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Abstract
Drug dependence is a chronically relapsing disorder that places an enormous strain on healthcare
systems. For treatments to have long-term clinical value, they must address the causes of relapse.
Corticotropin-releasing factor (CRF), a neuropeptide central to the stress response, may be one
key to solving the relapse cycle. CRF is hypothesized to mediate the elevated anxiety and negative
emotional states experienced during the development of dependence. This review summarizes
existing data on changes in the CRF system produced by drugs of abuse and the function of CRF
receptors in regulating behavioural responses to drugs of abuse, with an emphasis on drug
dependence. Drug-induced changes in neuronal excitability throughout the limbic system, as well
as the reversal of these neuroadaptations by CRF receptor antagonists, are also addressed. CRF
receptor antagonists, by reducing the motivational effects of drug withdrawal and protracted
abstinence, are proposed to be novel therapeutic targets for drug abuse and addiction.

1. Introduction
Drug addiction is a chronically relapsing disorder in which cycles of compulsive drug taking
are followed by periods of abstinence, resulting in withdrawal, characterized by heightened
anxiety, irritability and negative affect.[1] Although stress can impact all stages of drug
addiction,[2,3] relapse to drug taking is particularly sensitive to stress exposure because of
heightened anxiety in the post-dependent state.[4] Therefore, delineation of the
neuroadaptations underlying elevated stress responsiveness during abstinence in drug-
dependent individuals is essential for the development of therapies to treat drug addiction.
One such neuroadaptation involves the neuropeptide corticotropin-releasing factor (CRF), a
molecule central to both stress and drug withdrawal responses. Polymorphisms in the genes
that encode CRF receptors have been associated in humans with exacerbated stress
responses and the propensity to develop drug addiction,[5-9] and the CRF system has
significant potential as a target for medication development.

This review provides a brief overview of the role of CRF in hypothalamic stress responses,
then focuses on existing behavioural data supporting a role for CRF in drug withdrawal,
addressing not only acute but also protracted withdrawal, a behavioural model that may
more appropriately replicate the relationship between drug taking and drug relapse periods
in humans. Additionally, this article reviews electrophysiological data that demonstrate that
CRF modulation of neuronal activity is a possible mechanism underlying drug dependence.
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2. Corticotropin-Releasing Factor (CRF): The Central Component of the
Stress Response

CRF is a 41-amino-acid peptide originally isolated from the hypothalamus[10] that acts via
binding to two receptors: CRF1 and CRF2 .[11,12] The CRF receptors are 7-transmembrane
G-protein-coupled receptors that principally function by interacting with the stimulatory G-
protein (Gs), resulting in elevated adenylyl cyclase and cyclic adenosine monophosphate
levels, although the receptors may also couple to other G-proteins.[13,14] Functional
interactions between CRF and its receptors are antagonized by the CRF binding protein
(CRF-BP), which sequesters CRF, thus reducing the quantity of CRF available for receptor
binding.[15]

CRF was first characterized as the central activator of the endocrine stress response.
Exposure to a stressor triggers the synthesis of CRF in the paraventricular nucleus of the
hypothalamus. Subsequently, CRF is released via the median eminence into the portal blood
to reach the pituitary gland. The peptide then activates CRF1 receptors on pituitary
corticotrophs, thereby stimulating adrenocorticotropic hormone synthesis and release into
the circulatory system, which subsequently elevates the production and secretion of cortisol
(corticosterone in rodents) by the adrenal gland.[16,17] In addition to its function as an
effector of the stress response, cortisol also provides negative feedback on hypothalamic-
pituitary-adrenal (HPA) axis activity via binding to glucocorticoid receptors in the brain and
pituitary,[18] including inhibition of hypothalamic CRF production.[19] As a primary
component of the HPA axis, CRF plays a central role in the initiation, maintenance and
adaptation of stress responses.

