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The mitogen-activated protein kinase (MAPK) pathway allows cells to interpret external signals and respond appropriately, espe-
cially during the epithelial-mesenchymal transition (EMT). EMT is an important process during embryonic development, fibrosis,
and tumor progression in which epithelial cells acquire mesenchymal, fibroblast-like properties and show reduced intercellular
adhesion and increased motility. TGF-β signaling is the first pathway to be described as an inducer of EMT, and its relationship with
the Smad family is already well characterized. Studies of four members of the MAPK family in different biological systems have
shown that the MAPK and TGF-β signaling pathways interact with each other and have a synergistic effect on the secretion of
additional growth factors and cytokines that in turn promote EMT. In this paper, we present background on the regulation and
function of MAPKs and their cascades, highlight the mechanisms of MAPK crosstalk with TGF-β signaling, and discuss the roles
of MAPKs in EMT.

1. Introduction

Signal transduction networks allow cells to perceive changes
in the intra- and extracellular environment and respond
to them appropriately. Mitogen-activated protein kinase
(MAPK) cascades are one of the most thoroughly studied sig-
nal transduction systems and have been shown to participate
in a diverse array of cellular programs, including cell differ-
entiation, movement, division, and death [1]. MAPKs are
serine/threonine kinases that play important roles in a vast
array of pathophysiological processes. The family is divided
into four main subfamilies: extracellular-regulated kinases
(ERKs), Jun N-terminal kinases (JNKs), p38 MAPK, and
ERK5. All of these proteins are characterized by the presence
of a typical activation module and a conserved activation do-
main [2]. ERK1 and ERK2 are activated by mitogenic stimuli,
whereas JNK and p38 MAPK, which are also called stress-
activated protein kinases (SAPKs), are activated by environ-
mental and genotoxic stresses [3–5]. The ERK5 cascade is a
MAPK pathway that transmits both mitogenic and stress sig-
nals, yet its mechanism of activation is not fully understood
[6]. MAPK can be regulated by TGF-β stimulation [7], which
represents an important mechanism for Smad-independent

TGF-β signaling. Here, we focus mainly on the cross-talk be-
tween MAPK and TGF-β signaling.

The TGF-β superfamily of signaling molecules controls
a diverse set of cellular responses, including cell prolifera-
tion, differentiation, extracellular matrix remodeling, and
embryonic development. Consequently, when not strictly
controlled, TGF-β signaling can contribute to the pathogen-
esis of cancer as well as fibrotic, cardiovascular, and autoim-
mune diseases [8, 9]. Members of the TGF-β superfamily
(e.g., TGF-βs, activins, and bone morphogenetic proteins
(BMPs)) signal via heteromeric serine/threonine kinase
transmembrane receptor complexes [10–13]. The effects of
TGF-β are mediated by three TGF-β ligands, TGF-β1, 2, and
3 via TGF-β type I and II receptors [9, 14, 15]. The bind-
ing of the ligand to its primary (type II) receptor, a consti-
tutively active kinase, allows the recruitment, trans-phos-
phorylation, and activation of the signaling (type I) receptor.
The receptor, also known as activin receptor-like kinase 5
(ALK5), is then able to exert its phosphorylation-dependent
serine-threonine kinase activity to phosphorylate Smad2 and
Smad3 [16–18]. These receptor-activated Smads (R-Smads)
interact directly with and are phosphorylated by activated
TGF-β receptor type I [19, 20]. Smad1, Smad5, and Smad8
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are specific substrates of the BMP receptors, whereas Smad2
and Smad3 are activated by both TGF-β and activin recep-
tors [17, 21]. Upon phosphorylation, they form heteromeric
complexes with Smad4 [22], a common mediator of all Smad
pathways. The resulting Smad heterocomplexes are then
translocated into the nucleus where they activate target genes
by either binding DNA directly or in association with other
transcription factors [10, 12, 13, 17, 18]. Members of the
third group of Smads, known as inhibitory Smads (Smad6
and Smad7) [23], control Smad signaling by preventing the
phosphorylation and/or nuclear translocation of receptor-
associated Smads and by inducing receptor complex degra-
dation through the recruitment of ubiquitin ligases [24–26].
More recently, Smad7 was shown to recruit the protein phos-
phatase complex, type 1 protein serine/threonine phospha-
tase (PP1), and growth arrest and DNA damage-inducible
protein 34 (GADD34) to activated TGF-β receptors, stabiliz-
ing them and thereby inducing receptor dephosphorylation
and deactivation [26]. Following target gene transcription,
Smad complexes are released from the chromatin and may
undergo ubiquitination and subsequent proteasomal degra-
dation.

