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Long non-coding RNAs (lncRNAs) are a numerous class of

newly discovered genes in the human genome, which

have been proposed to be key regulators of biological

processes, including stem cell pluripotency and neurogen-

esis. However, at present very little functional character-

ization of lncRNAs in human differentiation has been

carried out. In the present study, we address this using

human embryonic stem cells (hESCs) as a paradigm for

pluripotency and neuronal differentiation. With a newly

developed method, hESCs were robustly and efficiently

differentiated into neurons, and we profiled the expression

of thousands of lncRNAs using a custom-designed micro-

array. Some hESC-specific lncRNAs involved in pluripo-

tency maintenance were identified, and shown to

physically interact with SOX2, and PRC2 complex compo-

nent, SUZ12. Using a similar approach, we identified

lncRNAs required for neurogenesis. Knockdown studies

indicated that loss of any of these lncRNAs blocked

neurogenesis, and immunoprecipitation studies revealed

physical association with REST and SUZ12. This study

indicates that lncRNAs are important regulators of

pluripotency and neurogenesis, and represents important

evidence for an indispensable role of lncRNAs in human

brain development.
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Introduction

The mammalian transcriptome comprises a vast number of

long non-coding RNAs (lncRNAs), which are defined as

transcripts 4200 nucleotides with little or no protein-coding

potential (Carninci et al, 2005). They participate in numerous

biological processes that coordinate gene expression, through

epigenetic modification (Khalil et al, 2009; Gupta et al, 2010;

Mohammad et al, 2010; Tsai et al, 2010; Wang et al, 2011),

mRNA splicing (Tripathi et al, 2010), control of transcription

(Orom et al, 2010) or translation (Gong and Maquat, 2011)

and genomic imprinting (Pandey et al, 2008; Redrup et al,

2009; Mohammad et al, 2010). Nevertheless, to date only a

tiny fraction of lncRNAs have been functionally validated in

biological or disease processes.

LncRNAs are emerging players in embryogenesis and in

developmental processes (Amaral and Mattick, 2008; Dinger

et al, 2008). Recent studies in embryonic stem cells (ESCs)

and induced pluripotent stem cells (iPSCs) indicate that

lncRNAs are integral members of the ESC self-renewal reg-

ulatory circuit (Sheik Mohamed et al, 2010; Guttman et al,

2011). In addition, Loewer et al (2010) showed that a large

intergenic non-coding RNA (lincRNA), lincRNA-RoR,

enhanced the reprogramming of fibroblasts into iPSCs.

LncRNAs such as MALAT1, Evf-2 and Nkx2.2AS, have also

been reported to specify neural cell fate and function

(Tochitani and Hayashizaki, 2008; Bond et al, 2009; Bernard

et al, 2010; Rapicavoli et al, 2010). LncRNAs are also dynami-

cally expressed during neuronal–glia fate specification, and

they appear to regulate the expression of protein-coding genes

within the same genomic locus, suggesting lncRNA function

(Mercer et al, 2010). Additional evidence suggesting functional

roles of lncRNAs in the brain includes a computational

analysis of in situ hybridization data from the Allen Brain

Atlas, which identified 849 lncRNAs showing specific expres-

sion in the mouse brain (Mercer et al, 2008). Furthermore,

neural lncRNAs have been shown to be regulated by tran-

scription factors (Johnson et al, 2009) and epigenetic pro-

cesses (Mercer et al, 2010). So far, most efforts aimed at

understanding lncRNA functions in pluripotency and neural

differentiation focussed on the mouse as a model system

(Dinger et al, 2008; Tochitani and Hayashizaki, 2008; Mercer

et al, 2010; Sheik Mohamed et al, 2010; Guttman et al, 2011).

To date, the roles of lncRNAs in human embryonic and neural

developmental gene networks have not been investigated.

Given the generally poor evolutionary conservation of

lncRNAs (Pang et al, 2006), there is a clear need to investigate

whether lncRNAs are also important in human embryonic and

neuronal developmental networks.

To address this, we established a highly efficient method to

differentiate human ESCs (hESCs) into a homogeneous

population of neural progenitor cells (NPCs), which then

differentiate into mature neurons with 90% efficiency. In

this study, we sought to identify human lncRNAs that are

important in two key biological processes: pluripotency and

neurogenesis. We present novel lncRNAs that are indispen-

sable for both. These lncRNAs are likely to regulate many
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hundreds of mRNAs, possibly through interaction with his-

tone-modifying complexes and transcriptional factors. These

data highlight the importance of lncRNAs in fundamental

human developmental processes.

Results

A homogeneous population of neural progenitors can

be derived from human ES cells

To investigate the roles of lncRNAs in neural development,

we established a stepwise protocol to efficiently differentiate

hESCs into neural progenitors and eventually into neurons.

