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Abstract
Modern technologies have made the sequencing of personal genomes routine. They have revealed
thousands of nonsynonymous (amino-acid altering) single nucleotide variants (nSNVs) of protein
coding DNA per genome. What do these variants foretell about an individual’s predisposition to
diseases? The experimental technologies required to carry out such evaluations at a genomic scale
are not yet available. Fortunately, the process of natural selection has lent us an almost infinite set
of tests in nature. During the long-term evolution, new mutations and existing variations have
been evaluated for their biological consequences in countless species, and outcomes were readily
revealed by multispecies genome comparisons. We review studies that have investigated
evolutionary characteristics and in silico functional diagnoses of nSNVs found in thousands of
disease-associated genes. We conclude that the patterns of long-term evolutionary conservation
and permissible divergence are essential and instructive modalities for functional assessment of
human genetic variations.

Evolutionary genomic medicine
Thousands of individuals in the general public have begun to gain access to their genetic
variation profiles by using direct-to-consumer DNA tests available from commercial
vendors, which profile hundreds of thousands of genomic markers for a cost of a few
hundred dollars (Fig. 1a). Through this genetic profiling, individuals hope to learn about not
only their ancestry, but also genetic variations underlying their physical characteristics and
predispositions to diseases. In biomedicine, scientists have been profiling variations at
genomic markers in healthy and diseased individuals at genome scale in a variety of disease
contexts and populations. This has led to the discovery of thousands of disease associated
genes and DNA variants [1–6]. Meanwhile, following sharp declines in the per-base cost of
sequencing, complete genomic sequencing of individuals and cohorts is underway and
expanding [7–11]. Taken together, these efforts have begun to paint a more robust picture of
the amount and types of variations found within and between human individuals and
populations. Any one personal genome contains more than a million variants, the majority of
which are single nucleotide variants (SNVs) (Fig. 1b). With the complete sequencing of
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each new genome, the number of novel variants discovered is decreasing, but the total
number of known variants is growing quickly (Fig. 2a). Our knowledge of the number of
disease genes and the total number of known disease-associated SNVs has grown with these
advances [12].

Today, a vast majority of the known disease-associated variants are found within protein-
coding genes (Fig. 1c) with genome-wide association studies beginning to reveal thousands
of non-coding variants. Proteins are encoded in genomic DNA by exon regions, which
comprise just ~1% of the genomic sequence (Exome) [11, 13]. It is this part of our genome
for which we have the best understanding of how DNA blueprint sequence relates to
function, and is arguably the best chance to connect genetic variations with disease
pathophysiology. A person’s exome carries about 6,000 – 10,000 amino-acid-altering
nonsynonymous SNVs (nSNVs) [2, 7, 9, 10, 14]. These protein point variations are already
known to be associated with more than a thousand major diseases [12]. A large number of
exome projects are poised to reveal protein mutations of tens of thousands of individuals
from disease cohorts and healthy populations for disorders of various complexities [11, 15–
17]. With the sequencing of each new exome, we are currently discovering hundreds of new
nSNVs, which points to the existence of a large number of different protein alleles in the
genomes of humans (Fig. 2b). In addition to the variations arising in the germline, protein-
coding regions of somatic cancer cells contain tens of thousands of nonsynonymous
mutations of somatic and germline mutational origins (Fig. 1c). Adding to the variation in
the nuclear genetic material are thousands of mutations in the mitochondrial genome, many
of which are also implicated in diseases (Fig. 1c).

Translating a personal variation profile into useful phenotypic information (e.g., relating to
predisposition to disease, differential drug response, and other health concerns) is a grand
challenge in the field of genomic medicine. Genomic medicine is concerned with enabling
healthcare that is tailored to the individual based on genomic information [18]. This is a
daunting task, because common variants derived from large population-based studies
typically describe relatively small proportions of disease risk. Additionally, each individual
genome carries many private variants that are not typically seen in a limited sampling of the
human populations. Although only a small fraction of all personal variations are likely to
modulate health, the sheer volume of genomic and exomic variants is far too large to apply
traditional laboratory or experimental techniques to aid in their diagnosis. Higher throughput
techniques are now becoming available to evaluate the functional consequences of hundreds
of specified mutant proteins, or much greater numbers of random mutants. However, these
methods are still inadequate to handle the volume of variation information arising from
modern sequencing methods in a scalable or economical manner [19–23].

