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Abstract
Purpose—To automatically differentiate radiation necrosis from recurrent tumor at high spatial
resolution using multi-parametric MRI features.

Materials and Methods—MRI data retrieved from 31 patients (15 recurrent tumor and 16
radiation necrosis) who underwent chemoradiation therapy after surgical resection included post-
Gd T1, T2, FLAIR, PD, ADC and PWI derived rCBV, rCBF and MTT maps. After alignment to
post contrast T1WI, an 8-dimensional feature vector was constructed. An OC-SVMs classifier was
trained using a radiation necrosis training set. Classifier parameters were optimized based on the
area under ROC curve. The classifier was then tested on the full dataset.

Results—The sensitivity and specificity of optimized classifier for pseudoprogression was
89.91% and 93.72% respectively. The area under ROC curve was 0.9439. The distribution of
voxels classified as radiation necrosis was supported by the clinical interpretation of followup
scans for both non-progressing and progressing test cases. The ADC map derived from DWI and
rCBV, rCBF derived from PWI were found to make a greater contribution to the discrimination
than the conventional images.

Conclusion—Machine learning using multi-parametric MRI features may be a promising
approach to identify the distribution of radiation necrosis tissue in resected GBM patients
undergoing chemoradiation.
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INTRODUCTION
Differentiating radiation necrosis from tumor recurrence is a critical unsolved problem in
therapeutic monitoring of glioblastoma multiforme (GBM) patients undergoing
chemoradiation therapy. Standard therapy for GBM includes surgical resection followed by
chemoradiation therapy. Unfortunately, chemoradiation induced necrosis and
pseudoprogression may present a magnetic resonance imaging (MRI) appearance
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indistinguishable from tumor recurrence by qualitative interpretation of conventional
contrast-enhanced MRI. This significantly complicates therapeutic decision making during
followup. A reliable technique to differentiate chemoradiation induced pseudoprogression
and necrosis from tumor progression could provide significant benefit.

Both the large endothelial gaps characteristic of GBM neovessels and the endothelial gaps
produced by radiation injury to native brain capillaries compromise the blood brain barrier
(BBB) (1). Increased leakage of Gadolinium contrast through these gaps results in
enhancement of signal intensity on delayed post-Gadolinium T1WI in both pathologies, and
increased leakage of small molecules results in vasogenic edema manifesting as
hyperintensity on FLAIR and T2WI and mass effect. Furthermore since both GBM
recurrence and radiation necrosis/pseudoprogression occur most frequently at the margin of
the cavity where the original tumor was resected (2, 3), these entities are frequently
indistinguishable by conventional MRI. Many advanced imaging techniques are under
investigation in the attempt to distinguish these entities, including dynamic susceptibility
contrast (DSC) perfusion weighted imaging (PWI), magnetic resonance spectroscopy
(MRS), diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), and Positron
Emission Tomography (PET).

Currently most quantitative MRI research in this area is directed to sampling the imaging
data in selected regions of interest (ROIs) and trying to find a threshold for one parameter or
a combination of a few parameters that can distinguish radiation necrosis from tumor
progression. Some success has been reported using DSC PWI. In the standard analysis,
relative cerebral blood volume (rCBV) is normalized to a selected contralateral region of
normal appearing white matter (NAWM) to produce a dimensionless ratio referred to as a
‘normalized’ CBV (nCBV). Although the precise nCBV threshold reported varies somewhat
with technique, many reports confirm that the detection of nCBV higher than a cutoff of
roughly 1.75 is highly sensitive and specific for the presence of high grade glioma (HGG)
(4). DWI derived apparent diffusion coefficient (ADC) maps are also under active
investigation, with mixed reports of success (5–9). Similarly, in MRS, derived Cho/Cr
ratios, Cho/NAA ratios and NAA/Cr ratios may differ between tumor recurrence and
radiation necrosis, although the overlap between the two classes is large (10). Despite a long
history of literature reporting use of 18-FDG-PET for differentiation of recurrent GBM from
radiation necrosis, both published results and clinical experience have been quite mixed (11–
15).