Furthermore, CRF from extrahypothalamic sources has been demonstrated to be key to the
expression of behavioural responses to stressors.[20] CRF-immunoreactive perikarya can be
found in various brain regions, with particularly strong expression in the extended amygdala
(central nucleus of the amygdala [CeA] and medial amygdala [MeA], bed nucleus of the
stria terminalis [BNST] and a transition area in the medial [shell] part of the nucleus
accumbens [NAc]) and lateral septum,[21] all of which are activated by, and implicated in
the expression of behavioural responses to, stressors.[22-24] CRF itself has been shown to be
central to the involvement of these nuclei in behavioural stress responses, independent of
HPA axis activation.[25] The distribution of the CRF-BP overlaps somewhat with that of
CRF, with widespread expression in the cortex and high levels in the amygdala.[26]

Interestingly, in the extended amygdala, terminals containing CRF-BP have been shown to
colocalize with CRF-positive cell bodies,[26] suggesting that CRF-BP may directly regulate
CRF function in these areas. CRF receptor distribution, determined by CRF binding assays,
is even more widespread in the brain,[27] indicating a role for CRF and its receptors in
regulating the development[28] and excitability[29-34] of many neuronal subpopulations.

The specific distribution of CRF1 and CRF2 receptors is minimally overlapping, with high-
affinity CRF1 receptors showing more widespread distribution throughout the cortex and
cerebellum. High levels of CRF1 receptors are found in the basolateral amygdala (BLA),
MeA, medial septum and BNST, and moderate expression is found in the NAc and ventral
tegmental area (VTA).[35,36] Interestingly, unlike other nuclei of the extended amygdala,
very few CRF1 receptors can be found in the CeA despite the high content of CRF.[35,36] In
contrast, extrahypothalamic forebrain CRF2 receptors are primarily confined to medial
subdivisions of the extended amygdala (MeA and medial BNST), with the greatest
expression in the lateral septum and ventromedial hypothalamus.[37] The high density of
CRF and its receptors, as well as CRF-BP, in stress-responsive brain regions suggests the
integral role of the peptide in the regulation of behavioural responses to stress. Not
surprisingly, given the dissimilarity in receptor distribution, mice lacking either CRF1 or
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CRF2 receptors display differential alterations in stress responsiveness. CRF1 receptor null
mutants show a blunting of anxiety-like behaviour, regardless of whether the deletion is
constitutive[38] or restricted to the postnatal forebrain.[39] In contrast, mice lacking CRF2
receptors tend to exhibit elevated basal anxiety-like behaviour,[40,41] although this has not
been observed in all CRF2 receptor null mutant mice.[42] However, even in the absence of
changes in basal anxiety-like behaviour, deletion of CRF2 receptors resulted in impaired
adaptation to prolonged stress exposure,[42,43] suggesting a deficient stress-coping system.
This stress response system is both activated acutely by drugs of abuse and modulated by
long-term drug exposure and withdrawal, suggesting a role for CRF systems in the
development and maintenance of drug dependence and addiction.

3. Drugs of Abuse Acutely Upregulate CRF and Hypothalamic-Pituitary-
Adrenal Axis Activity

Most drugs with abuse potential, including opiates,[44] amphetamine,[45] cocaine,[46]

nicotine,[47] marijuana (Δ9-tetrahydrocannabinol)[48] and alcohol (ethanol),[49] acutely
activate the HPA axis via elevated hypothalamic production of CRF (figure 1a).[50,51] This
acute HPA activation has been shown to participate in the development of drug-induced
locomotor sensitization,[52] with antagonism of CRF1 receptors blocking behavioural
sensitization to multiple drugs of abuse.[53,54] Likewise, deletion of CRF1, but not CRF2,
receptors inhibits the development of behavioural sensitization to ethanol and blunts the
HPA axis response to acute ethanol treatment.[55] Interestingly, blocking the production of
the final HPA axis effector, corticosterone, by either adrenalectomy or pharmacological
inhibition of its synthesis inhibits not only locomotor activation by cocaine but also the
acquisition of cocaine self-administration,[56] suggesting that CRF-induced HPA activation
may be involved in the onset of drug self-administration.

4. Dysregulation of the CRF System during Withdrawal from Drugs of
Abuse

While hypothalamic CRF may play a role in the acquisition of drug self-administration, the
balance of data show that extrahypothalamic sources of CRF, particularly within the
extended amygdala and other key limbic system structures, are integral to the development
of negative reinforcement mechanisms associated with addiction.[57] That is, the primary
involvement of CRF in the regulation of drug self-administration lies in the dysregulation of
the CRF system following withdrawal of drug access in dependent individuals. Multiple
lines of evidence have demonstrated that although acute drug exposure yields a transient
elevation of CRF expression in multiple brain regions (figure 1a),[58,59] chronic exposure
results in overactivation of the CRF system, which is central to the withdrawal and
dependence phenotypes observed upon removal of drug access (figure 1b).[60-64] During the
progression to dependence, drug exposure ceases to trigger elevated CRF expression,[58]

