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Abstract
Histone deacetylases (HDACs) remove acetyl groups from lysine residues of histones and the
deacetylation allows for tighter electrostatic interactions between DNA and histones, leading to a
more compact chromatin conformation with limited access for transactivators and the suppression
of transcription. HDAC mRNA and protein overexpression was observed in endometrial and
ovarian cancers. Numerous in vitro studies have shown that HDAC inhibitors, through their
actions on histone and nonhistone proteins, are able to reactivate the tumor suppressor genes,
inhibit cell cycle progression and induce cell apoptosis in endometrial and ovarian cancer cell
cultures. Results from mou se xenograft models also demonstrated the potency of HDAC
inhibitors as anticancer reagents when used as single agent or in combination with classical
chemotherapy drugs.
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It has been well established that coordinated epigenetic modifications in DNA methylation
and histone modifications play a key role in the control of gene expression [1,2]. In
mammalian cells, histones occupy the backbone of chromatin and undergo several post-
translational modifications, including acetylation, methylation and phosphoryl ation [3]. The
dynamic interplay between histone modifications affects the intrinsic properties of histones
and modulates the interactions between DNA and transcription activators [4,5]. Among all
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the epigenetic modifications, acetylation is one of the better characterized. High levels of
acetylation of histones in local chromatins are directly correlated with active gene
expression [6–8].

Aberrant transcriptional silencing of tumor-suppressor genes via epigenetic modifications,
such as DNA methylation and covalent modifications of histones, is a hallmark of cancer
cells [5,9]. Histone acetyltransferases (HAT) and histone deacetylases (HDACs), catalyzing
the addition and removal of acetyl groups, respectively, are the key enzymes controlling the
extent of histone acetylation. The mammalian HDAC family comprises of 18 members and
three major classes, and the expression, regulation and function of HDACs in cancer cells
have been extensively studied [2]. Given their critical roles in cell cycling, apoptosis and
differentiation, HDACs are considered important therapeutic targets for the treatment of
gynecologic cancer and other malignancies [10].

It has been shown that transcriptional gene silencing can be effectively reversed by
epigenetic derepression using HDAC inhibitors [11,12]. Because cancer cells contain
multiple gene-expression alterations, targeting a single abnormality is often inefficient [4].
The simultaneous actions of HDAC inhibitors on multiple genes represent a major
advantage for this class of drugs, which perhaps explains their versatility of effect and
remarkable potency in different types of cancer cells [10,11]. Vorinostat was the first
reagent to be approved by the US FDA for clinical use in 2006 [13,14]. Currently, a variety
of established HDAC inhibitors and new compounds are being tested in cell culture and
clinical trials of all phases [4,15–17]. While most reagents are pan-HDAC inhibitors with
unselective activities, several compounds are able to target a specific HDAC class or
isoform. Here, we provide an update in the following areas:

▪Epigenetic alterations in gynecologic cancers;

▪Mechanisms and actions of HDAC inhibitors in endometrial and ovarian cancer cell
lines;

▪Laboratory studies on the combined use of HDAC inhibitors and other anticancer
reagents.

Anticancer mechanisms of HDAC inhibitors
The demonstration that small-molecule compounds with the capacity to interfere with
HDAC activity have antitumor potential has led to the development of a series of
structurally different HDAC inhibitors designed to release transcriptional repression of
various targets, ultimately promoting cell cycle stability and/or inducing cell apoptosis [11–
13,18]. Several actions by HDAC inhibitors have been suggested, including cell cycle arrest,
activation of apoptotic pathways, induction of autophagy, reactive oxygen species (ROS)
generation, Hsp90 inhibition and disruption of the aggresome pathway [19]. The HDAC
inhibitor induces p21 expression, leading to G1 cell cycle arrest, and frequently
downregulates cyclin D and c-Myc [20]. HDAC6 has been shown to be a deacetylase of
both tubulin and Hsp9046. Treatment with romidepsin, vorinostat, panobinostat or valproic
acid (VPA) resulted in increased histone H3 acetylation or tubulin acetylation, depending on
the cell lines [21]. Several in vitro and in vivo studies have suggested that the generation of
ROS is a key event in cell death induced by HDAC inhibitors. ROS generated by HDAC
inhibitors lead to DNA damage and the addition of N-acetyl cysteine and free radical
scavenger has been shown to result in decreased ROS generation and decreased HDAC
inhibitor-mediated cell death [22]. HDAC inhibitors have been shown to facilitate death by
inducing the expression of TRAIL, DR-4, DR-5, Fas and FasL, as well as a decrease in c-
FLIP, a protein associated with resistance to TRAIL-mediated apoptosis [23,24]. Moreover,
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the miRNA expression profiles of different cell lines have been shown to rapidly change
upon treatment with HDAC inhibitors [25].