Recent literature suggests that improvements in acquisition, post-processing, and
quantitation will improve the performance of the advanced MRI based perfusion and
diffusion related measures above (16), but will not address an additional fundamental source
of error common to all methods: the operator dependence and inter-observer variation
intrinsic to ROI based “hot spot” strategies (5, 6, 11, 12, 15), in which ROIs were manually
defined according to individual judgments and then used in further analysis. In addition, the
intrinsic heterogeneity of GBM physiology and the frequent coexistence of tumor recurrence
and radiation injury present significant challenges (17). Histopathologically, at least four
important tissue types may be present within an irradiated glioma specimen: “inactive”
neoplasm, radiation necrosis, parenchymal gliosis, and recurrent tumor (18). While inactive
tumor may have a quite invariable appearance, recurrent high grade glioma is generally
associated with a combination of varying degrees of hypercellularity, hypervascularity,
hypermetabolism and rapid growth (17, 18). In this context, averaging voxels within a ROI
(usually more than 20 voxels) may mask the intrinsic heterogeneity of the lesion and reduces
the chance to distinguish radiation necrosis from recurrent tumor at high spatial resolution.
To address these limitations, we have designed an operator independent, automated, whole
brain analytic method using combined MRI tumor enhancement, edema, cellularity and
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perfusion data to produce a voxel by voxel classification of tissue in the brains of patients
undergoing followup during chemoradiation for GBM.

Prior studies have suggested that combining information from multiple imaging modalities
can help characterize tumor recurrence and radiation necrosis (19–22). But for multi-
parametric studies, the amount of data can be overwhelming even for expert readers, and
conventional qualitative image interpretation may lead to inconsistent diagnostic precision.
In recent years artificial intelligence and machine learning methods have been proven useful
for diagnostic decision making problems in high dimensional feature space (23, 24). Support
vector machine (SVM) learning is based on structural risk minimization (SRM) rather than
the traditional empirical minimization (ERM) principle. The use of SRM makes SVM
approaches more generalizable than ERM (25). Traditional SVM algorithms aim at binary
classification and are trained using both positive and negative samples. However, it is very
difficult to label all the tumor voxels in our population due to the intrinsic heterogeneity of
recurrent tumor under irradiation, even with long term followup, our application requires a
method that could be trained using only samples demonstrated to represent radiation
necrosis. To meet this requirement, we adopted the one-class SVM (OC-SVM) method
proposed by Schölkopf et al. to adapt the SVM methodology to a one-class classification
problem (26). The parameters in training were optimized using a receiver operating
characteristic (ROC) analysis (27). ROC analysis was selected because it is an effective way
to visualize, organize and select classifiers based on their performance and has been widely
used in medical decision-making for learning in the presence of unbalanced training samples
(27). The area under the ROC curve (AUROC) was selected as a simple but consistent
measurement of the overall performance of the classifier (28). This OC-SVM method was
applied to automatically identify voxels likely to represent radiation necrosis within the
multi-parametric MRI datasets described above, with the goal of improving spatial
resolution, reproducibility, practicality and confidence analysis compared to single
parameter ROI and qualitative analyses.

The main contribution of the paper is providing an automatic approach to identify radiation
necrosis at high spatial resolution based on a machine learning classifier that was trained
from multiple parametric MR features using only positive (radiation necrosis) training
samples, while avoiding the difficulties in the collection of negative (recurrent tumor)
training samples in GBM patients undergoing radiation therapy after surgical resection.

MATERIIALS AND METHODS
Data Acquisition and Preprocessing

MRI and clinical data from 31 GBM patients who had undergone radiation therapy after
surgical resection were retrieved from institutional databases (Brigham and Women’s
Hospital, Boston, MA) with approval from the applicable institutional research boards.
These patients included 16 with confirmed radiation necrosis and 15 with recurrent tumor.
Both tumor recurrence and radiation necrosis were confirmed by inspection of clinical MRI
scans acquired every 2–3 months during followup. Enhancing regions that remained stable
or decreased in size were categorized as radiation necrosis while those significantly
increased in size were categorized as recurrent tumor.

The MR images were acquired with a standard institutional protocol including gadolinium
contrast enhanced delayed T1WI (TR/TE=415/20ms, FOV 210×210mm2, voxel size
0.82×0.82×6mm3), T2WI (TR/TE=3300/100ms, FOV 210×210mm2, voxel size
0.41×0.41×6mm3), FLAIR (TR/TE/TI=8000/130/2000ms, FOV 210×210mm2, voxel size
0.41×0.41×6mm3), PDWI (TR/TE=2560/30ms, FOV 210×210mm2, voxel size
0.41×0.41×6mm3), DWI (TR/TE=10000/60ms, FOV 240×240mm2, voxel size
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0.94×0.94×5mm3). Spin echo (TR/TE=1900/80ms, FOV 300×300mm2, voxel size
1.17.×1.17×10mm3) EPI DSC perfusion imaging was obtained during the bolus infusion of
Gadolinium contrast at 4cc/second. Apparent diffusion coefficient (ADC) maps were created
from the DWI. Relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF)
and mean transit time (MTT) maps were produced using previously published least absolute
deviation (LAD) method (29).