resulting in a blunted HPA response.[65] However, when drug access is subsequently
withdrawn, CRF release in the extended amygdala increases, accompanied by somatic and
psychological withdrawal signs.[66-68] Particularly striking across multiple drugs of abuse is
the elevation in CeA CRF at various withdrawal time points, which can be observed not
only when assessing levels of messenger RNA (mRNA) expression[59,62,63] and protein
content[60] but, importantly, also as an elevation of CRF released into the extracellular
space.[64,66,69] Notably, a high level of CRF release at early withdrawal timepoints can yield
paradoxically low CRF levels when protein content is determined at the intracellular
level.[59,60,70,71] The synthesis of new CRF may lag behind the rate of release, thereby
depleting the tissue content of CRF.

Logrip et al. Page 3

CNS Drugs. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Similar to the CeA, increased CRF release has also been observed in the lateral BNST
during drug withdrawal,[67] suggesting an elevated activation of CRF signalling throughout
the extended amygdala. This heightened CRF activity may be further augmented during
abstinence by long-lasting changes in receptor expression levels. Contrasting changes in
CRF1 and CRF2 receptor levels have been observed 3 weeks after cessation of ethanol
exposure.[63] Specifically, following extended abstinence, CRF1 receptor levels in the BLA
were elevated and CRF2 receptor levels decreased, whereas CRF1 receptor levels in the
MeA were increased without changes in CRF2 receptor mRNA.[63] The effects may be
specific to a given abused drug or withdrawal timepoint, because precipitated morphine
withdrawal acutely reduced CRF1 receptor mRNA expression in the BLA and NAc.[72]

Data from CRF receptor knockout mice support a prominent role for CRF1 receptors in
symptoms of drug withdrawal and dependence-induced elevations in drug intake. Deletion
of the CRF1 receptor gene abolished dependence-induced elevations in the self-
administration of ethanol[73] and opiate withdrawal-induced conditioned place aversion,[74]

whereas deletion of the CRF2 receptor gene had a marginal effect on ethanol intake in
nondependent mice under limited-access conditions.[75] The Marchigian Sardinian ethanol-
preferring (msP) rat line carries a polymorphism in the promoter region of the gene
encoding the CRF1 receptor, which is putatively responsible for the elevation in CRF1
receptor expression observed in multiple regions of the msP brain, particularly within the
extended amygdala and other key limbic system structures.[76] msP rats display high basal
alcohol intake, which can be reduced by antagonizing the CRF1 receptor.[76] These data
suggest that altered expression of the CRF1 receptor may regulate excessive self-
administration of ethanol (and perhaps other drugs of abuse).

The balance of gene expression studies suggests a more prominent role for CRF1 than CRF2
receptors in the motivational aspects of drug withdrawal and dependence. Data from CRF
receptor knockout mice suggest the involvement of both receptors in the somatic withdrawal
syndrome associated with drugs of abuse. CRF2 receptors may regulate the peripheral
effects of opiate withdrawal, which were largely absent in CRF2 receptor knockouts.[77]

Deletion of CRF1 receptors, which may cause a compensatory upregulation of CRF2
receptors, yielded heightened signs of somatic withdrawal from opiates.[78] Altogether, these
data suggest that CRF receptors present attractive targets for the modulation of drug self-
administration and somatic withdrawal syndromes in dependent populations.

5. CRF Receptor Antagonists as Potential Treatments for Drug Addiction
As discussed in section 4, CRF receptor antagonists, particularly those targeting CRF1
receptors, show promise for the development of treatments for drug abuse and addiction.
Much effort has been placed on the development of high-affinity (low dissociation constant,
Ki), blood-brain barrier-penetrating CRF1 receptor-selective antagonists with drug-like
properties,[79,80] including good oral bioavailability, volume of distribution (moderate) and
clearance rates (half-life suitable for once daily dosing, ~12–36 hours) that may be useful as
medications for human patients. A subset of these antagonists and their basic
pharmacological properties can be found in table I; for a comprehensive review of existing
CRF1 receptor pharmacology, see Zorrilla and Koob.[93] Because of the upregulation of
CRF and CRF1 receptors during drug withdrawal, many studies have explored the ability of
CRF receptor antagonists to reduce withdrawal-induced elevations in anxiety and drug self-
administration. Table II summarizes CRF receptor antagonist modulation of the behavioural
and neuroendocrine effects of abused drugs, including the efficacy of the antagonists in
inhibiting relapse to drug seeking.
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5.1 CRF Receptor Subtype Nonspecific Antagonists
Prior to the discovery of the CRF receptor subtypes, several ligands that have affinity for
both CRF receptor subtypes were developed as a means of competitively interfering with the
function of endogenous CRF (table I). Among these (Met,[18] Lys,[23] Glu,[27,29,40]