Fortunately, results from the great natural experiment of molecular evolution are recorded in
the genomes of humans and other living species. All new mutations and preexisting
variations are subjected to the process of natural selection, which eliminates mutants with
negative effects on the phenotype. Variations escaping the sieve of natural selection appear
in the form of differences among the genomes of humans, great apes, and other species.
Through multispecies comparisons of these data, using the models and methods of
molecular evolution, it is possible to mine this information and evaluate the severity of each
variant computationally (in silico). With the availability of large number genomes from the
tree of life, it is becoming clear that evolution can serve as a kind of telescope for exploring
the universe of genetic variation. In this evolutionary telescope, the degree of historical
conservation of individual position (and regions) and the sets of substitutions permitted
among species at individual positions serve as two lenses. This tool has the ability to provide
first glimpses into the functional and health consequences of variations that are being
discovered by high-throughput sequencing efforts. Consequently, phylomedicine will
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emerge as an important discipline at the intersection of molecular evolution and genomic
medicine with a focus on understanding of human disease and health through the application
of long-term molecular evolutionary history. Phylomedicine expands the purview of
contemporary evolutionary medicine [24–28] to use evolutionary patterns beyond the short-
term history (e.g., populations) by means of multispecies genomics [29, 30].

In the following, we review scientific investigations that have analyzed evolutionary
properties of disease-associated nSNVs and predicted function-altering propensities of
individual variants in silico using multispecies data. We have primarily focused on variants
of exomes, because the function of proteins is currently best understood independent of
comparative genomics. Furthermore, protein point mutations are associated with more than
1000 major diseases, and generally with a statistically significant association beyond chance
alone. Furthermore, the cost of exome sequencing is declining to the point that the legion of
small scientific laboratories and the interested public is now able to economically profile
complete exomes [17, 31, 32]. Therefore, the chosen emphasis on exome variations reflects
current directions in clinical and research applications of genomic sequencing.

Mendelian (monogenic) diseases
For centuries it has been known that particular diseases run in families, notably in some
royal families where there was a degree of inbreeding. Once Mendel’s principles of
inheritance became widely known in the early 1900s it became evident from family
genealogies that specific heritable diseases fit Mendelian predictions. These are termed
Mendelian diseases (reviewed in [33]). Such diseases can have substantial impact on the
affected individual but tend to be rare, on the order of one case per several thousand or
several tens of thousands of individuals.

Over the last three decades, mutations in single (candidate) genes in many families have
been linked to individual Mendelian diseases (e.g. Box 1). Sometimes more than a hundred
SNVs in the same gene have been implicated in a particular disease (Fig. 1d). For example,
by the turn of this century, individual patient and family studies revealed over 500 nSNVs in
the Cystic fibrosis transmembrane conductance regulator (CFTR) gene for cystic fibrosis
(CF). This enabled first efforts to examine evolutionary properties of the positions harboring
CFTR nSNVs [29]. The disease-associated nSNVs were found to be overabundant at
positions that had permitted only a very small amount of change over evolutionary time [29]
(Fig. 3a, b). Soon after, this trend was confirmed at the proteome scale in analyses of
thousands of nSNVs from hundreds of genes (Fig. 3c) [34–37]. These patterns were in sharp
contrast to the variations seen in non-patients, which are enriched in the fast evolving
positions (Fig. 4a) [29, 35]. In population polymorphism data, faster evolving positions also
show higher minor allele frequencies than those at slow evolving positions [29, 35], which
translates into an enrichment of rare alleles in slow-evolving and functionally important
genomic positions [38].

Looking at patterns of evolutionary retention at positions, another type of evolutionary
conservation, a similar pattern was found: positions preferentially retained over the history
of vertebrates were more likely to be involved in Mendelian diseases as compared to the
patterns of natural variation (Fig. 4b) [35]. Somatic mutations in a variety of cancers have
also been found to occur disproportionately at conserved positions [39, 40]. A similar
pattern has emerged for mitochondrial disease-associated nSNVs [41].