Romidepsin, a natural product obtained from the bacteria Chromobacterium violaceum, is
able to block HDAC activities and induces apoptosis in tumor cells [201]. In 2009, the FDA
approved romidespin as an anticancer agent, and clinical trials have been performed in
cutaneous T-cell lymphoma, peripheral T-cell lymphoma and a variety of tumors including
prostate cancer, multiple myeloma, pancreatic cancer [26], breast cancer [202], ovarian
cancer [203], melanoma [204], neuroendocrine tumors [205] and leukemias [206]. The most
dramatic results were found in the treatment of cutaneous T-cell lymphoma and other
peripheral T-cell lymphomas [26]. Moreover, romidepsin is one of the first HDAC inhibitors
found to induce Hsp90 acetylation and cause degradation of the Hsp90 client p roteins
EGFR, Her2 and Raf1 [27].

Furthermore, the original model used to explain the antiproliferative effects of these agents
suggested that chromatin remodeling resulting from hyperacetylation of core histones
altered gene expression [11,12]. It is now clear that HDAC inhibitors induce a wide
spectrum of biologic changes resulting from their impact on both transcription and
nontranscription levels, as well as their impact on histone and nonhistone proteins (see
Figure 1 of [10]). Remarkably, the anticancer effects of HDAC inhibitors were first
suggested as a result of their ability to induce differentiation of erythroleukemia cells [10].

To date, several classes of HDAC inhibitors have been proven to have potent and specific
anticancer activities in preclinical studies. These data have justified their introduction into
clinical trials for the treatment of both hematological malignancies and solid tumors
[12,16,28]. Several natural and synthetic small molecular compounds have been employed
as bioactive reagents in an attempt to elucidate the mechanism by which HDACs influence
cell proliferation [29]. Trichostatin (TSA) is a natural HDAC inhibitor that inhibits almost
all class I and II HDACs. It binds to HDACs by its long aliphatic side chain and inhibits
enzyme activity by interacting with a Zn motif and other active-site residues. Compounds
with HDAC inhibitory effects can be divided into six groups based on their structures:

▪Hydroxamic acids (e.g., TSA) and suberoylanilide hydroxamic acids (e.g., SAHA)

▪Cyclic tetrapeptides (e.g., trapoxin, apicidin and HC-toxin)

▪Depsipeptides (e.g., FK228)

▪Short chain fatty acids (e.g., butyrate and VPA)

▪Synthetic pyridyl carbamate (e.g., MS-275)

▪Synthetic benzamide derivatives (e.g., tacedinaline) and trifluoromethyl ketone

These reagents exhibit varied potencies in terms of upregulating the expression of tumor
suppressor genes and blocking cell cycle p rogression [1,10,30].

