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Abstract
The development of population-based genome-wide association studies (GWASs) has led to the
rapid identification of large numbers of genetic variants associated with coronary artery disease
(CAD) and related traits. Together with large-scale gene-centric studies, at least 35 loci associated
with CAD per se have been identified with replication. The majority of these associations are with
common single nucleotide polymorphisms (SNPs) exhibiting modest effects on relative risk. The
modest nature of the effects, coupled with ethical/practical constraints associated with human
sampling, makes it difficult to answer important questions beyond gene/locus localization and
allele frequency via human genetic studies. Questions related to gene function, disease-causing
mechanism(s), and effective interventions will likely require studies in model organisms. The use
of the mouse model for further detailed studies of GWAS-identified CAD-associated loci is
highlighted herein.
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Introduction
The development of population-based genome-wide association studies (GWASs) has led to
the rapid identification of large numbers of genetic variants associated with coronary artery
disease (CAD)/ myocardial infarction (MI) and related traits such as plasma LDL-
cholesterol, HDL-cholesterol, triglycerides, obesity and hypertension (reviewed in1–7). The
majority of these associations are with common single nucleotide polymorphisms (SNPs)
exhibiting modest effects on relative risk. The use of combined analyses, or meta-analyses,
increases the power to detect modest associations.3, 8, 9 Currently, at least 35 loci associated
with CAD per se have been identified and, importantly, replicated in at least one
independent study (Table 1). While some of the loci are associated with traditional risk
factors, many of the loci likely affect atherogenesis via non-traditional mechanisms.

Notably, the CAD loci identified by GWAS thus far have been estimated to explain only
~10% of the additive genetic variance of human CAD.8 Several human genetic approaches
towards detecting loci representing the unexplained variance have been discussed. These
include approaches for detecting rare SNPs10, 11 or copy number variants12 associated with
disease. However, as the list of new disease loci grows, it will be important to establish the
clinical or public health importance of the identified loci.
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Model organisms provide useful tools for obtaining data related to clinical relevance. Due to
the modest size effects of SNP variants and ethical/practical constraints associated with
human sampling, questions regarding gene function and disease causing mechanism(s) can
be assessed more definitively in model organisms. Further, effective interventions and
potential modifiers of SNP-disease associations can be tested in model organisms prior to
the design of clinical trials in humans. The mouse has become the model of choice due to
small size, breeding efficiency, availability of genetic manipulation technologies, and high
degree of genome similarity. Human-mouse genomic homologies have been identified for
most SNP association loci identified to date (Table 1). Although some CAD-associated
variants have been found in gene-poor regions or regions of unknown biological relevance,
the candidate causal variants in these cases may function by regulating expression of
neighboring genes. Thus, genetic studies of mice exhibiting altered expression or function of
CAD SNP-residing or neighboring genes may be relevant. Mutant models – including
transgenic, knock-outs derived by gene-targeting or gene trap technologies, chemical- or
radiation induced mutagenesis, sub-chromosomal locus deletion, and spontaneous mutation
– are available for many of the human CAD-associated loci identified to date but few have
been queried for atherosclerosis susceptibility/resistance (Table 1). Further, more than 9000
conditional targeted alleles in mouse embryonic stem cells have recently become
available.13 Lastly, random genetic variation among different inbred strains of mice can lead
to the identification of novel genes underlying atherosclerosis.

Mendelian disease genes exhibiting common associations
Some of the CAD loci underlying common susceptibility to disease were previously
identified in relationship to rare Mendelian forms of hypercholesterolemia/premature CAD.
These include LDLR, APOE, PCSK9, ABCG8, and LIPA. Importantly, gene-specific mutant
mouse models displayed effects on atherogenesis and related traits (i.e. plasma cholesterol
levels, plant sterol levels, xanthomatosis, lipase deficiency) similar to that observed in
humans (Table 1). These provide “positive controls” indicating that the use of mutant mouse
models can be relevant to the study of human CAD loci.

The disease causing mechanism for Mendelian disease genes is at least partly established.
While clearance of circulating lipoproteins is a common mechanism underlying disease
pathogenesis for LDLR, APOE, and PCSK9, new studies in mouse models are revealing
additional roles in inflammation (Apoe),14, 15 and apoB secretion (Pcsk9).16 Common
variants of ABCG8 are associated with both plasma phytosterol as well as LDL levels.17

Detailed studies in mice have outlined the role of Abcg8 in dietary cholesterol absorption18

and intestinal cholesterol excretion19 but the role of plant sterols in atherogenesis remains
unresolved. LIPA encodes a lysosomal acid lipase involved in the breakdown of cholesterol
esters and triglycerides. The LIPA risk allele is associated with increased lipase expression
but not altered lipid levels, suggesting a novel pathogenic mechanism. Thus, even the
Mendelian-associated genes have the potential to reveal new pathogenic mechanisms!