The co-culture technique of PA6 mouse stromal cells and

hESCs, also termed stromal-derived induction activity

(SDIA), has been previously reported by several groups to

be able to generate numerous neural cell types including

dopamine (DA) neurons (Kawasaki et al, 2000; Zeng et al,

2004). Using a modified SDIA differentiation protocol

(Supplementary data; Supplementary Figure S1A), we

derived a homogeneous population of NPCs from hESCs

and human iPSCs, which expressed the neural progenitor

markers NESTIN (NES), MUSASHI1 (MSI1) and the radial

glia markers VIMENTIN (VIM), glial fibrillary acidic protein

(GFAP), and brain lipid binding protein (BLBP) (Figure 1A

and B0). This indicated that neural progenitors derived by the

modified SDIA method were radial glia-like.

The main advantage of this protocol was that a homo-

geneous population of radial glia-like neural progenitors

expressing NES, VIM, BLBP and GFAP could be derived

from undifferentiated hESCs (Figure 1D). These NPCs were

expandable for at least 15 passages in the presence of mito-

gens bFGF and EGF to produce large numbers of cells for

subsequent differentiation. In addition, these radial glia-like

cells were karyotypically normal (Supplementary Figure S1B

and C) and could be cryopreserved with high cell viability.

Human ESC-derived neural progenitors differentiate

into functional DA neurons with high efficiency

The NPCs derived from H1 hESCs (H1-NPCs) were differen-

tiated into DA neurons by subjecting them to DA differentia-

tion medium, consisting of SHH, FGF8 and ascorbic acid (see

Supplementary data). At the end of the 14-day differentiation

process, neurons immunopositive for both the mature neuron

marker, MAP2, and the dopaminergic marker, tyrosine hydro-

xylase (TH), were abundant (Figure 2A–C), indicating that

H1-NPCs were differentiated into DA neurons (H1-DANs).

Further characterization revealed that other DA neuron mar-

kers such as VMAT2, PITX3 and DA were also expressed

(Figure 2E–G). To further characterize the subtype of DA

neurons derived, the gene expression profile of the derived

neurons was compared against those of the whole brain and

H1-NPC samples. The enrichment of mRNA expression of

LMX1A, LMX1B, EN1, PITX3, MAP2 and TH confirmed that

midbrain DA neurons were derived (Figure 2I), whereas the

lack or decreased expression of GAD65, ISLET1, HB9, TPH1,

SERT and DBH indicated that contaminating GABAergic,

motor, sertonergic and noradrenergic neurons were absent

(Figure 2J).

Dopaminergic differentiation was very efficient, with 90%

of the culture consisting of MAP2þ neurons, and 85% of

THþ/MAP2þ cells in our cultures differentiated from hESCs,

indicating that about 76% of the total cells in the culture were

DA neurons (Figure 2D). We performed a gene ontology (GO)

analysis of the genes that were upregulated in the neurons

compared with undifferentiated hESCs, which indicated an

enrichment of GO terms related to neuronal differentiation

(Table I). The percentage of THþ/MAP2þ cells is one of the

highest reported, and we report yields similar to a previous

report (Cho et al, 2008), where they derived 86% of THþ/

TUJ1þ cells (TUJ1 is a post-mitotic, early neuronal marker).

A similar efficiency was also observed when human iPSCs

were differentiated into DA neurons using the same techni-

que, indicating the robustness of this differentiation method

(Figure 2H).

In an in vitro test of the functionality of the hESC-derived

DA neurons (H1-DANs), DA released by the neurons under
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Figure 1 Neural progenitors derived from H1 hESCs (H1-NPCs)
homogenously expressed neural stem cell and radial glia markers.
(A, A0) MUSASHI-1 (MSI1) and NESTIN (NES), both neural stem
cell markers, were co-expressed in almost all the NPCs. (B–C0) The
elongated H1-NPCs co-expressed radial glia markers BLBP,
VIMENTIN (VIM) and GFAP. The scale bar indicates 100mm.
(D) Flow cytometry quantification of lineage markers in neural
progenitors. Values show the percentage of immunopositive cells
for the indicated antibodies.
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normal culture condition and depolarizing condition (56 mM

potassium chloride or KCl) was compared using an enzyme-

linked immunosorbent assay (ELISA). Neurons incubated

with 56 mM KCl released 105-fold more DA per minute

(Po0.01) compared with the CM condition, indicating that

H1-DANs were mature neurons responsive to depolarization

by KCl in vitro (Figure 2H).