HDAC inhibitors are small molecules capable of inducing differentiation and preventing cell
cycle progression in transformed cells of varying tissue morphology, including acute
myeloid leukemia, erythroleukemia and neuroblastoma carcinomas [31]. In recent years, the
importance of epigenetics in cancer development has become increasingly appreciated, as is
evident by its recent rising popularity in the literature. HDAC inhibitors are currently being
investigated in Phase I/II trials for patients with hematologic and solid malignancies, and
most data indicate generally tolerable toxicity profiles [2,16]. In regards to endometrial
carcinoma (EC), epigenetic defects have been documented for multiple genes, including
hMLH1, progesterone receptor-B and PTEN [32]. Silencing of hMLH1 and/or MSH2 by
epigenetic mechanisms has been associated with microsatellite instability, invasive growth
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and acquired resistance to cisplatin [33,34]. Epigenetic reactivation of MLH1 gene
expression restores normal DNA repair function [31]. Similarly, progesterone receptor-B
silencing occurs commonly in high-grade EC, rendering these tumors recalcitrant to
progestational therapy. Treatment with epigenetic-modifying reagents results in re-
expression of progesterone receptor-B and, potentially, r esensitization of EC to hormonal
therapy [35].

The effect of HDAC inhibitors on ovarian carcinoma (OC) has not been examined as
extensively as it has in EC. One study indicated that sodium butyrate (NaB) had a significant
growth-suppressing effect on human OC cells, irrespective of their p53 gene status [36]. The
authors examined the effects of a wide array of HDAC inhibitors (SAHA, VPA, TSA and
NaB) on nine OC cell lines (SK-OV-3, OVCAR-3, TOV-21G, OV-90, TOV-112D,
OVCA420, OVCA429, OVCA432 and OVCA433) and found that HDAC inhibitors were
able to reduce the non-functional form of the p53 tumor-suppressor protein. The molecular
pathways were not investigated. Takai et al. observed that HDAC inhibitors exhibit
antiproliferative activity and potently induces apoptosis in human OC cells [37]. These
events are accompanied by the induction of p21WAF1 and p27KIP1, and the downregulation
of several antiapoptotic and cell cycle-related proteins (Bcl2, cyclin D1 and cyclin D2).
VPA also significantly inhibited tumor growth in nude mice without any apparent toxicity.
The tumor sections from VPA-treated mice exhibited necrosis and histological changes
suggestive of apoptosis, including the formation of apoptotic bodies. Fibrosis accounted for
approximately 30% of the tumor area. Moreover, VPA-treated mice showed expression of
p21WAF1 using immuno-histochemical ana lysis. These findings suggest that HDAC
inhibitors may be effective in the treatment of OC.

Expression of HDACs in endometrial & ovarian cancer
HDACs regulate gene transcription through the removal of acetyl groups from histone tails
and DNA sequence-specific transcription factors [4,5]. Examples of nonhistone targets
include tumor-suppressor protein p53, E2F and Sp3, where HDAC-based deacetylation has
been linked to reduced DNA binding and transcriptional activity [38,39]. Through these
mechanisms, HDACs are emerging as critical regulators of such pathways as apoptosis, cell
growth and differentiation. Indeed, HDAC inhibitors including NaB, TSA, SAHA and VPA,
induce cell cycle arrest, differentiation and apoptosis in colon cancer cell lines in vitro [40].
Takai et al. [37] and Dowdy et al. [41] have independently shown that treatment with
HDAC inhibitors dramatically increased the number of apoptotic cells in ovarian and EC
cell lines, respectively. These observations suggest a physiologic role for transcriptional
repression mediated by HDACs in maintaining cell proliferation and survival. Conversely,
aberrant changes in the HDAC-mediated transcriptional repression function may be related
to t umorigenesis [3,42].

Normal ovarian surface epithelium showed weak nuclear expression of HDAC-1, -2 and -3
proteins [43,44]. The transcriptional co-repressors mSin3, NCoR, NuRD and SMRT are
multiprotein complexes that recruit HDACs to specific chromatin domains [45]. HDAC3 is
a component of the NCoR–SMRT corepressor complex, which is distinct from corepressor
complexes that typically contain HDAC1 and HDAC2 [46]. On the other hand, HDAC2 and
HDAC1 appear to co-exist together in multiprotein complexes and many transcription
activators target HDAC1 and HDAC2 to specific p romoters to repress the transcription
machinery [47].