The relationship between evolutionary conservation and disease association has been
explained by the effect of natural selection [29, 34–37]. There is a high degree of purifying
selection on variation at highly conserved positions because of their potential effect on
inclusive fitness (fecundity, reproductive success) due to the functional importance of the
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position [29, 34, 35, 37, 38]. At the faster-evolving positions, many substitutions have been
tolerated over evolutionary time in different species. This points to the “neutrality” of some
mutations that spread through the population primarily by the process of random genetic
drift and appear as fixed differences between species. Therefore, fewer mutations are culled
at fast-evolving positions, producing a relative under-abundance of disease mutations at
such positions. Of course, the above arguments hold true only when the functional
importance of a position has remained unchanged over evolutionary time, an assumption
that is expected to be fulfilled for a large fraction of positions in orthologous proteins.

Multigenic (complex) diseases
Despite successes in identifying and mapping genes causing Mendelian diseases, it is now
clear that most common diseases with significant genetic components, although they are
often seen to cluster in families, do not approximate the simple paradigm of high penetrance
based on a dominant/recessive genotype. Instead, common diseases seem to result from a
more complex pattern where many genes, and probably other non-genetic factors, contribute
in non-additive ways, and individual monogenic factors have a low and inconsistent
correlation with the disease phenotype [42–44]. Examples of such diseases include heart
disease, asthma, rheumatoid arthritis, and type 2 diabetes [45–49]. These diseases often
appear relatively later in life, and the associated SNVs are often present in one or more
human populations at substantial frequencies.

An early examination of the evolutionary patterns of the occurrence of a small set of 37
nSNVs associated with complex diseases did not find any tendency for these variations to
occur at sites with high conservation (Fig. 4c) [37]. These trends were confirmed with larger
datasets containing alleles associated with seven complex diseases [50]. These patterns stand
in stark contrast to those seen for Mendelian diseases. At the level of overall rate of protein
evolution, genes associated with complex diseases are not under strong purifying selection
as compared to proteins implicated in the Mendelian diseases [51]. The rate of
nonsynonymous substitutions in complex-disease genes is more than twice that of the
Mendelian disease genes [52]. One reason for the lack of evolutionary conservation of
positions associated with complex diseases is that their effects appear later in life, which
means that these variants are frequently inherited without being acted upon by natural
selection and without any impact on fecundity. For this reason, molecular evolutionary
analyses are sometimes not deemed to be useful for complex diseases [53].

Evolutionary and biochemical constraints an on disease associated nSNVs
In addition to the evolutionary conservation of the positions in the protein, the biochemical
properties of the amino acid change can also provide rich information. Not all changes at a
position have an equal effect, because one set of amino acid alternatives could be optimal,
another set tolerable, and a third crippling to protein structure and function. Although the
actual effect of a mutation is expected to be a complex function of the protein structure and
its cellular milieu, many biologists used a simple measure of biochemical difference
(Grantham distance [54]) to quantify the severity of amino acid changes. In an analysis of
seven genes, it was noted early on that amino acid changes of Mendelian disease associated
nSNVs were, on average, 67% more severe than those observed among species in the same
proteins [29]. The generality of this trend was confirmed in subsequent analyses of a larger
number of Mendelian disease genes [34, 35]. Interestingly, the timing of the onset of a
disease also shows correlation with the biochemical severity of an amino acid change: late-
onset diseases involve amino acids with smaller biochemical differences [35]. Similarly, the
severity of the phenotype also shows a relationship with the biochemical dissimilarity of the
variation [e.g., 55]. In addition, the severity of Mendelian nSNVs has been quantified by
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using the substitution probability of one amino acid into another. These analyses show that
disease-associated nSNVs are amino acid changes that are unlike those observed among
species proteome-wide [e.g., 29, 34].

A large number of Mendelian disease-associated variations occur at positions that show
evolutionary substitutions between species. For example, more than a hundred variants of
CFTR protein in CF patients occur at positions that have undergone at least one change (Fig.
3a). In any position, evolutionary differences (substitutions) among species are expected to
be neutral in nature, in other words, they are unlikely to have negative fitness effects as long
as the protein function has not changed. They constitute a set of evolutionarily permissible
alleles (EPAs) at a given position, which are expected to not be involved in diseases at those
positions. Indeed, an overwhelming fraction of Mendelian nSNVs (~90%) are not
evolutionarily permissible [35, 55, 56]. This is in sharp contrast to population
polymorphisms that frequently (59%) appear in the set of EPAs in individual positions [57].
Disease-associated nSNVs in mitochondrial encoded proteins also show similar patterns
[58].