Ala,[32,41] Leu[33,36,38]) h/rCRF9–41 (α-helical CRF9-41),[130] a CRF receptor partial
agonist,[93] and (D-Phe,[12] Nle,[21,38] CαMeLeu[37]) h/rCRF12-41 (D-Phe CRF12-41),[131] a
full antagonist of the CRF receptor,[93] have been the most widely used, with similar results.
Both ligands inhibited footshock-induced reinstatement of cocaine self-administration in
rats, whether injected systemically[98] or locally infused into the BNST[132] or VTA.[133]

Similar results were observed with stress-induced reinstatement of ethanol-seeking[119] and
heroin-seeking[106,134] behaviour. Interestingly, α-helical CRF9-41 and D-Phe CRF12-41
were unable to antagonize drug- or cue-primed reinstatement, unless the cue was presented
in conjunction with stress pre-exposure.[119] Nonetheless, the peptide ligands showed great
efficacy in reducing ethanol withdrawal-induced elevations in both self-
administration[116,135] and anxiety-like behaviour.[116,117]

For ethanol, the actions of CRF receptor antagonists in reducing both self-administration and
anxiety-like behaviour in dependent rats have been localized to the CeA.[71,136] Similar
effects have been found for nicotine, with either central or CeA-specific infusion of D-Phe
CRF12-41 reducing withdrawal-associated elevations in brain reward stimulation
thresholds,[124,137] an effect recently shown for ethanol withdrawal as well.[138] Likewise,
CeA administration of α-helical CRF9-41 blocked conditioned place aversion to an
environment paired with precipitated morphine withdrawal.[104]

These data demonstrate that the subtype-nonspecific peptide CRF receptor antagonists α-
helical CRF9-41 and D-Phe CRF12-41 reduce both the heightened anxiety-like behaviour and
elevated self-administration observed in drug dependence. However, to improve receptor
specificity and efficacy of systemic administration, several nonpeptide antagonists have
been developed that have CRF1 receptor specificity and show greater ability to penetrate the
blood-brain barrier.

5.2 Specific CRF1 Receptor Antagonism
A significant advance in CRF1 receptor pharmacology occurred with the discovery of blood-
brain barrier-penetrating CRF1 receptor antagonists, including CP-154,526[139] and
antalarmin.[82] These compounds were the first major CRF1 receptor antagonists with
therapeutic potential for CNS disorders, such as drug addiction. Importantly, antalarmin was
shown to be capable of inhibiting anxiety-like behaviour, resulting from
intracerebroventricular CRF treatment, in the elevated plus maze,[140] indicating not only
brain penetrance, but also efficacy following systemic delivery in blocking the central
effects of CRF. Like the subtype nonselective peptide antagonists, the small-molecule
antalarmin reduced withdrawal-associated elevations in ethanol self-administration in both
rats[109] and mice,[73] as well as ethanol intake in ethanol-preferring msP rats.[76]

Similarly, the ability of antalarmin to reduce cocaine self-administration was evident
selectively in rats given extended (6-hour) daily access to cocaine (‘long access’ [LgA]), a
schedule with which self-administration escalates across days, but not in rats given brief (1-
hour) daily access (‘short access’ [ShA]), in which intake does not escalate.[94] In addition
to reducing elevated drug self-administration in dependent animals, antalarmin also inhibited
stress-primed reinstatement of ethanol self-administration[110] as well as stress-induced
elevations in ethanol self-administration[110] and palatable food intake.[129] These effects
may be due to the ability of antalarmin to reduce the negative emotional state of withdrawal,
as the compound reduced the development of conditioned avoidance of a location previously
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paired with acute morphine withdrawal.[105] These data demonstrate that antalarmin
specifically reduces drug withdrawal effects and self-administration in dependent, but not
nondependent, individuals.