High levels of class I HDACs were observed in OC in one study, with HDAC-1, -2 and -3
being positive in 61, 93 and 84% of the cases, respectively [44]. HDAC-1 and -2 are
primarily found in the nucleus, whereas HDAC3 is found in the nucleus, cytoplasm and cell
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membrane [48,49]. Khabele and coauthors also reported an overexpression of all three
isoforms of class I HDACs in OC [43]. As in most other entities, class I HDAC expression
levels were correlated with each other. Expression levels were significantly different in
specific tumor subtypes, with the following values in a decreasing order: mucinous (71%) >
serous (64%) > clear cell (54%) > endometrioid (36%). In addition, expression levels were
usually higher in highly proliferative tumors [43,44,50]. Class I HDAC protein expression
had no statistically significant correlation with patient survival in cases of mucinous, clear
cell and serous entities. By contrast, in endometrioid ovarian cancer, stronger class I HDAC
expression is associated with shorter patient s urvival (Table 1) [43].

Expression of class I HDAC-1, -2 and -3 proteins in normal endometrium varies with the
cell cycle [51]. Weichert and coworkers have observed that the majority of EC showed
elevated expression of class I HDAC isoforms in the nuclei of tumor cells, with the
following levels of expression in decreasing order: HDAC2 (95%) > HDAC3 (83%) >
HDAC1 (61%) [44]. However, a loss of HDAC1 protein expression in EC has also been
reported [51]. Similar to OC, clear cell and serous subtypes showed significantly higher
expression rates for all three HDACs when compared with endometrioid carcinomas [44].
The authors correlated the expression of HDAC-1, -2 and -3 within individual cells and also
between cells of varying proliferative capacity. Strong HDAC1 protein expression was
associated with poor prognosis in endometrioid endometrial carcinoma, analogous to its
ovarian counterpart [50,51]. Notably, other isoforms that were studied failed to d emonstrate
such a relationship between endometrioid s ubtype and poor prognosis [44].

Changes in HDAC expression levels may play a role in the underlying mechanisms involved
in cell cycle dysregulation [52–54]. Kawai et al. reported that HDAC1 may affect breast
cancer progression by promoting cell proliferation through inhibition of ER-α expression
[52]. Silencing of HDAC3 expression in colonic cell lines resulted in growth inhibition,
decreased cell survival and increased apoptosis. Similar effects were observed for HDAC-1
and -2 [46]. Jin et al. reported increased expression of HDCA1, HDCA2 and HDCA3 mRNA
in 83, 67 and 83%, respectively, and overexpression of HDAC-1, -2 and -3 proteins in 94,
72 and 83%, respectively, in ovarian cancer tissue samples, compared with normal tissue
samples [55]. The relative densities of HDAC1 and HDAC3 mRNA in serous, mucinous and
endometrioid cancer tissues and HDAC2 mRNA in serous cancer subtypes were
significantly higher than those found in benign tissues [55]. These findings suggest that class
I HDAC-1, -2 and -3 are upregulated in OC and may play a significant role in ovarian
carcinogenesis.

The class I HDACs play an important role in steroid hormone-dependent gene expression by
directly interacting with proteins recruited to the steroid hormone receptor complex after
ligand binding [56,57]. Recently, Hrzenjak et al. studied the expression of HDAC-1 and -2
in endometriotic and endometrial cell lines using TaqMan® gene expression assays [58].
The expression of both HDAC1 and HDAC2 genes is significantly higher in diseased cells
when compared with normal endometrial cells. Steroid hormone treatment induced an
upregulation of HDAC-1 and -2 in endometrial stromal cells. Moreover, HDAC1 expression
was increased by progesterone, whereas HDAC2 expression was increased by both estrogen
and progesterone.