Nevertheless, scientists have been interested in investigating why some nSNVs are
associated with diseases in humans, but appear as natural alleles in other species [35, 56, 58,
59]. One possibility is that the function of the affected amino acid position has changed
either in humans or in other species. In this case, evolutionary differences among species
cannot be used to determine permissible amino acids at the affected positions. Another
reason for the overlap between the disease nSNVs and evolutionarily permissible alleles is
that the amino acid position has undergone compensatory changes. In this case, the negative
effects of the mutation(s) at one position of the same or different proteins compensates for
the negative effects of the other mutation [35, 56, 59–61]. Such compensation could occur,
for example, due to antagonistic pleiotropy [62, 63] or due to protein functional reasons
[e.g., 64, 65]. Whatever the reason, the initial mutation needs to escape natural selection for
a period of time before it is compensated by another mutation in the same or another protein.
This is likely to be possible only for mutations that have very small negative fitness effects,
resulting in such mutations occurring at faster evolving positions that are biochemically less
radical biochemically [e.g., 35].

Evolutionary diagnosis of function-altering mutations in silico
Over a decade ago, first methods were proposed to predict computationally whether a
mutation will negatively affect the structure and function of a human protein [30, 66–68].
These methods, now part of the PolyPhen software package, employed physical properties
of the mutational change along with a multispecies alignment as a basis to evaluate
mutations. This method showed promise: 69% of mutations associated with human disorders
could be correctly diagnosed to be damaging to protein function (true positives) and 66% of
known population polymorphisms diagnosed correctly to be non-damaging (true negatives)
[67]. Most recently, a true positive rate of 92% was achieved by PolyPhen-2 when only
damaging alleles with known effects on the molecular function causing Mendelian diseases
were tested [63], which reduced to 73% when all human disease-associated mutations were
analyzed. The false positive rate was close to ~20% for PolyPhen-2.

Another early method [sorting intolerant from tolerant (SIFT)] employed multispecies
alignments to distinguish between functionally neutral and deleterious amino acid changes
[69]. Applications of SIFT and PolyPhen/PolyPhen-2 to predict well-characterized variants
in selected sets of genes revealed similar true positive rates for the two programs [70, 71],
but these investigations revealed much higher false positive rates (up to 68%). Comparative
analyses have also revealed that the prediction accuracy of in silico tools depends on both
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the algorithm and sequence alignment employed [71–73], with predictions from the
PolyPhen-2 showing the least dependence on the alignment employed.

Over the years, these in silico prediction tools have frequently been employed to predict the
proportion of benign mutations in newly sequenced human genomes and to prioritize
polymorphisms for further experimental research in humans and other species [74–81]. In all
of these investigations, the focus has been on diagnosing monogenic disease mutations,
because in silico tools based on evolutionary considerations are not expected to be effective
for identifying nSNVs associated with complex diseases. The patterns of evolutionarily
conservation of known complex disease nSNVs are no different from those of natural
polymorphisms found among populations (Fig. 4c).

Even for Mendelian disease mutations, in silico diagnosis has been challenging because
diagnoses from different programs are not the same for the same variant. For example,
PolyPhen and SIFT diagnoses for protein-altering mutations in the Venter genome disagreed
more often than they agreed [2] (Fig. 5a). Because of such problems, efforts have gone into
the development of composite and ensemble methods that: (i) incorporate increasingly larger
numbers of clinical and biological attributes in the decision-making process, and (ii)
combine the results from existing tools by using logistic regression, Bayesian neutral
networks, decision trees, support vector machines, random forests, and multiple selection
rule voting [82–85]. These efforts are beginning to improve prediction accuracy
significantly, and one recent method combining many less successful methods into a new
composite approach was found to outperform each method used separately (Figure 5b) [85].

Many evolutionary features used by classical and advanced versions of SIFT and PolyPhen
(among others) for diagnosing Mendelian disease variants are also discriminatory for
differentiating between driver and passenger mutations [39, 86]. This prompted the
development of a hybrid method, CanPredict [86], that integrated gene function information
(e.g., gene ontology) to screen somatic mutations (see also [87]). This tool diagnoses
mutations found in samples of more than ten patients to be damaging 50% more often than
mutations that were seen in only one patient [86]. Driver mutations contribute to cancer
progression and have a tendency to be found in many independent samples as compared to
passenger mutations that, as the name suggests, hitchhike causing the cells with driver
mutations to increase in number by the processes of natural selection and adaptation [39, 40,
88–90]. For mitochondrial DNA (mtDNA), four different tools (including PolyPhen and
SIFT) have been combined along with the biochemical features and frequency of variants to
evaluate mitochondrial nSNVs [91]. This approach was adopted because only 5% of
disease-associated nSNVs in mtDNA were found to be harmful by all four in silico methods,
even though each of these SNVs was predicted to be damaging by at least one method [91].