All images were resampled to a uniform 1×1×5mm3 voxel size to compensate for different
acquisition resolution, and then aligned to the T1WI using a rigid body transformation with
9 degrees of freedom (3 for transition, 3 for angular rotation and 3 for scale) using FLIRT
(Oxford FSL tools; http://www.fmrib.ox.ac.uk/fsl/). Because the low SNR of the high b-
value images makes it difficult to register DWI and ADC maps directly to T1WI, the higher
SNR T2WI obtained with b=0 sec/mm2 was aligned to T1WI and the deformation matrix
was used to transform the ADC map into T1WI space. The deformation matrix used to align
the perfusion data to the T1WI at the first time point was preserved and used to deform the
rCBF, rCBV, and MTT maps into the T1WI space.

Training of OC-SVM Classifier
The feature vector used for classification consists of 8 parameters derived from the multiple
MR sequences, including contrast enhanced T1, T2, FLAIR, PD, ADC, rCBF, rCBV and
MTT. The feature vector for each voxel was generated by normalizing the voxel intensity in
the image by the mean value measure in an ROI placed in the contralateral NAWM on the
same map, except for MTT. The feature derived from the MTT map was normalized by
subtracting the NAWM ROI MTT from the MTT in each voxel.

The radius bases function (RBF) was selected for use as a kernel function because of its
suitability for nonlinear mapping, few parameters and low numerical difficulty (30). The
only two parameters under optimization were gamma (width of RBF) and ν (fraction of
outliers in training samples). Gamma controls the shape of the decision hyper-plane. A
larger gamma results in a more convoluted hyper-plane with better training accuracy but
degraded generalizability. Conversely a smaller gamma leads to a smoother hyper-plane
with relatively lower training accuracy but better generalizability. ν controls the fraction of
outliers in the training samples. For a given gamma a larger ν results in a “conservative”
classification strategy producing fewer false positives at the expense of a lower true positive
rate. A lower ν results in a “liberal” classifier producing a high true positive rate but with
more false positives (26). For our application, the gamma and ν which maximize AUROC
for a well-selected test sample set was considered optimal when gamma is searched along 1,
2 …, 29, 30 and ν searched along series 0.02, 0.04, …, 0.6. After optimization of gamma
and ν, the tangent point between line y=kx+b and the ROC curve on ROC plane was
selected as the optimal classifier. Simultaneously, an optimal threshold T was determined to
generate the discrete classifier. k=1 was used in our application with the assumption of equal
misclassification cost between false positive and false negative. Various k correspond to cost
sensitive classifiers, which will be discussed in section 4 with details.

For 8 patients with confirmed radiation necrosis, the enhancing lesions were manually
segmented on post-gadolinium T1WI. Each voxel in the segmented lesion could be
potentially considered to be one training sample assuming spatial independence in multi-
parametric space. In our application, 2000 voxels were randomly selected from those lesions
to generate the training set.

Both the 8 patients with confirmed radiation necrosis mentioned above and 7 cases with
confirmed recurrent glioma were used to generate the dataset for parameter optimization.
The dataset was prepared as follows: (1) Radiation necrosis voxels were randomly selected
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from the segmented stable or decreasing size enhancing lesions never presented in the
training samples; (2) Normal voxels were selected manually in the normal appearing gray
matter, white matter, CSF and ventricles in all cases; (3) Recurrent tumor voxels were
selected from the 8 cases with confirmed recurrent glioma by (a) filtering the segmented
lesions using a “liberal” OC-SVM classifier with gamma=5 and ν=0.001 to identify
radiation necrosis voxels, (b) removing identified radiation necrosis voxels from the subset,
and (c) selecting a random sample of the remaining enhancing voxels within the segmented
recurrent tumor; (4) Voxels from the three groups (enhancing radiation necrosis, non-
enhancing normal voxels and enhancing recurrent tumor voxels were equally intermixed to
create the dataset used for parameter optimization. The dataset totally contained 6000
voxels.