Microarray expression profiling identifies differentially

expressed lncRNAs

The highly enriched cultures of human neural progenitors

and neurons were then used for identification of lncRNAs

that are necessary for neural development. We utilized a

custom-designed microarray for long non-coding transcripts,

as well as an Illumina beadchip microarray for protein-coding
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Figure 2 H1-NPCs differentiate into THþ midbrain DA neurons with high efficiency. (A) MAP2-expressing mature neurons were abundant at
the end of the 14-day differentiation of H1-NPCs. (B, C) These neurons also expressed TH, indicative of a dopaminergic neuronal population.
(D) In three independent experiments, the mean percentages of THþ/MAP2þ cells were 85.3% and 80.4% for H1- and iPSC-derived cultures,
respectively. A panel of dopaminergic markers including (E) VMAT2, (F) PITX3 and (G) DA were also expressed by the H1-derived DA neurons.
(H) In an in vitro test of function, cultured H1-derived DA neurons were induced to depolarize in 56 mM KCl. Using a DA ELISA assay, DA
detected in the supernatant of the 56-mM KCl treatment was significantly 100-fold higher than dopaminer detected in the CM control—medium
conditioned with the DA neurons under standard culture conditions for 48 h. (I) qPCR measurement of mRNAs encoding midbrain markers in
cDNA from total brain, H1-derived neural precursors and dopaminergic neurons. (J) qPCR measurement of various neuronal subtype markers:
GABAergic subtype (GAD65), motor neuron subtype (ISLET1 and HB9), serotonergic neurons (TPH1 and SERT) and noradrenergic neurons
(DBH), indicative of an enriched dopaminergic population. The white scale bar indicates 100 mm. * and ** indicate P-values of o0.05 and
o0.01, respectively.
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transcripts, to examine gene expression changes during the

differentiation of hESCs into NPCs and subsequently into

neurons. The lncRNA microarray design included 6671 tran-

scripts identified in a number of published sources, and

described in a previous publication (Jia et al, 2010).

Importantly, the non-coding status of these transcripts was

independently validated in that study. In total, the microarray

contained 43 800 probes (Supplementary File 1), such that

each lncRNA was represented by 6–8 probes, which achieved

high sensitivity and specificity.

To summarize the microarray findings, comparing the NPC

to hESC stages, we found 25% of protein-coding probes

detected above background (6153 out of 24 526) and 4500

probes (18%) were significantly differentially detected (false

discovery rate (FDR) o0.01; fold change 42). Of the lncRNA

subset, 16% of probes were detected above background (7017

out of 43 800), with 9% (3885 probes) being differentially

detected (Po0.05; fold change 42). When DA neuron stage

was compared with the NPC stage, 24% of protein-coding

probes were detected above background (5852 out of 24 526),

with 13% of these (3076 probes) being differentially detected.

Similarly, a smaller percentage (11.5%) of lncRNA probes

(5058 probes) was expressed above background with 6%

being differentially expressed (2622 probes). Altogether,

we identified a total of 934 differentially regulated lncRNAs

and 5051 differentially regulated mRNAs (Supplementary

Figure S2D).

Identification of lncRNAs associated with pluripotency

We postulated that lncRNA transcripts important for hESC

pluripotency maintenance would have an expression pattern

similar to that of known pluripotency drivers such as OCT4,

NANOG, and ZNF206, which are highly expressed in undif-

ferentiated hESCs and downregulated upon differentiation

(Supplementary Figure S2E). To identify lncRNAs that control

pluripotency, we filtered for lncRNA transcripts that had at

least four probes showing a greater than five-fold down-

regulation (Po0.05) when differentiated from hESCs to

NPCs. In all, 36 lncRNAs were identified (Supplementary

Figure S2F; Supplementary Table SV), including the telomer-

ase RNA component TERC (Agarwal et al, 2010), indicating

that our custom-designed array was able to identify pluripo-

tency-associated lncRNAs.

We next sought to determine if lncRNAs were essential for

hESC pluripotency, using RNA interference (RNAi). Of the 36

pluripotency-associated lncRNAs, only 16 could have specific

small interfering RNAs (siRNAs) designed to target them for

knockdown, as the other 20 were substantially overlapping

protein-coding genes, rendering it difficult to design specific

siRNA sequences (Supplementary Table SIV). To select can-

didates for knockdown studies, we reasoned that if the

identified lncRNAs were functional in maintaining pluripo-

tency, their expression would be specific to pluripotent cells.

Thus, we quantified the 16 lncRNAs’ expression in undiffer-

entiated human pluripotent stem cells and a panel of somatic

tissues. Three of the pluripotency lncRNAs were exclusively

expressed in undifferentiated hESCs and iPSCs (Figure 3A),

indicating that they were likely to play a role in pluripotency.

Their expression was low (B0.9–2.5%) compared with that

of OCT4 mRNA level in undifferentiated hESCs (Figure 3B),

suggesting that they might be playing a regulatory role.

We named these transcripts lncRNA_ES1 (AK056826),

lncRNA_ES2 (EF565083) and lncRNA_ES3 (BC026300).

Inspection of histone marks covering these transcripts

shows that all of them have epigenetic signatures indicative

of active genes (Supplementary Figure S3).

To validate that the pluripotency lncRNAs are bona fide

non-coding transcripts, we chose to employ the Coding

Potential Calculator (CPC) tool to predict protein-coding

potential of the transcripts, as it combines a variety of

parameters in conjunction with a support vector machine,

and the accuracy of prediction was 495% (Kong et al, 2007).