Efforts have been made to identify a priori determinants of the protein position where in
silico tools will most probably succeed [57]. This knowledge will empower biologists to
quantify the reliability of inference and use the in silico predictions only when they are
expected to be reliable. Initial research has revealed a clear-cut relationship between the
sensitivity (true positive diagnosis) and specificity (true negative diagnosis) of predictions
with the rate at which the given position has evolved over species as diverse as fish and
lamprey. The disease-associated nSNVs at slow-evolving positions were more likely to be
diagnosed correctly as compared to those at fast-evolving positions (Fig. 5b). This is
consistent with earlier findings that the evolutionary rate is overwhelmingly the most
important determinant of the accuracy of in silico prediction methods [92, 93]. It is also
clear that the accuracy of in silico tools is severely degraded when the observed disease
associated variant is found in other species at the same position [57]. Therefore, the in silico
diagnosis failures are systematic and probably predictable.
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By using evolutionary rates derived from multispecies analyses a priori, it should be
possible to develop adaptive classifiers that have a potential to generate more reliable
predictions based on the evolutionary context of specific positions. Because high-quality
genomic alignments between human and many closely and distantly related species are
publicly available, it is possible to enumerate each multi-species aligned position in the
human genome to compute position-specific features, such as evolutionary rate of change.
These pre-computed evolutionary features could be incorporated into prediction methods to
adaptively adjust the classifier thresholds to optimize for the type of nSNVs that are likely to
be observed. For example, fast-evolving positions are expected to harbor a higher proportion
of neutral nSNVs, so thresholds could therefore be fine-tuned to improve overall accuracy.

Concluding remarks
The cosmic analogy used in the title of this review is intended to convey the enormity of the
challenge that researchers in genomic medicine face, as they attempt to decipher functional
consequences of the constellation of genomic changes carried in each personal genome. In
tackling this challenge, the evolutionary telescope is among a set of initial tools to generate
functional predictions. Clearly, the progress made to date prompts enthusiasm, but there is
an urgent need to develop better in silico approaches to aid and complement an array of
experimental, clinical, and physical tools that must be combined to assay accurately the
diversity of the functional effects of the variants present in the human population and of the
de novo mutations that continually arise in the natural processes of cell division and
population propagation.

Many limits to the use of the evolutionary approaches in genomic medicine are already
evident. As mentioned earlier, in silico analysis of nSNVs underlying complex diseases
remains a major challenge. Furthermore there are few cases when disease categorization can
be seen as a black and white decision: diseases represent a continuum from predominately
monogenic to highly polygenic [94]. Some classical monogenic diseases will surely be
caused by mutations in multiple genes, whereas some classic polygenic diseases will have a
few major effect alleles. This complicates the choice of when to apply evolutionary
knowledge in diagnosing the function-altering potential of variants. The distinction between
the neutrality and non-neutrality of function alteration is also not straightforward, because it
depends on both environmental and genomic contexts (e.g., compensatory mutations) and
could well involve fitness trade-offs (e.g., between rapid maturation and risk of disease).
Moreover, the extent to which personal variations manifest themselves as health concerns in
individuals remains unknown. With an enhanced quantification health and disease, and an
improved understanding of genome and disease biology, we will have a better idea of the
powers and pitfalls of evolutionary analysis in genomic medicine. At the same time, there is
a need to profile exome variants experimentally and connect them with individual health via
predictive frameworks. Some cell-based and in vitro assays are already showing promise in
deciphering the pathogenic roles of variants in cancers [23, 95], an important step forward
towards satisfying the urgent need for the development of higher throughput biological and
functional approaches.