Similar to antalarmin, CP-154,526 effectively antagonized stress-induced reinstatement of
drug seeking for cocaine,[99] heroin[99] and ethanol,[120] as well as cue- and drug-primed
methamphetamine reinstatement.[141] It also inhibited stress-induced reinstatement of
conditioned place preference to morphine[142,143] and cocaine.[144] Interestingly, the
compound may have efficacy in reducing maintenance self-administration
responding,[95,111-113] although many experiments that showed effects on maintenance
responding were performed at some point post-stress, such as following a history of forced
swim testing or extinction training. CP-154,526 also inhibited the reduction in social
interaction observed after restraint stress in rats with a history of multiple cycles of ethanol
withdrawal.[145] Important for efficacy in human drug treatment, this anxiolytic-like effect
was observed whether the CRF1 receptor antagonist was administered prior to the restraint
stress or during each of the withdrawal periods, suggesting that the use of the antagonist to
alleviate the stress of withdrawal may have a lasting ability to blunt the heightened stress
sensitivity in post-dependent individuals.

Wills and colleagues[146] suggested that stress pre-exposure may be integral to the ability of
CP-154,526 to reduce self-administration in non-dependent rats. However, recent data have
shown that CP-154,526 reduced ethanol intake in the absence of stress in nondependent
mice under-going a limited-access two-bottle choice paradigm.[111,113] CP-154,526 has also
been used to inhibit locomotor sensitization to multiple drugs of abuse, demonstrating the
involvement of CRF activation of CRF1 receptors in the expression,[54] or acquisition and
expression,[53] of sensitization to cocaine and ethanol, respectively. Importantly, following
systemic administration, this antagonist blocked the central generation of anxiety-like
responses without altering peripheral HPA axis activity,[147] a key feature for efficacy in
human treatment because blunting of all stress responses would be disadvantageous.

The search for optimal, drug-like CRF1 receptor antagonists has spurred the development
and testing of many additional antagonists in recent years. Similar to CP-154,526,
CRA-1000 reduced ethanol withdrawal-induced anxiety.[148,149] R121919 (also known as
NBI30775),[150] at doses that do not alter normal HPA function, has been shown to reduce
anxiety-like behaviour in rats with high basal anxiety, but not in rats without high basal
anxiety.[151] Low doses of R121919 have similarly been demonstrated to reduce anxiety-like
behaviour in mice[152] and depression in humans[153,154] without significantly modulating
basal HPA activity. Similar to antalarmin, R121919 also reduced LgA but not ShA cocaine
self-administration,[94] as well as LgA, but not ShA, heroin self-administration.[102] The
antagonist also reduced both binge eating of palatable food and the anxiety-like behaviour
precipitated by the removal of access to that food.[128]

Both R121919 and MJL-1-109-2 dose-dependently decreased ethanol self-administration
during withdrawal, with no effect in nondependent rats,[109] as did LWH-63 when
administered to dependent Sardinian alcohol-preferring rats.[114] None of these three CRF1
receptor antagonists reduced homecage drinking when ethanol was available continuously,
although they paradoxically slightly increased ethanol intake under limited homecage access
conditions in nondependent rats.[114]

The newer heterocyclic CRF1 receptor antagonists MPZP[92] and MTIP[91] also reduced
dependence-induced ethanol self-administration. Surprisingly, MTIP also reduced excessive
drinking in nondependent msP rats. This reduction in nondependent ethanol intake was
likely attributable to genetic differences between msP rats and other strains, rather than via a
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novel action of MTIP compared with other CRF1 receptor antagonists, as the msP line
shows a high incidence of a CRF1 receptor promoter polymorphism that yields elevated
CRF1 receptor expression.[91] The striking similarity in the ability of the various CRF1
receptor-selective antagonists to inhibit withdrawal-associated elevated anxiety-like
responses and drug self-administration confirms the integral role of CRF activity at the
CRF1 receptor in regulating the negative effects of drug withdrawal.