CPC indicated that lncRNA_ES1 and lncRNA_ES2 are very

likely non-coding while lncRNA_ES3 could be a ‘weakly

coding’ transcript, and the putative 40 amino-acid peptide

has neither BLAST hits nor protein domains (Table II). The

transcription start and end sites were also confirmed by deep

sequencing of the hESC transcriptome (RNA-seq) and are

presented in Supplementary Figure S4.

Pluripotency lncRNAs are regulated by transcription

factors

Next, we investigated whether the pluripotency lncRNAs are

regulated by transcription factors known to regulate pluripo-

tency. We interrogated data available from the deep sequen-

cing of chromatin immunoprecipitation (ChIP-seq) libraries

in hESCs (Chia et al, 2010), which revealed that there are

OCT4- and NANOG-binding sites located near the transcrip-

tion start sites of three of the lncRNAs (Figure 3C). The

proximity of these binding sites suggests that the lncRNAs

may be direct, downstream targets of pluripotency factors

OCT4 and NANOG. To test this, we monitored expression of

Table I Genes expressed in H1-derived dopamine neurons were highly enriched for Gene Ontology terms relating to neuronal differentiation

Gene ontology biological process Gene ontology term Percentage of genes

1 Neurogenesis GO:0022008 13.35
2 Generation of neurons GO:0048699 12.28
3 Neuron differentiation GO:0030182 11.39
4 Cell morphogenesis GO:0000902 9.43
5 Neuron development GO:0048666 9.25
6 Central nervous system development GO:0007417 9.07
7 Cell morphogenesis involved in differentiation GO:0000904 8.54
8 Brain development GO:0007420 6.58
9 Negative regulation of biosynthetic process GO:0009890 6.41

10 Positive regulation of gene expression GO:0010628 6.23

The top 10 terms are shown.
Gene clusters categorized into biological processes at levels 6–9 when analysed with FatiGO. P-value o0.01.
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the pluripotency lncRNAs over a period of 5 days following

either OCT4 RNAi or NANOG RNAi. lncRNA_ES1 has an

OCT4-binding site in its vicinity, and its expression decreased

in response to OCT4 RNAi (Figure 3D). Pluripotency lncRNAs

with a neighbouring NANOG-binding site (namely

lncRNA_ES1 and lncRNA_ES3) also showed decreased

expression upon NANOG RNAi (Figure 3E). Together, these

results suggest that pluripotency lncRNAs are integrated into

known pluripotency transcriptional networks.

Knockdown of lncRNAs result in hESC differentiation

To determine if lncRNAs affect the pluripotent status of

hESCs, we transfected siRNAs against the lncRNAs into

hESCs. Two siRNAs were designed for each lncRNA and the

more effective siRNA was subsequently used (Figure 4C

to F; Supplementary Figure S5). Seven days later, pluripo-

tency was assessed by OCT4 immunofluorescence, and RNA

was also isolated for global gene expression by microarray

profiling. Knockdown of any of the three pluripotency

lncRNAs resulted in a loss of OCT4 protein (Figure 4A and

B) and mRNA (Figure 4H). In addition, knockdown of

lncRNAs resulted in downregulation of a panel of pluripo-

tency markers and simultaneous upregulation of lineage

markers corresponding to the neuroectoderm, endoderm

and mesoderm germ layers (Figure 4H).

From the microarray data, hierarchical clustering revealed

that lncRNA_ES3 RNAi expression patterns clustered closely

with those from the NANOG RNAi, in accordance with the

regulation of the lncRNA by pluripotency transcription fac-

tors (Figure 4G). However, lncRNA_ES1 and lncRNA_ES2
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Table II Pluripotency lncRNAs in this study

lncRNA name lncRNA ID Genomic location (hg18/NCBI36) Transcript length (bp) Class of lncRNA CPC scorea

lncRNA_ES1 AK056826 chr6:14,388,338-14,393,355 3150 Intergenic �1.15338
lncRNA_ES2 EF565083 chr1:198,709,840-198,710,182 343 Intergenic �0.922722
lncRNA_ES3 BC026300 chr13:53,593,076-53,605,002 1053 Intergenic 0.777772

aA negative score assigned by the Coding Potential Calculator (CPC) indicates a non-coding transcript while a value between 0 and 1 indicates a
‘weakly coding’ transcript.
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knockdown showed a global transcriptome profile most

similar to SOX2 RNAi, suggesting that lncRNA_ES1 and

lncRNA_ES2 could be maintaining pluripotency in a SOX2-

dependent manner.