New genes/loci associated with traditional risk factors
A few of the newly identified loci are associated with known risk factors for CAD,
suggesting disease-causing mechanisms. For example, SORT1 and TRIB1 are associated
with lipoprotein levels in human association studies. Functional validation of these
associations was obtained via gene-specific over- and under-expression of these genes in
genetically uniform mouse models of atherosclerosis.20, 21 Furthermore, Sort1 and Trib1
were shown to modulate hepatic VLDL secretion and production, respectively, from primary
hepatocytes in mice.20, 21 These data suggest that modulation of two novel regulatory
pathways for lipoprotein metabolism may alter susceptibility to CAD/MI in humans. The
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ABO gene is associated with multiple CAD-related traits: LDL levels, thrombosis,
inflammatory gene expression and plant sterol levels.8, 22, 23 Further studies are required to
delineate the relative role of each pathway in the pathogenesis of CAD.

New genes/loci underlying novel pathogenic mechanisms for CAD/MI
The majority of the loci listed in Table 1 have some degree of known protein function but no
known role in CAD/MI pathogenesis. For these loci, basic knowledge of directional effects
and tissue relevance can be sorted out in mouse models. Directional effects (i.e. for
regulatory variants, whether increased or decreased gene expression is associated with
disease) can be confirmed/established using general knockout or transgenic models crossed
onto an Apoe−/− or Ldlr−/− proatherogenic background. In some cases, existing congenic,24

spontaneous, chemically-, or radiation-induced mutants may be queried (Table 1). Tissue
relevance (i.e. the specific tissue type affecting disease pathogenesis) can be assessed using
bone marrow (BM) transplantation or tissue-specific knockouts. Reciprocal BM experiments
utilizing a chromosome 4 congenic model harboring the 9p21 region of homology, and
exhibiting decreased expression of macrophage Cdkn2a, indicated that BM-derived cells,
but not resident vascular cells, were sufficient to confer the pro-atherosclerotic phenotype of
the congenic mouse.24, 25 Direct testing of the candidate gene showed that BM-derived cells
from Cdkn2a+/− mice were sufficient to confer accelerated atherogenesis in the Ldlr−/−

background.24 Of note, tissue macrophages and mixed monocyte/macrophage populations,
but not circulating monocytes, were implicated in the study.24 This study suggests that
macrophage deficiency of CDKN2A may partly explain the association of 9p21 with CAD/
MI in humans. The data are consistent with human studies reporting lack of association of
the 9p21 risk allele with CDKN2A expression in circulating monocytes26 or resident
vascular cells,27 but significant association with decreased levels in T lymphocytes.28

Studies in human macrophages have not been reported.

Genetic variants of Anril have been implicated at the 9p21 human CAD/MI locus. ANRIL is
a non-coding RNA implicated in both long-range cis-acting as well as trans-acting
transcriptional control of syntenic tumor suppressor genes, CDKN2A (encoding p16INK4a,
p14ARF) and CDKN2B (encoding p15INK4b). Multiple ANRIL splice variants are present in
human tissues, complicating genetic association studies of the structural gene.29 A murine
deletion mutant covering the homologous region exhibited decreased expression of the
neighboring tumor suppressor genes, supporting the hypothesis of an ANRIL regulatory
variant underlying the 9p21 locus.30 A potential effect of the variant on atherosclerosis was
not observed in the highly athero-resistant model tested. However, testing of the deletion in
a more athero-susceptible model has not been carried out as yet.

Two of the CAD-associated loci listed in Table 1 were identified as open reading frames or
cDNA clones via annotation efforts of the Human Genome Project (c6orf105) or the RIKEN
Genome Science Lab (KIAA1462) but have no known biological function. C6orf105
exhibits ethnic-specific CAD association among Chinese Han populations31 but KIAA1462
exhibits association in both European and Chinese populations, with similar allele
frequencies and size effects.9 Both loci have homologous DNA sequences in the mouse
genome and, thus, targeted deletion or transcriptional disruption may shed light on the
biological functions of novel proteins.

Additional mechanistic data including stage of lesion development, genetic background
effects, potential effects on lesion regression, and overlapping roles of CAD loci in multiple
diseases can be assessed using unique strains and experimental designs. Stage of lesion
development can be tested in dietary time course studies of gene-specific knock-out or
transgenic mice bred onto standard mouse models of atherosclerosis, or with conditional
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knock-outs induced before or after lesion development. Genetic background effects can be
tested using different inbred strains of mice (exhibiting differences in susceptibility to
atherosclerosis), different engineered models of atherosclerosis, or mutant mice carrying
mutations in more than one CAD locus. The Reversa mouse32, 33 is a model of
atherosclerosis regression which may be useful for differentiating hyperlipidemia from other
genetic effects on lesion regression. Finally, introduction of CAD-associated mutations into
mouse models of diabetes, hypertension, obesity and metabolic syndrome may shed light on
shared points of regulation among multiple disease phenotypes.