5.3 Targeting the CRF2 Receptor
Unlike CRF1 receptors, fewer pharmacological tools have been developed to specifically
modulate the CRF2 receptor, perhaps because of the perception that CRF1 receptors regulate
the majority of central CRF effects. Indeed, several studies have shown an inability of CRF2
receptor antagonists to modulate withdrawal-induced behavioural adaptations.[142,148]

However, the functionality of the CRF2 receptor in modulating drug self-administration and
reinstatement has begun to emerge. Activation of the CRF2 receptor in the CeA by urocortin
3 (Ucn3) reduced ethanol self-administration in dependent rats while increasing self-
administration in nondependent rats.[155] The effects of Ucn3 on dependent ethanol self-
administration may stem from the ability of Ucn3 to inhibit anxiety-like behaviour during
acute ethanol withdrawal.[156] Under a two-bottle choice limited-access paradigm, central
infusions of Ucn3 reduced ethanol intake similarly to CRF1 receptor antagonists,[113,157]

suggesting that either inhibition of CRF1 receptors or activation of CRF2 receptors can
decrease the propensity to consume ethanol even in non-dependent individuals.

Unlike ethanol self-administration, footshock-induced reinstatement of cocaine seeking can
be reduced by blockade, rather than activation, of the CRF2 receptor. Using the preferential
CRF2 receptor antagonist antisauvagine-30 in rats, reinstatement of self-administration of
cocaine following footshock stress was blocked.[158] The involvement of CRF2 receptors in
the modulation of stress-induced relapse likely operates through a different circuitry than for
CRF1 receptor regulation of drug self-administration. Whereas CRF1 receptor antagonists
may exert their greatest effects in the extended amygdala, CRF2 receptor antagonists
inhibited stress-induced reinstatement in rats via activity in the VTA[158] and reduced
withdrawal-induced anxiety-like behaviour in rats via the dorsal raphe nucleus.[159]

Together, these data demonstrate that developing pharmacological tools for more selective
targeting of CRF2 receptors warrants increased attention. The currently available compounds
lack utility as treatment options for drug abuse because they must be centrally administered
and display much lower CRF receptor subtype specificity than CRF1 receptor antagonists
(e.g. antisauvagine-30, although roughly 100-fold more selective for CRF2 than CRF1
receptors, is not CRF2 receptor specific[160]).

6. Role of CRF in Drug Relapse Following Extended Periods of Abstinence
To date, much of the preclinical research into the role of CRF in regulating drug dependence
has focused heavily on acute withdrawal paradigms. These studies are very pertinent to
human drug addiction in the early stages of ceasing drug taking (i.e. the ability to gain
sobriety), but it is uncertain how they translate to the more common human situation, in
which relapse to drug taking occurs following extended periods of abstinence. In contrast to
the acute withdrawal window, which is characterized by both somatic withdrawal symptoms
and negative affect, the protracted abstinence period is distinguished by heightened anxiety-
like behaviour and drug craving.[161-163] For example, in rats, withdrawal of chronic ethanol
access via either liquid diet[164] or ethanol vapour[165] yielded elevated anxiety-like
behaviour and brain reward thresholds within the first 24 hours,[164,165] followed by a return
to normal baseline but heightened stress-induced anxiety-like behaviour at 2 weeks post-
withdrawal[164,165] and a resurgence of increased baseline anxiety-like behaviour after 6
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weeks of abstinence.[165] These data demonstrate that abstinence is not a static condition but
rather one in which neuroadaptations continue over a prolonged period of time.

One study in rats suggested that this difference between acute and extended withdrawal may
not diminish the clinical relevance of the preclinical findings. Administration of CRF
receptor antagonists during multiple ethanol withdrawal periods had a long-lasting ability to
decrease stress-induced anxiety-like behaviour during protracted abstinence periods.[145]

Nevertheless, several additional studies have begun to address the role of the CRF system in
long-term abstinence, all of which suggest continued CRF receptor antagonist efficacy
throughout the abstinence period. Elevated anxiety-like behaviour and ethanol self-
administration observed in dependent rats after 4 weeks of abstinence were reversed by D-
Phe CRF12-41 antagonism of CRF receptors.[116] Similarly, following 6 weeks of abstinence,
post-dependent rats showed increased sensitivity to the effects of restraint stress on anxiety-
like behaviour, an effect that was blocked by D-Phe CRF12-41.[166] These data suggest that
the increased CRF-like immunoreactivity observed in the amygdala 6 weeks after
withdrawal of chronic access to ethanol or cocaine[60] may regulate the heightened anxiety-
like behaviour observed during protracted withdrawal. More recently, Heilig and
colleagues[63] found elevated CRF1 receptor mRNA expression in the BLA and MeA in
post-dependent rats following 3 weeks of abstinence from ethanol vapour. These rats also
showed elevated drinking following stress exposure compared with rats without a history of
dependence, as well as elevated stress sensitivity that was ameliorated by the CRF1 receptor
antagonist MTIP.[63] Although similar data are lacking for other drugs of abuse, the
sensitivity to CRF1 receptor antagonist blockade of stress-induced drug reinstatement has
been shown in multiple paradigms that involve prolonged extinction training,[99,142,158]