Nonetheless, the rapid emergence of clinical genome sequencing has established a pressing
need to incorporate evolutionary information into clinical diagnostics. An individual genome
contains hundreds of thousands of variants of different antiquities present in an individual
genome, and the long-term evolutionary history of genomic positions provides an immediate
means to derive and apply predictive and quantitative assessment of the potential functional
effect of any given variant observed. Using the evolutionary anatomies of positions,
clinicians can be provided ready access to evolutionary-guided in silico diagnostic tools to
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identify and diagnose observed variants that are most likely to have consequences for the
health or clinical course of treatment for a patient.

BOX 1. Variation in the dihydroorotate dehydrogenase 1 (DHODH) protein
found in individuals suffering from the Miller syndrome

Miller syndrome is a rare genetic disorder characterized by distinctive craniofacial
malformations that occur in association with limb abnormalities (Figure on the left). It is
a typical Mendelian disease that is inherited as an autosomal recessive genetic trait. By
sequencing the exomes of four affected individuals in three independent kindreds, ten
mutations in a single candidate gene, DHODH, were found to be associated with this
disease [96]. In the figure on the right, the ten mutations are shown in the context of the
DHODH orthologs from six primates (including human) and the timing of their
evolutionary relationships (timetree from ref. [57]). They are in slow-evolving sites that
are highly conserved not only in primates, but also among distantly related vertebrates.
Specifically, 50% of these mutations are found at completely conserved positions among
46 vertebrates, including human. The average evolutionary rate, estimated using methods
in ref. [57], for sites containing these disease-related mutations is 0.50 substitutions per
billion year, which is ~40% slower than those sites hosting four non-disease-related
population polymorphisms of DHODH available in the public databases. Biochemically,
the average severity of these ten mutations is more than twice that of the four population
polymorphisms, as measured using the Grantham’s [54] index (112 and 55, respectively).
PolyPhen-2 [97], a computational program used to predict the propensity of individual
amino acid changes at a position to damage protein function, diagnosed all ten mutations
to be potentially damaging and the four population polymorphisms to be benign. This
case study demonstrated clear patterns of long-term evolutionary conservation for
Mendelian disease related variations, and the promising applications of in silico tools in
assisting functional diagnosis.
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Glossary

Complex disease Refers to any disease having some genetic component of etiology
that is characterized as involving the effects of many genes. Complex
diseases are typically common in the population, exhibit complex
patterns of inheritance, and often involve the interaction of genetic
and environmental factors.

Driver mutation Somatic mutations implicated as having a causal role in the
pathogenesis of cancer.

Evolutionary
retention

A position-specific measure of conservation taking into account the
number of times a human amino acid position is missing a homolog
in the multiple sequence alignment with other species.

Exome The complete collection of (known) exons that ultimately constitute
proteins expressed by an individual.
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Genetic drift The change in the population frequency of alleles due to random
sampling of neutral or effectively neutral alleles.

Mendelian
disease

A genetic disease trait exhibiting a Mendelian inheritance pattern for
an underlying mutation at a single genetic locus.

Passenger
mutation

Somatic mutations observed in cancer genomes that have not
contributed to the cancer’s pathogenesis. Can be seen in high
frequencies in tumors if they occur in the same lineage as driver
mutations that contribute to the clonal expansion of the cancer cell
lineage.

Purifying
selection

A type of directional evolutionary selection that acts to remove
deleterious alleles from a population.