Testing of Trained OC-SVM Classifier
The percentage of necrotic voxels was defined as the ratio of the number of necrotic voxels
identified by the classifier to the total number of abnormal enhancing voxels in the cases
being tested. A two-group comparison was performed between 8 subjects from progressing
group and 8 from non-progressing group that were not used in the training stage to test the
hypothesis that cases of confirmed radiation necrosis would have significantly more voxels
identified as radiation necrosis than cases of recurrent glioma. For each case, the region of
abnormal enhancement was manually segmented on post gadolinium T1WI, the trained
classifier was used to indentify radiation necrosis voxels within the segmented abnormality,
and the percentage of necrotic voxels was computed.

RESULTS
As described in section 2, parameters were optimized by means of “grid search”. Maximum
AUROC=0.9439 was obtained when gamma=5 and ν=0.06. An optimal classifier was
obtained with threshold T=−0.12. The sensitivity and specificity of the selected classifier
was 89.91% and 93.72%, respectively. Figure 1 plots the AUROC trajectory with varying
gamma and ν. Each point on the trajectory represents the AUROC for a given parameter-pair
gamma and ν. The sub-curve in each grid consisting of 30 points corresponds to a certain
gamma while varying ν from 0.02 to 0.6 with the increment of 0.02. The optimal parameter
set is depicted in the highlighted rectangle. Increasing gamma improved the classification
results up to threshold of 5 above which the performance of the classifier did not improve
further, suggesting that the classifier was quite robust (31).

The generalizability of the optimized parameter set was tested using 5 groups of test
samples. The mean and standard division of AUROC for these 5 ROCs curves was
0.9386±0.007. Vertical averaged (32) and threshold averaged (27) ROC curves plotted in
Figure 2 demonstrate a high degree of consistency supporting the generalizability of the
parameters.

ROC curves for each element of the 8-dimensional feature vector are plotted in Figure 3.
Classification using T1, PD or T2 alone allowed discrimination only slightly better than
chance as indicated in Figure 3(a), (c) and (d). Radiation necrosis was characterized by a
lower intensity on FLAIR images but the difference was not significant (AUROC=0.66).
Perfusion and diffusion parameters made a much greater contribution. Radiation necrosis
had a significantly higher normalized ADC (nADC), lower nCBV, lower nCBF, and shorter
MTT than recurrent tumor. The difference between tumor and necrosis nADC values was
significant but not as large as the difference in nCBV and nCBF. In all subjects, the mean
nADC of randomly selected voxels within the region identified as necrosis (INR) (nADC:
2.34±0.70) was significantly higher (p=0.034) than for randomly selected voxels from the
region identified as non-necrosis (non-INR) (nADC: 1.56±0.23). The AUROC (Figure 3(h))
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was 0.86, implying a significant difference. An optimal sensitivity of 82.04% and specificity
of 82.44% were achieved for nADC with the threshold of 1.71. Similarly, nCBV of a
random sampling of INR voxels (0.74±0.52) was significantly lower (p=0.016) than that of
non-INR voxels (1.69±0.54). An optimal sensitivity of 0.8766 and specificity of 0.9102 was
achieved using nCBV with a threshold of 1.14. nCBF of the same random sample was also
lower (p=0.027) for INR (0.76±0.58) than non-INR (1.55±0.56) voxels. For nCBF, an
optimal sensitivity of 0.8906 and specificity of 0.8437 was achieved with a threshold of
0.98.

Representative cases of non-progression (Figure 4) and progression (Figure 5) illustrate the
higher percentage and greater confluence of voxels of identified necrosis in cases of non-
progression compared with progression. The identified voxels of necrosis are overlaid on a
single section from each of the sequences used in feature construction. This qualitative
observation was supported by quantitative analysis demonstrating that the percentage of
identified necrosis voxels in the non-progression group (91.2%±6.3%, n=8) was
significantly higher (p<0.01) than that of the progression group (31.6%±27.4%, n=8).

DISCUSSION
We present a novel method for analyzing data from multi-parametric brain tumor MRI. A
machine learning algorithm was developed to train an automated classifier for identification
of voxels of radiation necrosis in GBM patients undergoing radiotherapy. This method
produces a more detailed depiction of necrosis than is possible using conventional hot spot
methods, an advantage that may be useful for treatment planning. Because the method is
fully automatic, except for selection of a reference ROI in contralateral NAWM, it may also
reduce the operator dependence and image processing time associated with multi-parametric
MRI interpretation.