suggesting persistent CRF system sensitivity over long periods of abstinence, regardless of
the abused substance.

Altogether, these data indicate the potential for success in using CRF receptor antagonists to
combat the proximal causes of relapse even following long periods of sobriety. This
perseverance of CRF sensitivity throughout the abstinence period also suggests that common
changes in neuroplasticity within the CRF systems of the extended amygdala and other
limbic regions may underlie withdrawal-induced elevations in drug intake.

7. Elevated CRF Signalling Alters Plasticity Throughout the Extended
Amygdala and Mesocorticolimbic System during Drug Withdrawal

The chronically relapsing nature of drug addiction suggests that long-lasting
neuroadaptations govern the persistence of drug-seeking and drug-taking behaviour, for
example, via changes in the strength of the synaptic connections within neurocircuits that
subserve the response to drugs of abuse.[167] Because withdrawal from multiple drugs of
abuse results in elevated levels of CRF and CRF1 receptors in the extended amygdala, in
particular within the amygdala[60,62,63,66,168] and BNST,[67] these nuclei present likely loci
for drug-induced synaptic modifications that may underlie elevated anxiety-like behaviour
and drug self-administration in dependent individuals. Acute ethanol treatment of brain
slices increased inhibitory GABA signalling in the CeA via activation of CRF1 receptors,
and this effect could be blocked by deletion of the CRF1 receptor gene or by D-Phe
CRF12-41,[169] antalarmin, LWH-63 and R121919 treatment,[170] but not by the CRF2
receptor antagonist astressin2-B.[169] However, deletion of the CRF2 receptor gene
augmented ethanol-induced inhibitory postsynaptic currents (IPSCs).[169] Interestingly, the
development of ethanol dependence in vivo did not preclude the ability of acute ethanol
treatment to increase GABA IPSCs in brain slices of the CeA collected during early
withdrawal.[170] However, unlike nondependent rats, in which CRF1 receptor antagonists
inhibited only the potentiation of CeA IPSCs by ethanol, co-application of antalarmin,
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LWH-63 or R121919 not only blocked ethanol-induced IPSCs but also reduced baseline
inhibitory firing in the absence of ethanol.[170] Thus, CeA neurons maintain responsiveness
to ethanol during withdrawal, and elevated extracellular CRF observed in vivo at this
timepoint increases the baseline firing rate of CeA GABA-ergic neurons.

This dampening of baseline inhibitory tone by CRF1 receptor antagonists may also occur,
albeit at a much lesser level, in nondependent animals, providing a putative explanation for
the reduction of ethanol intake by CRF1 receptor antagonists in nondependent animals,
similar to observations in several recent studies using limited access paradigms that aimed to
replicate binge drinking.[111,113] These data suggest that the reduction in baseline IPSCs
may, in fact, have functional consequences for the regulation of ethanol intake in
nondependent individuals under certain access/intake conditions.

Whereas ethanol studies have focused on the effects of dependence on CRF modulation of
inhibitory signalling in the CeA, cocaine withdrawal elevated excitatory synaptic firing, with
effects appearing 2 weeks, but not 1 day, after withdrawal from drug treatment.[168,171,172]

This potentiated response, observed at synapses from BLA projections to the CeA, involved
not only greater activation in response to CRF treatment,[171] but also elevated long-term
potentiation following high-frequency stimulation, an effect blocked by the CRF1 receptor
antagonist NBI27914[168,172] and reduced in magnitude by the CRF receptor antagonist
astressin2-B.[172] These data demonstrate that although multiple drugs of abuse alter
plasticity within the CeA, the specific CRF synapses modified by drug withdrawal may not
be uniform across different drugs.