Preclinical studies on HDAC inhibitors in gynecologic cancer cells
Research demonstrating that inappropriate recruitment of HDACs contributes to
tumorigenesis has provided a strong mechanistic rationale for applying HDAC inhibitors to
cancer therapy regimens (Table 2) [10,16,41]. Acetylation of histones may enhance or
inhibit the function of transcription factors, as well as chaperone proteins such as p53,
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GATA1, E2F, BCL6, Ku70, Hsp90, RelA, c-Jun and STATs. Therefore, enhancing the
degree of acetylation by cell treatment with an HDAC inhibitor can either increase or
repress gene expression [59]. It has been found that structurally diverse compounds can bind
to and inhibit HDAC catalytic activity. Currently, more than 50 naturally occurring or
synthetic HDAC inhibitors have been developed [10,60]. Initial clinical trials indicate that
HDAC inhibitors from several different structural classes are well tolerated and exhibit
clinical efficacy against a variety of human malignancies [59].

In proliferating endothelial cells, HDAC inhibitors upregulate gene expression of
p21WAF1/CIP1 , which induces cell cycle arrest and downregulates gene expression of
survivin, an inhibitor of apoptosis [61]. TSA inhibits the VEGF-induced expression of
VEGF receptors VEGFR1, VEGFR2 and Nrp1 (Table 2). Furthermore, TSA and SAHA
upregulate the expression of SEMA3, a VEGF protein competitor, at both mRNA and
protein levels [62]. Downregulation of endothelial nitric oxide synthase (eNOS) in
endothelial cells has also been shown to be critical for the antiangiogenic activity of VPA.
Moreover, VPA was also shown to inhibit angiogenesis both in vitro and in vivo via a
mechanism involving diminished expression of eNOS [63]. Depsipeptide was shown to
suppress the expression of proangiogenic factors, including VEGF and bFGF [61].
Consistently, TSA and SAHA directly inhibit VEGF family member D (VEGFD) and
bFGF-stimulated endothelial cell proliferation, migration, invasion, vascular sprouting and n
eovascular f ormation [64].

The HDAC inhibitor NVPLAQ824 blocks expression of proangiogenic tyrosine kinase
receptors Tie-2, Tie-2 ligand and Ang2, at both mRNA and protein levels (Table 2).
However, HDAC inhibitor NVPLAQ824 exerts no effect on the Tie-1 receptor [61].
Butyrates upregulate endothelial cell adhesion molecules, including ICAM-1 and E-selectin.
Downregulation of eNOS in endothelial cells has also been shown to be critical for the anti-
angiogenic activity of VPA [63]. A study by Takai et al. demonstrated both antiproliferative
and proapoptotic activities of HDAC inhibitors in human OC cells [65]. Furthermore, soft
agar colony formation assays and 3-4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium
bromide MTT assays showed that many endometrial and ovarian cancer cell lines were
sensitive to the growth inhibitory effect of HDAC inhibitors, although normal endometrial
epithelia were viable after the treatment with the same concentrations of HDAC inhibitors.
VPA significantly inhibited human endometrial and ovarian tumor growth without toxic side
effects [36,66]. Terao et al. indicated that NaB had a significant growth-suppressing effect
on human EC and OC cells, irrespective of their p53 status [36].

Takai et al. used six EC cell lines to investigate the antiproliferative effects of SAHA, VPA,
TSA and NaB [37]. All cancer cell lines were sensitive to the growth inhibitory effect of
HDAC inhibitors. Cell cycle ana lysis indicated that treatment with HDAC inhibitors
decreased the proportion of cells in S phase and increased the proportion of cells in the G0–
G1 and/or G2–M phases of the cell cycle. These effects were accompanied by the altered
expression of genes related to malignant phenotypes, including an increase in p21Waf1,
p27Kip7 and E-cadherin, as well as a decrease in Bcl2, cyclin D1 and cyclin D2 (Table 3).
Similarly, apicidin, CBHA [66] and scriptaid [67] were also reported to increase the
proportion of cells in G0/G1 and/or G2/M phases and to decrease the proportion of cells in S
phase. Several studies indicated that HDAC inhibitor-induced apoptosis is associated with
the loss of mitochondrial transmembrane potential. Accompanying cell apoptosis is the
altered expression of p21WAF1, p27KIP1, p16, cyclin A and E-cadherin [68]. It was
confirmed that apicidin, CBHA and scriptaid treatments indeed increased the acetylation of
H3 and H4 histone tails [66–68]. These results suggest that HDAC inhibitors exert
antiproliferative effects through selective induction of genes influencing cell growth,
malignant phenotype and apoptosis [68]. The observation of a remarkable increase in
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acetylated histones associated with the p21 promoter after suberoyl anilide bishydroxamine
treatment has provided evidence for the decreased HDAC activity following HDAC
inhibitor administration [31]. Besides cell cycle inhibition and induction of apoptosis, an
anti-inflammatory action could be an additional activity contributing to the overall
anticancer effects of HDAC inhibitors. It was reported that HDAC inhibitors can suppress
the expression of key adhesion molecules, such as VCAM-1, thus leading to a reduction in
the number of activated monocytes recruited to inflamed endothelium [69].