These Smad pathways are not the only means by which
TGF-βs regulate cellular functions. Smad-independent path-
ways including the mitogen-activated protein kinase (MAPK),
nuclear factor κ-light chain-enhancer of activated B cells
(NF-κB), and PI3 kinase/AKT pathways also participate in
TGF-β signaling, and these pathways can either be induced
by TGF-β or modulate the outcome of TGF-β-induced Smad
signaling [21, 27, 28]. Indeed, broad evidence suggests that
Smad signaling is tightly integrated within a complex net-
work of signaling pathways with cross-talk that modify the
initial Smad signals and allow the pleiotropic activities of
TGF-β. There are also instances in which Smad signaling is
not required for some TGF-β responses, as exemplified by the
Smad-independent activation of the cyclin kinase inhibitors
p15 and p21 in HaCaT keratinocytes, and the transcriptional
activation of the fibronectin promoter via MAPK-dependent
mechanisms. It appears clear that Smad proteins are not only
the primary substrates for the TGF-β receptor kinases but
may also be phosphorylated by MAPKs in response to either
TGF-β itself or to various cytokines. Such R-Smad phosphor-
ylation by MAPKs may serve to regulate Smad by modulating
either its transcriptional activity or its capacity to translocate
into the cell nucleus [28, 29]. Smad proteins are also capable
of physically interacting with transcription factors that are
also substrates of MAPKs, adding more complexity to the
already intricate relationship between the MAPK and Smad
pathways.

The epithelial-mesenchymal transition (EMT) is a com-
plex, stepwise phenomenon that occurs during embryonic
development and tumor progression [30]. EMT is also asso-
ciated with chronic inflammatory and fibrogenic diseases
that affect the lungs, the liver, and the peritoneum of pa-
tients undergoing peritoneal dialysis [31, 32]. EMT and the
reverse process, termed the mesenchymal-epithelial transi-
tion (MET), play central roles in embryogenesis, cancer inva-
sion and metastasis, and fibrosis [33, 34]. EMT is char-
acterized by the disruption of intercellular junctions, the

replacement of apical-basolateral polarity with front-to-
back polarity, and the acquisition of migratory and invasive
phenotypes. Cells that have undergone EMT also acquire the
capacity to produce extracellular matrix (ECM) components
and a wide spectrum of inflammatory, fibrogenic, and angio-
genic factors [35]. EMT is triggered by the interplay of several
extracellular signals, such as ECM components, soluble
growth factors, and cytokines. These signals include mem-
bers of the TGF-β and fibroblast growth factor families, epi-
dermal growth factor, and hepatocyte growth factor [30].
TGF-β was first described as an inducer of EMT in normal
mammary epithelial cells, and several studies have estab-
lished crucial roles for TGF-β-induced EMT [36].

A key question in studies of MAPK is how a ubiquitously
active regulatory enzyme generates a specific and biologically
appropriate cellular response during EMT. This paper will
summarize some of the latest data from the literature re-
garding the interactions among MAPK, TGF-β, and other
factors, with a major focus on the cellular events that con-
tribute to EMT.

2. Four Subfamilies of MAP Kinases and Their
Substrates in Each Signaling Cascade

MAP kinases are a large group of proteins that allow nu-
merous extracellular signals to rapidly activate nuclear trans-
cription factors [37] (Figure 1). They consist of at least four
subfamilies: the extracellular signal-regulated kinases (ERK1
and ERK2), the stress-activated protein (SAP) kinases,
known as c-Jun N-terminal kinases (JNK1, JNK2, and JNK3),
the p38 MAPKs (α, β, γ, and δ) [2], and ERK5 [38]. ERK5,
which is also known as big MAP kinase 1 (BMK1) and has
been described as a mediator of Src activation [39], is twice
as large as other MAPKs [40].