Unlike the CeA, withdrawal-induced synaptic changes in the BNST appear to act via a
common pathway, regardless of the abused substance. Similar to the CeA, CRF treatment
increased GABAergic neuron firing via a CRF1 receptor-dependent mechanism, as CRF
modulation of inhibitory currents was blocked by NBI27914, but not by the CRF2 receptor
antagonist antisauvagine-30.[173] However, unlike the divergent mechanisms observed for
ethanol and cocaine withdrawal in the CeA, withdrawal from chronic intermittent ethanol
vapour, LgA cocaine self-administration and LgA heroin self-administration all reduced the
fidelity of the intrinsic excitability of BNST juxtacapsular neurons, thus disrupting the long-
term potentiation of these neurons.[174] This shift away from the excitation threshold
occurred via a CRF1 receptor-dependent mechanism, as R121919 treatment normalized the
intrinsic excitability to levels comparable to nondependent controls.[174] These data
demonstrate that withdrawal-induced upregulation of the CRF/CRF1 receptor system in the
CeA and BNST alters the excitability, and thus intrinsic responsiveness, of the extended
amygdala to subsequent neural signals. The blockade of CRF1 receptors returns these brain
regions to activity levels similar to normal controls.

Unlike the extended amygdala, in which drug withdrawal alters synaptic efficacy mainly via
a CRF1 receptor-dependent mechanism, behavioural results suggest a prominent role for
CRF2 receptors in the VTA as mediators of drug seeking, as well as glutamate and
dopamine release during stress-induced drug reinstatement.[158] At the synaptic level,
application of CRF potentiated the response of VTA glutamate N-methyl-D-aspartate
(NMDA) receptors to stimulation, an effect that was further heightened by chronic cocaine
exposure.[175] This enhancement of CRF regulation of VTA excitability following chronic
cocaine exposure was reduced by CRF1 receptor antagonism but was completely blocked by
CRF2 receptor antagonism.[175] These results align with the existing data for stress-induced
drug reinstatement, supporting a model of CRF regulation of VTA neuronal activity in
which elevated CRF, caused by stress exposure, activates CRF2 receptors to enhance
dopamine and glutamate release, resulting in reinstatement of drug seeking. Within the same
population of neurons, chronic cocaine exposure unmasked an additional ability of CRF to
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enhance excitatory responses via the glutamate α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA) receptor, which was insensitive to CRF in drug-naive
animals.[175] Unlike the NMDA effect, however, potentiation of AMPA signalling by CRF
in cocaine-experienced animals was insensitive to CRF2 receptor antagonism and instead
was blocked by inhibition of the CRF1 receptor.[175] Thus, although CRF2 receptors play a
predominant role in CRF regulation of VTA neuronal activity, chronic drug exposure may
produce an additional mechanism for elevated excitation via a CRF1 receptor-dependent
pathway. Together with the in vivo studies discussed previously, these data suggest that
inhibition of CRF activity presents a useful pharmacological target for normalizing
maladaptive changes in neuronal activity that may underlie the persistence of drug addiction.

8. Conclusion
As a chronically relapsing condition, drug abuse and addiction cannot be successfully
treated without addressing the underlying cause of relapse. CRF is a key modulator of the
anxiety observed in both acute and protracted abstinence from multiple drugs of abuse and
thus presents an ideal target for medication development. The success of multiple CRF
receptor antagonists in animal models of drug dependence and the variety of compounds
now available provides hope that a clinically effective CRF receptor antagonist for the
treatment of drug addiction may be on the horizon.
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Fig. 1.
Time-dependent modulation of the corticotropin-releasing factor (CRF) response to
exposure to drugs of abuse. (a) Acute exposure to drugs of abuse activates the
hypothalamic-pituitary-adrenal (HPA) axis via increased hypothalamic synthesis and release
of CRF, which is released into the portal blood from the median eminence. This triggers
increased release of adrenocorticotropic hormone (ACTH) from the pituitary gland, which
subsequently acts on the adrenal glands to elevate circulating corticosteroid levels. Acute
drug exposure also increases CRF synthesis and release in the extended amygdala. (b)
During drug withdrawal, activation of the HPA axis is attenuated compared with the drug-
naive state, whereas CRF synthesis and release throughout the extended amygdala are
greatly elevated. ↑ indicates increased.
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