy.
Moreover, approaches aimed at helping experimentalists use
further computational approaches (see, for example, the
worldwide e-Infrastructure for NMR and structural biology:
WeNMR—http://www.wenmr.eu/) will also be beneficial.

Obviously, not only NMR and MD can be combined
synergetically. Many other techniques such as small angle X-
ray scattering (SAXS), electron microscopy (EM), electron
paramagnetic relaxation (EPR), circular dichroism (CD),
and mass spectrometry (MS) can be used together (see

http://www.wenmr.eu/
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Figure 3) to enhance their total information content as
recently reviewed by Cowieson et al. [112] and exemplified
with the recent study of RANTES/CCL5 oligomers by Wang
et al. [113].
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281, Akadémiai Kiadó, Budapest, Hungary, 1973.

[48] A. M. Mandel, M. Akke, and A. G. Palmer, “Backbone
dynamics of Escherichia coli ribonuclease HI: correlations
with structure and function in an active enzyme,” Journal of
Molecular Biology, vol. 246, no. 6, pp. 144–163, 1995.

[49] T. A. Soares, X. Daura, C. Oostenbrink, L. J. Smith, and W.
F. van Gunsteren, “Validation of the GROMOS force-field
parameter set 45A3 against nuclear magnetic resonance data
of hen egg lysozyme,” Journal of Biomolecular NMR, vol. 30,
no. 4, pp. 407–422, 2004.

[50] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg,
and C. Simmerling, “Comparison of multiple amber force
fields and development of improved protein backbone
parameters,” Proteins, vol. 65, no. 3, pp. 712–725, 2006.

[51] V. Wong and D. Case, “Evaluating rotational diffusion from
protein MD simulations,” Journal of Physical Chemistry B,
vol. 112, no. 19, pp. 6013–6024, 2008.

[52] K. Lindorff-Larsen, S. Piana, K. Palmo et al., “Improved side-
chain torsion potentials for the Amber ff99SB protein force
field,” Proteins, vol. 78, no. 8, pp. 1950–1958, 2010.
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structure determination with automated NOE assignment
using the new software CANDID and the torsion angle
dynamics algorithm DYANA,” Journal of Molecular Biology,
vol. 319, no. 1, pp. 209–227, 2002.
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