LncRNAs interact with SUZ12 and transcription factor

SOX2

We sought to gain mechanistic insight into lncRNA involve-

ment in hESC pluripotency. We first asked where lncRNAs

were localized in the cell, with the idea that nuclear localiza-

tion provides evidence for a role in epigenetic or transcrip-

tional regulation. By means of RNA fractionation followed by

quantitative PCR (qPCR), we found that lncRNA_ES1,

lncRNA_ES2 and lncRNA_ES3 were preferentially retained

in the nucleus (Figure 5A). Recent reports have linked

nuclear lncRNAs to chromatin-modifying complexes (Khalil

et al, 2009; Tsai et al, 2010; Guttman et al, 2011) and

transcription factors (Bond et al, 2009). Hence, we asked if

the lncRNAs could physically associate with nuclear factors

to carry out their regulatory role in hESCs. We performed

RNA immunoprecipitation (RIP) experiments in which RNA–

protein complexes were crosslinked with formaldehyde, and

immunoprecipitated with antibodies specific to SUZ12, a

component of the PRC2 complex, and pluripotency transcrip-

tion factors SOX2 and OCT4. We found that lncRNA_ES1 and

lncRNA_ES2 were physically associated with SUZ12 and

SOX2, but not OCT4 (Figure 5C–E). This is consistent

with the clustering of the si-lncRNA_ES1 and

si-lncRNA_ES2 samples with si-SOX2 (Figure 4G).

Identification of lncRNAs associated with neuronal

differentiation

Apart from roles in maintenance of pluripotency, we also

asked whether any lncRNAs were necessary for differentia-

tion in our system. Thus, we analysed our microarray data to

identify lncRNAs with expression profiles suggestive of im-

portant roles in neuronal differentiation. We identified a

group of 35 lncRNAs, which were highly expressed in mature

neurons (more than three-fold) compared with hESCs and

NPCs (Supplementary Figure S2J; Supplementary Table SVI).

Of the 35 lncRNAs, 25 occupied a genomic location that did

not overlap protein-coding genes, and could have siRNAs

designed against them. As a proof of concept, we focussed on

four neuronal lncRNAs for functional studies, namely, RMST
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(AK056164, AF429305 and AF429306), lncRNA_N1

(AK124684), lncRNA_N2 (AK091713) and lncRNA_N3

(AK055040). All of these transcripts were previously char-

acterized in a comprehensive study of human transcripts

(Imanishi et al, 2004). Similarly, protein-coding potential of

these transcripts was determined using CPC, which indicated

that these neuronal lncRNAs are most likely non-coding

(Table III). Transcription start and end sites of the lncRNAs

were validated by deep RNA sequencing of H1-derived neu-

rons (Supplementary Figure S6).

We reasoned that if the neuronal lncRNAs were functional,

they should be expressed in the brain. Quantitative analysis

of transcript expression (Figure 6A) revealed that RMST and

lncRNAs_N1–3 were all expressed in brain structures (whole

brain, fetal brain, substantia nigra and cerebellum). While

expression of RMST and lncRNA_N1 were more confined to

brain regions, lncRNA_N2 and lncRNA_N3 were also present

in other somatic tissues. As with the case of pluripotency

lncRNAs, neuronal lncRNAs were not abundant (B0.3–26%

relative to GAPDH mRNA levels), consistent with their

proposed regulatory roles (Figure 6B).

Neuronal lncRNAs are required for neuronal

differentiation

To determine if the neuronal lncRNAs were required for

neurogenesis, we investigated the effect of their knockdown

on neuronal differentiation. We transfected siRNAs against

each of the neuronal lncRNAs, and induced differentiation of

the ReN-VM neural stem cells in N2B27 medium. Seven days

later, neuronal differentiation was assayed at the protein

level, by immunostaining of TUJ1þ early post-mitotic neu-

rons and/or MAP2þ late mature neurons, as well as at the

mRNA level. We tested two siRNA duplexes per lncRNA, and

the most efficient siRNA was subsequently used (Figure 6E–

H; Supplementary Figure S7). While the non-target siRNA

(si-NT) control yielded TUJ1þ and MAP2þ neurons, very
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Table III Properties of the neuronal lncRNAs in this study

lncRNA name lncRNA ID Genomic location (hg18/NCBI36) Transcript length (bp) Class of lncRNA CPC scorea

RMST AK056164 chr12:96,382,930-96,451,675 2099 Intergenic �0.34905
lncRNA_N1 AK124684 chr8:77,478,848-77,481,928 3081 Intergenic �1.22643
lncRNA_N2 AK091713 chr11:121,465,023-121,556,316 1931 Overlapping 0.172903
lncRNA_N3 AK055040 chr7:81,413,696-81,415,731 2035 Proximal �1.21246

aA negative score assigned by the Coding Potential Calculator (CPC) indicates a non-coding transcript while a value between 0 and 1 indicates a
‘weakly coding’ transcript.
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few stained cells were observed where the neuronal lncRNAs

were knocked down (Figure 6C). This was confirmed by FACS

analysis of TUJ1þ cells transfected with the respective

siRNAs. The si-NT control yielded B25% TUJ1þ neurons,

while knockdown of the neuronal lncRNAs resulted in o5%

TUJ1þ neurons (Figure 6D). Together, these data indicate

that the neuronal lncRNAs we tested were required for

efficient neuronal differentiation.