New discovery of atherosclerosis susceptibility genes
As mentioned above, the CAD loci identified by human GWAS thus far have been estimated
to explain only a fraction of the genetic variance of human CAD.8 Mouse genetic/mapping
approaches provide a means of identifying new genes, perhaps untractable by human genetic
approaches because of modest effect. While mouse linkage studies pinpoint disease
susceptibility loci to relatively large genomic intervals containing large numbers of genes,
several techniques have been applied to narrow the list of disease causal candidate genes.
Refined mapping of loci can be obtained through the generation of interval-specific
congenic strains. A cross between B6-Apoe−/− and the more athero-resistant strain FVB-
Apoe−/− revealed two intervals contributing to atherosclerosis susceptibility; one locus was
narrowed to 7 genes, the other to 21 genes.34 Similarly, the congenic mapping efforts in a
cross between B6-Ldlr−/− and a wild-derived MOLF strain revealed two atherosclerosis loci
on chromosome 4.24 Cdkn2a was identified as a disease-causing gene in one of the intervals
but mapping of the distal locus is still underway. Combining a congenic mapping approach
with gene expression profiling, Lusis and colleagues identified Zhx235 as a novel regulator
of plasma lipid metabolism.35 Copy number variants can also be applied to mouse mapping
studies. In a cross between B6 and C3H, gene expression levels and several metabolic traits
mapped to three unique copy number variants, suggesting novel loci involved in regulation
of plasma lipoprotein levels, glucose and body weight.36 Recently, a hybrid mouse panel
was developed for high-resolution association studies in mice. This approach aims to
provide refined mapping and increased sensitivity compared to linkage studies. Together,
these studies have the potential to reveal new genes and pathways underlying atherosclerosis
susceptibility.

Limitations of the mouse model
Many of the loci listed in Table 1 were discovered based on case-control studies of MI.
While atherogenesis precedes MI, not all cases of atherosclerosis lead to acute
complications. This suggests that different pathologies underlie these clinical phenotypes.
Furthermore, the ABO gene was specifically associated with MI in the presence of coronary
atherosclerosis.22 Currently available mouse models are susceptible to atherosclerosis but
resistant to acute complications. Thus, studies of genes affecting plaque rupture may be
limited in the mouse. ABO is associated with thrombosis,22 and at least one spontaneous
mutation in mice leads to atherothrombosis.37 In addition, murine plaques exhibit features of
human vulnerable plaques, a precursor to plaque rupture and infarction. These can be
assessed by qualitative changes in plaque morphology.38, 39 Thus, although plaque rupture/
MI may not be amenable to study per se in murine models, pathogenic mechanisms leading
to clinical consequences may be queried.

The identification of phenotypically causal variants underlying CAD susceptibility is
important for the delineation of biological genotype-phenotype relationships as well as
discovering potential predictors of disease. Lead association SNPs may represent causal
variants or may be associated by circumstance alone (ie. exhibiting strong linkage
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disequilibrium with the lead SNP). In most cases, disease-causing variants will not be the
same in human and mouse. In particular, regulatory variants in non-coding regions may not
be conserved. For example, the putative causal variant at SORT1 is human specific. The
causal allele creates a binding site for the CEBP family of transcription factors that does not
exist in the mouse.20 However, data supporting the role of a regulatory variant can be gained
from studies in mice. For example, the lead SNP identified for TRIB1, a triglyceride-, LDL-
and CAD-associated locus, is located downstream of the coding sequence and suggested a
regulatory effect on gene expression.3, 17, 40 Subsequent studies in Trib1-overexpressing and
-deficient mice showed decreased and increased plasma triglyceride levels, respectively.21

Demonstration of regulatory effects stemming from an allele-specific mutant construct will
be necessary to solidify the genotype-phenotype relationship.

Most disease-associated SNPs exhibit modest effects on relative risk. Thus, the relevance of
complete gene knockout and highly-expressing transgenic mice comes into question. Several
genetic methods exist for testing modest effects. Mice carrying heterozygous deficiency of a
particular gene will likely demonstrate differences in gene expression more closely
mimicking the situation in humans.24 Secondly, BAC transgenic mice generally express
only 1–3 copies of a transgene. Thirdly, spontaneous, radiation- and chemically-induced
mutants usually harbor point mutations. Some of these models are available for the human
CAD-associated loci (Table 1) and can be tested for differences in atherosclerosis
susceptibility or plaque morphology.

Summary/Conclusions
Although recent human genetic studies have met with remarkable success in terms of
identifying CAD/MI-associated loci, many details regarding the underlying genes/
mechanisms remain unanswered. The high degree of genomic similarity between humans
and mice, along with the wide array of genetic tools available, indicate that much can be
learned from parallel studies of mice and human.
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