Brain neoplasms classification based on machine learning from multiparametric MR images
has received increasing interests recently. The work that relates to our studies the most is the
method of multiparametric tissue characterization of brain neoplasms using pattern
classification proposed by Varma et al. (22). In their studies, features extracted from
multiple MR images were used to train Bayesian classifiers and SVM classifiers for
intrapatient and interpatient tissue classification, respectively. The training samples selection
was based on the manual delineations of individual tissue groups using the FLAIR and
GAD-T1 images from patients with newly diagnosed primary high-grade neoplasms who
have not received any therapy before imaging. However, as mentioned previously, it is
practically difficult to isolate recurrent tumor using any MRI data at high spatial resolution
due to the intrinsic heterogeneity of GBM, the frequent coexistence of tumor recurrence and
radiation injury in GBM patients undergoing radiation therapy, as well as the small size of
the lesions after tumor resections. And consequently, the training samples for recurrent
tumor are not available. Hence, we adopted an OC-SVM algorithm, which essentially
estimates the probability distribution of the class represented by the training samples, to
train the classifier using only samples of radiation necrosis for the identification of radiation
necrotic voxels.

The trained classifier proved quite robust in training stage and yielded a consistently high
AUROC, suggesting that a high reproducibility may be achievable in clinical practice.
Moreover, the results supported the quantitative and qualitative test hypotheses that non-
progressing cases would have a higher percentage of necrotic voxels in a more confluent
pattern than progressing cases. While these preliminary measures do not constitute true
validation of the classifier output, they are consistent with an appropriate classification, at
least in the limited test dataset and indicate that further testing and validation is warranted.
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The comparison of the relative contribution of each datatype to the overall classifier was
both interesting and encouraging. It supports recent neuro-oncologic imaging literature
suggesting the significantly greater value of advanced MRI DWI and PWI derived measures
as compared to conventional imaging for discrimination of radiation necrosis from viable
tumor (16). Figure 3 depicts the individual ROC curves associated with each data type. The
curves in subplots (a) through (d) (AUROC range 0.59 to 0.66) illustrate that voxel by voxel
discrimination of radiation necrosis from recurrent tumor using conventional MRI features,
although slightly better than chance, is not good enough to comprise an optimal diagnostic
test. This result is consistent with clinical experience and prior literature substantiating that
expert interpretation of conventional MRI relies heavily on prior knowledge of the pattern of
abnormality rather than the features of individual voxels (33–35). While such expert
qualitative interpretation can be expected to perform better than the individual voxel-by-
voxel ROC curves and is the current standard of care, it is highly operator dependent and
does not permit confident distinction of necrosis from viable tumor on a voxel by voxel
basis. The latter is of paramount importance in follow-up of patients with treated GBM
because almost all patients have a combination of necrotic and non-necrotic voxels, and
distinction of the location of each is important for planning adjunctive radiosurgery, re-
resection, and other ablative therapy. ROC curves in figures 3(e), 3(f), and 3(g) illustrate
that normalized ratios derived from DSC PWI perform substantially better than conventional
MRI. This is consistent with a growing literature documenting that DSC PWI is very
sensitive to the presence of GBM neovessels, a distinctive histopathologic feature of viable
high grade glioma (36–38).

The reason that nCBV, the most well-studied PWI hemodynamic parameter in clinical brain
tumor imaging, outperforms conventional contrast enhanced imaging for differentiating
tissue radiation injury from tumor recurrence is likely related to the known physiology of
brain tumor. Conventional delayed contrast enhanced imaging depicts a combination of both
the local blood volume and the local vascular permeability. Thus, because both high grade
glioma neovessels in viable tumor and radiation injured native brain capillaries or
neovessels in regions of radiation necrosis have a high vascular permeability to gadolinium
contrast, they enhance avidly and are largely indistinguishably on delayed post contrast
T1WI. In contrast, DSC PWI derived nCBV, when appropriately post-processed and leakage
corrected, is less influenced by local permeability effects. This allows detection of high
nCBV within the subset of contrast enhancing voxels containing viable tumor neocapillaries,
and distinction of these voxels from low nCBV voxels that enhance due to focal capillary
necrosis. Thus, our findings are consistent with the prior literature in suggesting that ROI
studies of radiation necrosis have a significantly lower nCBV than viable tumor and with
histopathology reports of coagulative necrosis and thrombosis of small vessels in radiation
necrosis (4, 38).