qPCR at day 7 further showed that reduced lncRNA levels

in neural progenitors resulted in decreased expression of

neurogenic markers including NEUROG2, PAX6, DCX, TUJ1,

MAP2, SYP, HES5 and SYPL1, and a simultaneous increase in

glia markers PDGFRa, NG2CSP, CNPase, MBP and LRRN3

(Figure 6I). This indicates that loss of the neuronal lncRNAs

alters cellular differentiation fate from a neurogenic to a

gliogenic programme, and suggests that the lncRNAs play a

key role in neural cell fate specification.

Neuronal lncRNAs support neurogenesis by association

with nuclear proteins

We next investigated the molecular mechanism of action of

the neuronal lncRNAs. First, we sought to determine the

subcellular localization of the neuronal lncRNAs, by means

of RNA fractionation followed by qPCR. With the exception of
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lncRNA_N2, the neuronal lncRNAs were preferentially

nuclear retained (Figure 7A). Thus RMST, lncRNA_N1 and

lncRNA_N3 might be interacting with nuclear factors and/or

chromatin to support neurogenesis, while lncRNA_N2 possi-

bly has a role in the cytoplasm.

Next, we sought to identify physical interactions of nuclear

lncRNAs with nuclear proteins, specifically with SUZ12 and

REST, as the former has been reported to be associated with

many lncRNAs (Khalil et al, 2009), and the latter is an

important transcription factor that represses neurogenesis

and is part of the complex bound by the lncRNA HOTAIR

(Naruse et al, 1999; Su et al, 2004; Tsai et al, 2010). Three

individual RIP experiments confirmed that lncRNA_N3 was

significantly enriched in the SUZ12 IP over isotype IgG IP

control (Figure 7D), suggesting that lncRNA_N3 was in-

volved in the epigenetic silencing of genes. On the other

hand, lncRNA_N1 was enriched in the REST IP compared

with isotype IgG IP (Figure 7E), suggesting that lncRNA_N1

associates with the REST/coREST complex to regulate gene

expression and neural cell fate specification.

Cytoplasmic lncRNA_N2 affects microRNA expression

We noticed that lncRNA_N2 was cytoplasmic and contains

the microRNAs (miRNAs) MIR-125B and LET7 within its

introns (Supplementary Figure S6C). These miRNAs are

known to be important for neurogenesis (Rybak et al, 2008;

Le et al, 2009). This suggests that lncRNA_N2 represents the

processing product of the miRNA host transcript, and that

knockdown of this transcript could repress neuronal lineage

commitment. To this end, we performed a knockdown of

lncRNA_N2 in neural stem cells, isolated total RNA 48 h later,

and compared MIR-125B and LET7A levels with that of the

non-target siRNA control. qPCR revealed that lncRNA_N2

was knocked down by about 75% (Figure 7B), and MIR-125B

and LET7A levels were reduced significantly by about 50%.

This indicated that the lncRNA_N2 is likely to promote

neurogenesis by maintaining MIR-125B and LET7A levels in

neural progenitors.

Discussion

It is now evident that large numbers of lncRNAs exist in the

mammalian transcriptome (Carninci et al, 2005; Guttman

et al, 2009), and they function via diverse mechanisms

(Wilusz et al, 2009). In this study, we identified lncRNAs

essential for the maintenance of pluripotency and neuronal

differentiation in human cells and established that they

physically interact with key nuclear proteins to execute

their biological functions.

While it has been observed that some lncRNAs act in cis

(Ponjavic et al, 2009), a recent report indicated that a unique

class of lncRNAs termed large intergenic non-coding RNAs or

lincRNAs primarily affect gene expression in trans (Guttman

et al, 2011). For the lncRNAs in the present study, we found

evidence for a regulatory function in trans. With the excep-

tion of cytoplasmic lncRNA_N2, which may represent the

miRNA host transcript that gives rise to miRNAs in that

region, we did not observe a significant change of gene

expression within a 600-kb window (300 kb upstream and

300 kb downstream) following knockdown of the other six
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lncRNAs (Supplementary Figure S8). Therefore, while some

lncRNAs may work in cis, it appears that the lncRNAs in this

study are trans-acting.

Although lncRNAs have been previously linked to stem

cell pluripotency (Dinger et al, 2008; Sheik Mohamed et al,

2010; Guttman et al, 2011), we report for the first time that

these ‘pluripotent lncRNAs’ could complex with SOX2 to

control hESC pluripotency. Endogenous RIP experiments in

hESCs indicated that lncRNA_ES1 and lncRNA_ES2 were

physically associated with the transcription factor SOX2 and

PRC2 component SUZ12, suggesting that lncRNAs function as

a modular scaffold for different proteins or protein complexes

to assemble onto (Tsai et al, 2010). Our results indicated that

both lncRNA_ES1 and lncRNA_ES2 associated with SUZ12

and SOX2, but not OCT4, and were involved in pluripotency.