Signaling initiated by each MAPK pathway occurs
through the sequential phosphorylation of a MAPK kinase
kinase (MAPKKK), a MAPK kinase (MAPKK), and a MAPK
by membrane-associated kinases, such as cytokine or growth
factor receptors [41]. MAPK activation leads to the down-
stream phosphorylation of nuclear kinases or, most com-
monly, transcription factors. Figure 1 provides a simplified
view of the various MAPK pathways and includes most of
the MAPK members and substrates cited in the text below.

ERK1 and ERK2, isoforms of the classical MAPK, are
phosphorylated by the MAPKKs MEK1 (for MAPK/ERK
kinase 1) and MEK2, which are substrates of the MAPKKK
Mos and Raf-1 [42]. Raf-1 is activated by the membrane-
bound small G-protein Ras following induction by mitogenic
stimuli, such as epidermal growth factor (EGF), upon bind-
ing and activation of their respective receptors (i.e., EFGR).
ERK-mediated pathways are mainly involved in proliferation
and differentiation and are generally considered antiapop-
totic.

JNK family members are the substrates of MAPK kinase
4 (MKK4, also known as SEK1) and MKK7. p38 MAPK
is phosphorylated by MKK3 and MKK6, which are the
substrates of apoptosis signal-regulating kinase-1 (ASK1),
mixed lineage kinases (MLK), and TGF-β-activated kinase-1
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Figure 1: The network of the mitogen-activated protein kinase (MAPK) family. Extracellular stimuli transduce signals to the nucleus. The
sequential phosphorylation of MAPKKK, MAPKK, and MAPK activates their nuclear targets, kinases, and transcription factors. For details,
refer to the text.

(TAK1) [43, 44]. MEK kinase (MEKK1) and TAK1 activate
JNK through MKK4 or MKK7 and activate p38 MAPK
through MKK3 or MKK6. JNK and p38-signaling pathways
are activated by stress stimuli, many of which induce apop-
tosis, but, in some cellular systems, they have also been impli-
cated in proliferation and differentiation [45, 46].

Upon ERK5 stimulation, two members of the MAPKKK
family, MEKK2 and MEKK3, activate MEK5, a MAPKK that
is specific for ERK5 [47]. Unlike the first three groups of
MAPKs, this pathway has not yet been clearly shown to be
activated by TGF-β or to interfere with Smad signaling.

MAPK pathways control the cell response to changes
in the extracellular environment through the regulation of
transcription factors in the nucleus [48]. Thus, to transmit
extracellular signals to the nucleus, the terminal components
of the MAPK pathways, such as ERK1/2, JNK, and p38
MAPK, must translocate to the nucleus.

A variety of transcription factors and downstream kin-
ases serve as substrates for activated MAPKs [49, 50]. These
include activating protein-1 (AP-1), a family of pleiotropic
transcription factors comprised of homo- and heterodimers
of Fos, Jun, and activating transcription factor (ATF) family
members that are involved in the control of cell proliferation,
death, and survival, as well as tumorigenesis [51, 52]. Acti-
vated ERK1/2 phosphorylates many substrates, including
TCF/Elk-1 and c-Myc, and activates cAMP response element

binding protein (CREB) and protein kinases, such as mito-
gen- and stress-activated protein kinase 1 (MSK1) and ribo-
somal S6 kinase (RSK), which subsequently induces the im-
mediate early gene c-Fos [53, 54].

p38 MAPKs activate many substrates including E twenty
six-like transcription factor 1 (Elk-1), CCAAT/enhancer bind-
ing protein homologous protein (CHOP), ATF-2, CREB, and
myocyte-specific enhancer factor 2C (MEF2C) [55]. JNK is
the only MAPK that phosphorylates c-Jun, the main compo-
nent of AP-1 complexes, and also acts on ATF-2 and Elk-1
[2, 56]. Phosphorylation of c-Jun activates this key member
of the AP-1 family of transcription factors, which can then
bind the specific AP-1 recognition sites TGAG/CTCA to
transactivate target genes [57]. Upon activation, CREB and
ATF-2 bind to CRE sites (TGACGTCA) within target gene
promoters [58]. Heterodimers of c-Jun and ATF-2 have also
been shown to bind to CRE sites [59]. ERK5, similar to
ERK1/2, phosphorylates c-Myc, MEF2, and RSK, subse-
quently inducing c-Fos [60, 61].