In addition to synthetic HDAC inhibitors, natural HDAC inhibitors have also been shown to
induce cell cycle arrest in various cancer cell lines. PsA is a phenolic natural product that
has been isolated from marine sponges and may be a promising HDAC inhibitor [70,71].
Ahn et al. reported that PsA induces cell cycle arrest and apoptosis and increases the
proportion of human EC cells in the G1 phase and G2/M phases of the cell cycle (Table 3)
[71]. This PsA-induced cell cycle arrest was associated with the downregulation of cyclins/
CDKs and pRb, as well as the induction of p21WAF1 through a p53-independent pathway.
Recently, it was reported that PsA has antibacterial and antitumor properties and inhibits
various enzymes including FPT, topoisomerase II, leucine amino chitinase and peptidase
[28,70,72]. There is evidence that PsA inhibits both HDACs and DNMTs, although the
molecular mechanism for the dual inhibitory effects is not clear [70]. Recently, Berry et al.
proposed that PsA induces apoptosis in endometrial cancer cells through increased
expression of FOXO1 [15], a member of the Forkhead/winged helix family that plays a role
in cell survival, cell cycle progression and oxidative-stress resistance [73]. These
observations show diversified and dynamic activities of HDAC inhibitors on a broad
spectrum of regulatory factors/pathways. Sulforaphane (SFN), a compound found in
cruciferous vegetables, inhibits HDAC activity in human colorectal and prostate cancer cells
[74]. Myzak et al. demonstrated that SFN acted as an HDAC inhibitor in the prostate,
causing enhanced histone acetylation, derepression of p21 and Bax and induction of cell
cycle arrest/ apoptosis, leading to cancer prevention [75]. The ability of SFN to target
aberrant acetylation patterns, in addition to effects on phase 2 enzymes, may make it an
effective c hemoprevention agent.

Takai and coworkers discovered two putative tumor-suppressor genes, Tig1 and CCAAT/
enhancer binding protein-α (c/ebp-α), that are stimulated by demethylating agents and/or
HDAC inhibitors in endometrial cancers [31]. In additional studies, HDAC inhibitors were
found to inhibit the growth of human endometrial cancer cells both in vitro and in a mouse
xenograft model [31]. Jiang et al. examined the effects of HDAC inhibitors oxamflatin and
HDAC inhibitor-1 in endometrial cancer cells and observed significant growth inhibition
and morphologic changes (Table 3) [76]. Sensitivity to individual agents appears to be cell
type specific, with oxamflatin having a stronger growth inhibitory effect than HDAC
inhibitor-1 in the Ark2 cell line, while the reverse is true in the AN3 cell line. With respect
to the specific apoptotic pathways involved, both caspase-8 and caspase-9 are activated by
oxamflatin in the Ark2 cell line. Furthermore, loss of mitochondrial membrane potential
occurs upon treatment with the agents. These results suggest that the intrinsic apoptotic
pathway may play an important role in the induction of cell death by oxamflatin [76].
Clinically speaking, these findings suggest that HDAC inhibitors could have an important
impact on the treatment of the most aggressive subset of EC.