Therefore, we propose a model whereby pluripotent lncRNAs

may act as a scaffold in which SUZ12 and the repressive PRC2

complex is recruited to silence SOX2 neural targets in plur-

ipotent hESCs (Figure 8A). Bioinformatic predictions

(Bellucci et al, 2011) suggest that SOX2 preferentially binds

to the 50 end of lncRNA_ES1 while SUZ12 preferentially

associates with the 30 end of the lncRNA (Supplementary

Figure S9), in accordance with the cell-type-specific ‘flexible

scaffold’ function of lncRNAs proposed by Guttman et al

(2011). This proposed scaffolding role of lncRNAs is, how-

ever, still subject to experimental validation. In addition,

analysis of H3K27 trimethylation marks at promoters of

SOX2 target genes in hESCs would shed light on how the

lncRNA/protein complex regulates pluripotency.

Our data also indicate an indispensable role of lncRNAs in

neurogenesis. While cytoplasmic lncRNA_N2 may be the

miRNA host gene responsible for neurogenic miRNAs MIR-

125B and LET7A in the same genomic locus, we identified

physical association of other neuronal lncRNAs with SUZ12

and REST, and envision a similar mechanism for these

lncRNAs (Figure 8B). While it is likely that lncRNAs regulate

biological processes through epigenetic modifications,

elucidation of molecular mechanisms require more studies,

including a genome-wide assessment of histone marks in

native and perturbed lncRNA conditions. It has been

proposed that lncRNAs may represent a key undiscovered

genetic component in the evolution of the human brain

(Mattick and Mehler, 2008), but little evidence has been

presented for functional roles of lncRNAs in the human

nervous system. The data presented in this study represent

the first direct demonstration that lncRNAs are necessary

components of neural developmental gene networks in

human, and imply that deregulation of lncRNA expression

may contribute to developmental and neurological disorders.

Materials and methods

Cell culture and neural differentiation
H1 hESCs (passage number 20–35) was grown feeder-free on
Matrigel (BD Biosciences) in conditioned medium. Neural differ-
entiation was initiated using a modified SDIA method, in which
neural progenitors were enriched and cultured as a monolayer in
NPC medium consisting of mitogens bFGF and EGF. Dopaminergic
neuronal differentiation was achieved by culture of neural
progenitors in N2B27 medium previously described (Ying et al,
2003) supplemented with 200 ng/ml SHH, 100 ng/ml FGF8 and
200mM ascorbic acid (see Supplementary data for details). A human
fetal mesencephalon-derived neural stem cell line, ReN-VM
(ReNeuron, Millipore), was cultured as previously described
(Donato et al, 2007). Differentiation of ReN-VM cells was achieved
by culture in N2B27 medium.

Immunofluorescence
Cells were fixed, permeabilized, and blocked as with standard
immunostaining procedures (see Supplementary data). Primary
antibodies were diluted in blocking buffer and incubated overnight
at 41C. The list of antibodies and dilutions used is provided in
Supplementary Table SI. Secondary antibodies conjugated with
AlexaFluor-488 or AlexaFluor-594 (Molecular Probes, Invitrogen)
were diluted 1:2500 in blocking buffer and incubated for 2 h at room
temperature. DAPI (0.5 mg/ml) was used to visualize cell nuclei.

RNA extraction
Total RNA was extracted in TriZol (Invitrogen), and purified using
the RNeasy Mini Kit with DNase I treatment (Qiagen), following the
manufacturers’ instructions. Total RNA for miRNA expression
analysis was extracted in TriZol and was not column purified. For
RNA fractionation, we used the PARIS Kit to isolate RNA from the
nuclear and cytoplasmic compartments, following the manufac-
turer’s instructions.

Custom lncRNA array design
We designed a custom microarray to interrogate human lncRNA
expression. Potential lncRNAs were gathered from a variety of
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Figure 8 Proposed mechanism for role of lncRNA in hESC pluripotency and neuronal differentiation. (A) In undifferentiated hESCs, we
propose a mechanism whereby lncRNAs serve as a modular scaffold for SUZ12 (or PRC2) and SOX2. SOX2 may recruit the chromatin-
modifying complex to silence neuroectoderm lineage markers by H3K27 methylation. Binding of lncRNA to SOX2 may prevent OCT4 or other
core ES transcription factors from binding. Since lncRNAs are present in low abundance, that would not affect the core ES transcriptional
network by sequestering SOX2. (B) In a mechanism similar to (A), we envisioned that neuronal lncRNAs may link chromatin modifiers and
transcription factors, in order to silence glia lineage genes while promoting neurogenesis.
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sources (see Supplementary Table SVII and Supplementary File S1
for details). These lncRNAs essentially comprise the same lncRNA
catalogue described in Jia et al (2010). Altogether this set comprised
6673 transcripts. Using Agilent eArray tool, we designed six distinct
60-mer microarray probes against each transcript, and printed these
on a custom array slides, along with standard control probes.