Somatic
mutation

A change in the genetic structure that is neither inherited nor passed
to offspring.
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Figure 1.
Profiles of personal and population variations. (a) Counts of various types of genetic
variants profiled by 23andMe using the Illumina HumanOmniExpress BeadChip. 733,202
SNP identifiers (rsIDs) were retrieved from the Illumina website and mapped to the dbSNP
database. Cross-referenced by rsIDs, disease-related variants were determined by using data
from HGMD [12] and VARIMED [96] datasets. (b) The numbers of different types of
variants found per human genome [97]. (c) The numbers of known non-synonymous single
nucleotide variants (nSNVs) in the human nuclear and mitochondrial genomes that are
associated with Mendelian diseases, complex diseases, and somatic cancers. Compared to
complex diseases and somatic cancers, nSNVs related to Mendelian diseases account for the
most variants discovered to date. Data were retrieved from HGMD [12], VARIMED [96],
COSMIC [98], MITOMAP [41], and HapMap3 [99] resources. (d) The number of nSNVs in
each gene related to Mendelian diseases. The majority of genes have only one or a few
mutations, while there are some genes hosting hundreds or even more than 1000 mutations.
Data were retrieved from HGMD. The numbers of variants in panels {a–c} are in log10
scale. Information for disease associated variants is shown in red and the personal and
population variations are shown in blue.
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Figure 2.
Novel SNV discovery with genome and exome sequencing. (a) The number of novel SNVs
discovered by sequencing one and more genomes [97]. With increasing numbers of genomes
sequenced, the number of novel SNVs decreases (bars), whereas the cumulative count of
SNVs increases (filled circles). (b) The number of nSNVs discovered by sequencing one or
more exomes [14]. With more exomes sequenced, the number of novel SNVs discovered
decreases (bars) and the cumulative count of nSNVs increases (filled circles). Panels a and b
are redrawn with permission from [97] and [14], respectively.
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Figure 3.
Evolutionary properties of positions afflicted with disease-associated nonsynonymous single
nucleotide variants (nSNVs). (a) The observed and expected numbers of disease associated
nSNVs in positions that have evolved with different evolutionary rates in the CFTR protein
[29]. The disease associated nSNVs are enriched in positions evolving with the lowest rates,
which belong to the rate category 0. (b) The ratio of observed to expected numbers of
nSNVs in different rate categories for all CFTR variants (solid pattern; 431 variants) and
those reported in publications profiling one or more families (hatched pattern; 59 variants).
Data and publications were obtained from HGMD for all variants with deposition date until
year 2000. This comparison shows that the initial practice of the use of all available variants,
including those reported by clinicians from individual patients (>80% of the variants), did
not bias the observed trends. (c) The proteome-scale relationship of the observed/expected
ratios of Mendelian disease-associated nSNVs in positions that have evolved with different
evolutionary rates. The results are from an analysis of disease associated nSNVs from 2,717
genes (public release of HGMD). Just as for individual diseases, nSNVs are enriched in
positions evolving with the lowest rates. Panel a is redrawn with permission from ref. [29].
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Figure 4.
The enrichment of disease-associated nSNVs (red) and the deficit of population
polymorphisms (blue) in human amino acid positions (a) evolving with different rates and
(b) with differ degrees of insertion-deletions [35]. In both cases, smaller numbers on the x
axis correspond to more conserved positions. There is an enrichment of disease associated
nSNVs and a deficit of population nSNPs in conserved positions. This trend is reversed for
the fastest evolving positions. (c) The cumulative distributions of the evolutionary
conservation scores for nSNVs associated with Mendelian diseases (solid red line), complex
diseases (open red circles), and population polymorphisms (green line). The shift towards
the left in Mendelian nSNVs indicates higher position specific evolutionary conservation.
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Conversely, a shift towards the right in complex disease nSNVs indicates lower evolutionary
conservation, which overlaps with normal variations observed in the population. Data for the
neutral model (black line) was generated by simulation [37]. Panels a and c are reproduced
with permission from refs. [35], [35], and [37], respectively.
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Figure 5.
Some applications of evolutionary in silico tools in diagnosing pathogenic variants. (a) The
comparison of PolyPhen [100] and SIFT [69] predictions for 7,534 high-quality variants
present within the Venter genome [2]. The numbers of variants diagnosed as probably
damaging (PolyPhen) and intolerant (SIFT) are shown. The in silico diagnosis of personal
variants by different tools produces highly discordant results. (b) ROC (receiver operating
characteristic [101]) curves produced by PolyPhen-2 (pph2), SIFT, MAPP, Mutation
Assessor (masses), Log R Pfam E-value (logre), and Condel (WAS). Condel used a
weighted average of the normalized scores of the other five methods and outperformed each
of them [85]. The ROC curve for Condel rises much more quickly, which means that it has a

Kumar et al. Page 19

Trends Genet. Author manuscript; available in PMC 2012 February 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



much greater rate of diagnosing damaging variants (true positives) at the expense of much
smaller rate of incorrect diagnosis (false positives). (c) The relationship of the accuracy of
the PolyPhen prediction for disease-associated nSNVs at positions evolving with different
long-term rates (0–5 are categories of slowest to fastest-evolving sites) [57]. This shows that
the accuracy of the PolyPhen prediction is the highest for the most slow-evolving positions
for disease-associated nSNVs. Panels (a–c) are redrawn with permission from [2], [57], and
[85], respectively.
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Textbox 1 Figure I.
Disease-associated genetic variants identified in patients with Miller syndrome.
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