nCBF and MTT have not been explored as fully as nCBV in oncologic imaging despite their
widespread application in stroke studies, but our findings that the AUROC for nCBF (0.91)
is almost as high as nCBV (0.93) is consistent with one report of spin-echo EPI perfusion
study for tumor grading (39). Likely because of their high tortuosity, high grade glioma
neovessels, have a longer MTT than NAWM (38), which unfortunately overlaps with, the
MTT of radiation necrosis which is also longer than NAWM (38). This physiologic overlap
and the possibility that nCBV underestimation in areas of necrosis leads to an artifactual low
MTT likely accounts for poorer performance of MTT (AUROC: 0.82) in our analysis.

The finding that randomly sampled radiation necrosis voxels from our study had a higher
ADC than non-necrosis voxels is consistent with a decrease in membrane associated and
intracellular water in areas of necrosis. The AUROC of 0.86 for ADC is significantly higher
than the AUROC for conventional MRI measures, suggesting a significantly greater
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contribution to discrimination of necrosis than conventional MRI, although slightly lower
than the perfusion derived maps. While the primary determinate of diffusivity in the brain is
the cell volume fraction, this is not a simple measure of histologic tissue cellularity (8).
Although in general, areas of necrosis have a lower cell density than viable tumor, at least
two potentially confounding pathophysiologic processes overlap with histological cell
density in treated brain tumor patients to complicate the relationship between ADC and true
tissue cellularity. These processes include the prominent vasogenic edema induced by viable
tumor that tends to increase ADC in tumor, and ischemic cell swelling in areas of radiation
necrosis that tends to decrease ADC in necrotic areas. While an investigation of these factors
is beyond the scope of this study, they seem likely to contribute to the slightly lower value
of ADC in discrimination of necrosis compared with DSC PWI.

In summary, our results are consistent with recent brain tumor imaging literature in
suggesting that DWI and PWI derived advanced physiological MRI measure of brain tumor
vascularity and cellularity allow significantly better discrimination of radiation necrosis
from viable brain tumor than conventional MRI. Since the DWI, PWI and conventional MRI
measures can be assumed to be largely independent, we chose to incorporate all these
measures into our discriminator. SVM requires selection of a single threshold to generate a
discrete classifier, in the interest of simplicity, we chose the line y=x+b tangent to the ROC
curve on the ROC plane. This should produce an optimal classifier for the assumption of
equal misclassification cost for false positive classification of non-necrotic tissue as necrosis
and false negative classification of necrotic tissue as tumor. In clinical situations in which
the cost of false negatives outweigh those of false positives (for example easily resectable
areas of possible recurrent tumor), or the converse situation where the clinical cost of false
positive outweighs those of false negatives (for example possible resectable tumor near to
eloquent cortex), this can be supplanted by a more accurate but more complicated cost-
sensitive classifier selection method. One such method, the ROC Convex Hull (ROCCH), is
available in many software applications (40). These cost-sensitive classifier methods take
unequal misclassification costs into account by selecting the line y=kx+b tangent to the
ROCCH, where k represents the ratio between costs of false positives and false negatives.
Since k can be adjusted for each individual patients and physicians, we illustrate the effect of
varying values of k in increments from 0.2 to 5.0 on the classifier selection (Figure 6), and
on the rates of sensitivity and specificity of the selected classifier (Figure 7).

Figures 4 and 5 illustrate voxel-by-voxel radiation necrosis detection in a longitudinally
confirmed case of non-progressing tumor and a case of progressing tumor. As shown in the
figures, a confluent area of necrosis occupying the majority of the enhancing region is
typical in non-progressing cases and scattered voxels of necrosis distributed sparsely and
occupying a minority of the abnormal enhancing region is typical of progressing cases. In
our small sample, the former pattern seemed to correlate with non-progression, and the latter
with progression. This qualitative observation was supported by quantitative analysis
demonstrating that the percentage of identified necrosis voxels in the non-progression group
(91.2%±6.3%, n=8) was significantly higher (p<0.01) than that of the progression group
(31.6%±27.4%, n=8), as presented in section 3.