3. Smad-Dependent and -Independent
MAPK Activation by TGF-β

TGF-β has been shown to activate all ERK, p38 MAPK, and
JNK MAPKs in numerous cell types [62–65] through Smad-
dependent and -independent transcriptional mechanisms.
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Because MAPK activation is not a specific feature of TGF-
β signaling and may be produced by various extracellular
stimuli, including cytokines, ultraviolet irradiation, cell-cell
or cell-matrix contacts [66–68], the outcome of Smad-de-
pendent or -independent MAPK interactions should be
viewed not only as the result of TGF-β signaling but also as a
consequence of cytokine networks acting in concert to mod-
ulate MAPK signals.

As an example of Smad-dependent MAPK activation,
in mink lung epithelial cells, TGF-β-induced activation of
JNK mediates Smad3 phosphorylation, which is required for
Smad3-dependent transcriptional responses [69] (Figure 2).

However, the initial evidence for Smad-independent ac-
tivation of MAPK by TGF-β came from the observation that
the activation of JNK in response to the TGF-β pathway
was possible in Smad4-deficient cells and cells overexpressing
dominant-negative Smads, despite the deficient Smad cas-
cade. It has also been shown that a mutated TGF-β type I
receptor that cannot phosphorylate R-Smad can still activate
p38 MAPK signaling in response to TGF-β [70, 71].

Several other Smad-independent signaling examples
have been described in the literature. TGF-β can activate ERK
via rapid activation of Ras in rat intestine [72] (Figure 3).
TGF-β type I receptor could phosphorylate the ShcA adaptor
protein that subsequently associates with Grb2 and Sos in
the cytoplasm in the absence of ligand stimulation [73, 74]
(Figure 3). The ShcA/Grb/Sos complex is a well-established
link between receptor tyrosine kinases and the MEK and ERK
pathway via Ras and Raf activation [75].

The mechanisms of ERK, JNK, or p38 MAPK activation
by TGF-β and the associated biological consequences are not
fully characterized. ERK activation by TGF-β in epithelial
cells may involve Ras signaling [76], while JNK and p38
MAPK signaling could be activated by various MAPKKKs in
response to various stimuli. The first MAPKKK known to be
activated by TGF-β family members was TGF-β-activated
kinase 1 (TAK1), which was originally identified as a
MAPKKK activated by TAB1 (TGF-β-activated kinase-bind-
ing protein-1) downstream of TGF-β/BMP receptors. TAK1
positively regulates the JNK and p38 kinase pathways [77]
(Figure 2).

TGF-β1 may induce rapid and prolonged activation of
p38 MAPK, depending on the cell type. Rapid and transient
p38 MAPK activation has been described in certain cell types,
including human neutrophils, HEK293, and C2C12 cells,
and may be mediated by the induction of TAK1 in an R-
Smad-independent manner. On the other hand, the pro-
longed and sustained p38 MAPK activation observed in pan-
creatic carcinoma cells, hepatocytes, and osteoblasts requires
Smad signaling. Smad activation induces the expression of
GADD45β, an upstream activator of MKK4, and thus pro-
motes the prolonged activation of p38 MAPK [78] (Figure 2).
Functional differences between rapid and prolonged activa-
tion of p38 MAPK may be dependent on cell type, but, at
least in pancreatic cells, prolonged activation through the
Smad-mediated induction of GADD45β may contribute to
the tumor-suppressive effect of TGF-β [78].

4. The Association between MAPK and
TGF-β Signaling in EMT

EMT is a complex process involving a restructuring of the
cytoskeleton, cell membrane, and cell-cell junctions. Previ-
ous studies have implicated several molecules in different
aspects of EMT. However, the aspects of EMT that might be
mediated by MAPK signaling have not yet been defined.