Microarray hybridization and data analysis
Sentrixs Human Ref-8 Expression BeadChip microarrays (Illumi-
na) were used for genome-wide expression analysis of coding
genes. For hybridization on the Illumina arrays, cRNA was
synthesized and labelled using TotalPrep RNA Amplification Kit
(Ambion), following the manufacturer’s instructions. We utilized a
custom-designed microarray to analyse genome-wide lncRNA
expression. For this purpose, total RNA was amplified and labelled
using Agilent’s One-Color Quick Amp Labeling Kit, according to the
manufacturer’s recommendations.

Scanned data from the BeadChip raw files for all samples were
retrieved and background corrected using BeadStudio (Illumina),
and subsequent analyses were completed in GeneSpring GX
(Agilent). Data were normalized both within and between arrays,
and corrected for multiple testing using Benjamini–Hochberg
analysis. We defined genes as significantly differentially expressed
when FDR is o0.05.

RNA interference
siRNAs targeting lncRNAs for knockdown were designed using
Invitrogen’s Block-It RNAi Designer (https://rnaidesigner.invitrogen.
com/rnaiexpress). Two duplexes were designed for each lncRNA,
and only the most effective siRNAs were used for subsequent studies.
The sequences of the duplexes are provided in Supplementary Table
SII. For transfection, hESCs were seeded in 12-well plates at about
100 clumps per well in MTeSR medium. In all, 100 pmol of siRNAs
was complexed with 5ml of Lipofectamine RNAiMAX reagent
(Invitrogen), according to the manufacturer’s protocol. Following
transfection, the medium was replaced with fresh MTeSR medium
and re-transfection was performed at days 2 and 4 after the initial
siRNA transfection as previously described.

For transfection of neural stem cells, cells were seeded at
0.2�106 per well of a 12-well plate. In all, 50 pmol of siRNAs was
complexed with 2.5ml of Lipofectamine RNAiMAX reagent. Fresh
medium was replaced 24 h after transfection. Re-transfection was
performed once more 48 h after the initial transfection.

Quantitative real-time PCR
Total RNA was extracted as described above. Reverse transcription
was performed using the High Capacity cDNA Reverse Transcription
Kit (Applied Biosystems). For qPCR, primers that span splice
junctions were used wherever possible. The lists of primers used are
found in Supplementary Tables SIII and SIV). The set-up of qPCR
reactions is described in Supplementary data. In all qPCR
experiments, a minimum of three technical replicates and three
biological replicates were performed. Fold change was normalized
to GAPDH mRNA expression unless otherwise specified.

For miRNA expression analysis, reverse transcription was
performed using TaqMan MicroRNA Reverse Transcription Kit

(Applied Biosystems) following the manufacturer’s instructions.
TaqMan probes and primers were used for qPCR. Fold change was
normalized to U6 snRNA expression. To compute significance,
Student’s t-test was performed, and a P-value of o0.05 was deemed
statistically significant.

RNA immunoprecipitation
RIP was performed as previously described (Niranjanakumari et al,
2002). Briefly, cells were detached with Accutase (Millipore),
crosslinked in 1% formaldehyde for 15 min and quenched with
2.5 M glycine for 5 min. The cell pellet was resuspended in modified
RIPA buffer (150 mM NaCl, 50 mM Tris, 0.5% sodium deoxycholate,
0.1% SDS, 1% NP-40) supplemented with RNase inhibitor Super-
ase.In (Ambion) and Complete protease inhibitor (Roche). The cell
suspension was briefly sonicated at low amplitude for 5� 30 s
cycles using a Bioruptor sonicator to lyse nuclei. Cell debris was
removed by centrifugation at 41C, precleared with Protein G dynal
beads (Invitrogen) before adding to respective antibodies pre-bound
with Protein G dynal beads for 3 h at room temperature. In all, 5mg
of antibodies was used for each RNA-IP. The following antibodies
raised in rabbit were used anti-SUZ12 (ab12073), anti-SOX2
(ab59776), both from Abcam, and, anti-OCT4 (H-134), anti-REST
(H-290), both from Santa Cruz Biotechnology. Beads were then
washed three times in modified RIPA buffer, and twice in high salt
RIPA buffer (1 M NaCl, 50 mM Tris, 0.5% sodium deoxycholate,
0.1% SDS, 1% NP-40). Crosslinks were reversed and proteins were
digested with Proteinase K (Invitrogen) at 651C for 2 h. RNA was
extracted in Trizol and precipitated in isopropanol.

Supplementary data

Supplementary data are available at The EMBO Journal

Online (http://www.embojournal.org).
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