The most significant limitation of this study is the lack of strict pathological validation of the
classification from surgical specimens. For this reason, we cannot state with certainty
whether the voxels identified as ‘radiation necrosis’ or ‘non-progression’ in fact represent
pathophysiologic necrosis or treated non-progressing tumor. While voxel by voxel
pathologic validation would be required to distinguish these entities, in practice such
correlation is very difficult to achieve and may be less clinically important than finding a
robust method of distinguishing areas of abnormality that are unlikely to progress rapidly
from areas that are likely to progress. For this reason, we used the most widely accepted
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clinical surrogate marker, growth or resolution of tumor on follow-up MRI, to determine the
areas of ‘necrosis’ or ‘non-progression’ used to train the classifier. Another weakness of the
study is the relatively small number of cases available for use as training and test samples.
While the voxels can be treated individually in training the OC-SVM, different voxels from
the same patient are likely to demonstrate similar features and thus the number of
independent samples is better regarded as the number of subjects. In the future we hope to
include a larger number of subjects in order to increase the confidence with which the
classifier can be generalized. Similarly, in order to increase the clinical relevance of the
classifier, we plan to include samples of patients with chemoradiation induced
pseudoprogression resulting from treatment with XRT and temozolomide, the recently
established standard of care in high grade glioma therapy. We also noticed that the
inevitable distortion and relatively lower spatial resolution of PWI may cause inaccurate
alignments and feature vector construction. As far as the distortion in PWI is concerned, we
avoided to select training samples from the edges of the brain where severe image distortion
exists. Additionally, algorithms for distortion correction can also provide solutions to this
problem in clinical applications. Partial volume effect results in inaccurate feature
construction, especially for the images with low spatial resolution such as PWI. The method
proposed in this paper potently can benefit from the increasingly improved spatial resolution
of the advanced MR images. Finally, it would be interesting to know if our classifier could
be improved by including data from PET and MR spectroscopy. While this is theoretically
possible, we did not include them in this initial investigation because each of these datatypes
is significantly more expensive to obtain and each would result in a much lower spatial
resolution classification because the higher resolution MRI data would need to be down
resolved to match the resolution of clinical PET (5mm) or the MRS (10mm).

In conclusion, we present a novel machine learning classifier designed to assist in the
interpretation of multi-parametric maps derived from brain MRI of patients with high grade
glioma undergoing XRT. The advantages of this approach include an increase in diagnostic
accuracy, an increase in reproducibility, a decreased dependence on operator expertise and a
decrease in operator time input as compared with currently used hot spot ROI based
methods. In a small sample of patients, the output of the classifier was robust and supported
the test hypothesis that a higher percentage of voxels and a more confluent pattern of
necrosis voxels is observed in early MRI of patients subsequently demonstrated to have
radiation necrosis than in patients who subsequently developed tumor progression. The
component ROC curve analysis is consistent with previous literature suggesting that
information in DWI and PWI derived maps can allow significantly superior discrimination
of radiation necrosis compared to conventional MRI alone. These findings support the need
for additional development and validation using larger and more clinically relevant training
and test samples, additional image weightings, and when possible pathological correlation.
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Figure 1.
Impacts of parameters of Gamma and ν on AUROCs. Each point on the trajectory represents
the AUROC for a given parameter-pair gamma and ν. The sub-curve in each grid consisting
of 30 points corresponds to a certain gamma while varying ν from 0.02 to 0.6 with the
increment of 0.02. Optimal classifier (Gamma=5, ν=0.06) was highlighted with rectangle.
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Figure 2.
Averaged ROC curve as well as error bar for 5 test datasets. (a) ROC curve averaged
vertically and (b) averaged by threshold. Consistency of ROCs revealed high generalization
ability of trained classifier.
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Figure 3.
ROC curves as well as AUROC for each feature.
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Figure 4.
The distribution of identified radiation necrosis voxels in a non-progressing case. The
outlines of identified necrosis regions were overlaid on each feature map.
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Figure 5.
The distribution of identified radiation necrosis voxels in a progressive case. The outlines of
identified necrosis regions were overlaid on each feature map.
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Figure 6.
Illustration of cost-sensitive classifier selection. The classifier is defined as the tangent point
of y=kx+b and the ROC curve determined by optimized parameters of Gamma and ν.
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Figure 7.
Sensitivity, specificity, and parameter T are plotted as functions of the slope k in cost-
sensitive classifier selection. Increase of k indicates that higher cost of false negative is
preferred, and the selected classifier has increased specificity and decreased sensitivity.
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