ERK activation may be important for several key features
of EMT that could cause the loss of epithelial characteristics
and acquisition of mesenchymal properties, including the
downregulation of adherens junctions and their affiliated
proteins (e.g., E-cadherin), increased MMP activity, the in-
duction of actin stress fibers, and the acquisition of motile
and invasive properties [79–81]. ERK activation is one of the
Smad-independent events that is necessary for TGF-β-med-
iated EMT [82, 83]. ERK is required for the disassembly of
cell adherens junctions and the induction of cell motility by
TGF-β. In a transcriptomic screen of genetic programs for
TGF-β-induced EMT, TGF-β-stimulated ERK activation
regulates a subset of target genes, a large proportion of which
have defined roles in cell-matrix interactions, cell motility,
and endocytosis [82]. These genes are known to function in
the remodeling of integrin-based cell-matrix adhesion and in
promoting cell motility.

The loss of E-cadherin is a critical step in EMT [84].
There is compelling evidence that ERKs repress E-cadherin
expression to drive EMT in many experimental systems [85].
Previous studies have demonstrated that ERK is rapidly ac-
tivated by TGF-β in culture models of EMT, and a specific
inhibitor of MEK (upstream of ERK) blocks key morpho-
logic features of EMT, such as the disassembly of E-cadher-
in-mediated adherens junctions, in various models [86, 87].
Several transcriptional repressors of E-cadherin have now
been identified, including two members of the Snail super-
family of the zinc-finger transcription factors, Snail [88] and
Slug [89]. Choi et al. found that TGF-β1-induced Slug ex-
pression was significantly inhibited by MEK- and JNK-spe-
cific inhibitors, indicating that MAPK pathways are involved
in the regulation of Slug expression by TGF-β1 [90].

Recent data suggest that the aberrant activation of ERK
may play an important role in diverting the TGF-β response
towards EMT in kidney epithelial cells. Raf activation confers
protection against TGF-β-induced apoptosis while enhanc-
ing the proinvasive effects of TGF-β [91]. Furthermore, the
induction of EMT in breast tumor cells is dependent on the
presence of both activated Ras and a functional TGF-β auto-
crine loop that is enhanced by Ras [86, 91]. Gene array data
obtained from human keratinocytes induced to undergo
EMT by TGF-β provided the first insights into ERK-de-
pendent gene targets with roles in cell-matrix interactions
and cell motility [92].

Perhaps the best-characterized interaction between TGF-
β and MAPK signaling involves the JNK and p38 MAPK
signaling cascades (Figure 2). TGF-β can rapidly activate JNK
through MKK4 [69, 93] and p38 MAPK through MKK3/6
in various cell lines [70, 94]. Further upstream, MKKs are
activated by the MAPKKKs; TAK1 is one of these activating
MAPKKKs. Because TAK1 is rapidly induced by TGF-β1 and
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plays a role in p38 MAPK activation and JNK and NF-κB sig-
naling [95], some researchers have focused on TAK1 and
found that p38 MAPK maintains E-cadherin expression by
suppressing TAK1/NF-κB signaling, thus impeding the in-
duction of EMT in human primary mesothelial cells [96].

TNF receptor associated factor 6 (TRAF6), which plays
an important role in the activation of TAK1 in interleukin-1
receptor (IL-1R) and Toll-like-receptor-(TLR-) mediated sig-
naling pathways, was found to be crucial for the TGF-β-in-
duced activation of the TAK1-JNK/p38 MAPK pathways [97,
98]. The TRAF6-TAK1-JNK/p38 MAPK pathway plays an
important role in TGF-β-induced EMT (Figure 2). Inhibit-
ing p38 activity using a p38 inhibitor or dominant-negative
forms of MKK3 or p38 impairs TGF-β-mediated reorganiza-
tion of the actin cytoskeleton and results in changes in cell
shape [99]. Knocking down TRAF6 expression also inhibits
TGF-β-mediated EMT [98]. Thus, activation of the TRAF6-
TAK1-p38 MAPK pathway is another requirement for TGF-
β-induced EMT.

Studies of the roles of MAPK family proteins in the gene-
sis of EMT have produced conflicting results, likely due to the
heterogeneity of the models and the different experimental
approaches used. p38 MAPK appears to promote EMT dur-
ing development and in tumors [100, 101]. According to an
earlier study, p38 MAPK can regulate actin organization via
heat shock protein 27 (HSP27) [102]. Therefore, p38 MAPK
may function in the TGF-β-induced reorganization of the
actin cytoskeleton parallel to or upstream of the RhoA/Rock
pathway [103]. In addition, p38 MAPK may contribute to the
expression of TGF-β target genes that are casually involved
in EMT because p38 MAPK has been implicated in TGF-β
transcriptional responses through its activation of ATF2 and
Sp1 [104]. Taken together, these results suggest that the
MAPK pathway contributes to TGF-β-induced changes in
the actin cytoskeleton and in cell shape during EMT.

In recent years, significant evidence has indicated that
the p38 MAPK pathway is an important intracellular signal
transduction pathway in TGF-β1-induced EMT in renal tub-
ular epithelial cells [105, 106]. Activated p38 MAPK can
directly regulate the protein synthesis of α-smooth muscle
cell actin (α-SMA) and thus indirectly activate the Smad path-
way, leading to excessive matrix deposition and finally indu-
cing fibrosis. For example, reactive oxygen species (ROS),
which have been shown to mediate TGF-β-induced cellular
responses in various cells [107], play an important role
in EMT in rat proximal tubular epithelial cells, primarily
through the activation of MAPK but also indirectly through
ERK and subsequently through the phospho-Smad2 pathway
[108] (Figure 2).

Semaphorin-4C (Sema4C) is essential for the activation
of p38 MAPK [109]. The semaphorins are a large family of
secreted or membrane-bound proteins that share a con-
served Sema domain, which is known to regulate tumor pro-
gression [110], angiogenesis [111], nervous system develop-
ment [112], and immune cell interactions [113]. Sema4C
plays an important role in TGF-β1-induced EMT through its
activation of p38 MAPK in proximal tubular epithelial cells
[114]. Sema4C knockdown strongly inhibits the phosphory-
lation of p38 and reverses TGF-β1-induced EMT. Trps1, an

atypical member of the GATA-type family of transcription
factors [115], acts downstream of bone morphogenetic pro-
tein 7 (BMP7) via p38 [116]. Knockdown of Trps1 or p38
MAPK inhibits the BMP7-induced MET.

In advanced stages of tumor development, TGF-β pro-
motes tumor metastasis by stimulating EMT, matrix met-
alloproteinase (MMP) expression, and by angiogenesis and
inhibiting immune surveillance [117–119]. Numerous stud-
ies have revealed that TGF-β-induced EMT can be blocked
by inhibiting MAPK activation. Synergy between TNF-α and
TGF-β signaling enables p38 MAPK activation to promote
the rapid morphological conversion of colon carcinoma epi-
thelia to dispersed cells with mesenchymal phenotypes [85,
120]. Hepatocyte growth factor/scatter factor (HGF) has
several functions in the induction of epithelial cell scattering,
motility, and tumor progression. One underlying mecha-
nism that could explain this observation is that HGF upreg-
ulates Snail, a transcriptional repressor involved in EMT,
through MAPK and early growth response factor-1 (Egr-1)
(Figure 3).

5. Future Perspective and Conclusions

Within the past few years, considerable progress has been
made toward understanding the signaling cascades and mul-
tiple pathways that involve MAPKs. At present, it is clear that
cooperation between TGF-β-induced Smad signaling and the
MAPK pathway determines the final cellular response to
TGF-β, especially during EMT. It will not be surprising if
more associations between the MAPK pathway and EMT are
discovered in the future. The computational and mathemat-
ical modeling of biological systems has become increasingly
valuable in recent years, and a wide variety of mathematical
models of the MAPK pathway have led to some novel insights
and predictions about how this system functions [121]. Fur-
ther cross-talk research will undoubtedly rely on the devel-
opment of new computational systems and will reveal novel
mechanisms that contribute to TGF-β-dependent and -
independent MAPK signaling, advancing our understanding
of how MAPK can induce a plethora of diverse biological
responses, including EMT. A major goal will be to deter-
mine how the specificity in MAPK downstream signaling is
achieved in different cell lines and animal models; this infor-
mation could be used to seek out clinical advantages in
combination therapy.
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