Uchida et al. found that HDAC inhibitors, in particular SAHA, enhanced single and
collective cell migration, and HDAC inhibitor-induced glycodelin expression played an
essential role in promotion of Ishikawa cell migration (Table 3) [77]. Glycodelin is the
progesterone-induced glycoprotein secreted into the uterine luminal cavity by secretory/
decidualized endometrial glands [78]. A study by Mandelin et al. showed that
chemotherapy-treated serous OC patients with glycodelin-expressing tumors have longer

Singh et al. Page 7

Future Oncol. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



survival time than those with glycodelin-negative tumors [79]. Thus, HDAC inhibitor
treatment appears to alter some of the malignant phenotypes and improve OC patient
survival. However, it is not clear how the glycodelin-induced cell migration is related to the
longer survival and the HDAC inhibitor therapeutic effects or if the anticancer effects of
HDAC inhibitors may rely on different pathways. It is also noteworthy that not all the
diversified effects by HDAC inhibitors are solely therapeutic. Rather, it is highly possible
that some effects may be antitherapeutic or even constitute a source of toxicity, as frequently
observed in HDAC inhibitors.

Tumor growth and metastasis depend on the development of a neovasculature within and
around the tumor [80]. Angiogenesis is regulated by the balance between inhibitory factors,
for example, angiostatin, IL-10 and interferon, as well as stimulatory factors, for example,
bFGF, IL-8, MMP-2, MMP-9, TGF-β1 and VEGF, that are released by tumor cells and
surrounding stroma [81]. HDAC inhibitors modulate angiogenesis in a manner that has
potential therapeutic implications. HDAC1 downregulates the expression of p53 and the von
Hippel–Lindau tumor suppressor gene and stimulates angiogenesis of human endothelial
cells. Correspondingly, HDAC inhibitors inhibit endothelial cell proliferation and
angiogenesis by downregulating angiogenesis-related gene expression [63,82]. Phenyl
butyrate, LBH589, LAQ824 and TSA are able to exert antiangiogenic activity both in vitro
and in vivo [61,83]. Other HDAC inhibitors, such as SAHA, FK228, VPA and apicidin,
have also been shown to possess antiangiogenic activities [63,84,85]. Angiogenesis
inhibition, induced by HDAC inhibitors, was associated with modulation of angiogenesis-
related genes in both neoplastic cells; for example, inhibition of HIF-1α and VEGF, and
benign endothelial cells; for example, inhibition of Tie-2 and survivin. Downregulation of
endothelial cell migration and proliferation [85] may also contribute to the angio-
suppressive effect. Furthermore, LBH589 was shown to inhibit human umbilical vein
endothelial cell Matrigel™ invasion and endothelial tube formation in vitro [83].

Studies on combination therapy for gynecologic cancers
Many investigators feel that HDAC inhibitors are more likely to be effective in solid tumors
if used in combination with other cytotoxic reagents. Conceivably, a HDAC inhibitor-
mediated increase in histone acetylation produces a more open chromatin conformation that
facilitates the re-expression of silenced tumor-suppressor genes. This may result in
restoration of apoptotic and/or cell cycle control mechanisms, enhancing the chemo-
sensitivity of tumor cells [86,87]. For example, SAHA, depsipeptide, MS-275 and TSA
enhance the activity of carboplatin, docetaxel gemcitabine, cisplatin, etoposide, doxorubicin
and paclitaxel in ovarian as well as endometrial cancer cells (Table 4). HDAC inhibitor-
induced apoptosis was greatly enhanced in the presence of the DNA methyltransferase
inhibitor 5-aza-2′-deoxycytidine, suggesting that DNA methylation status plays an important
role in the efficacy of HDAC inhibitors [88]. Interestingly, HDAC inhibitors enhanced
paclitaxel-induced cell death in ovarian cancer cell lines, independent of p53 status [89].
While these results indicate clinical value for the combined administration of HDAC
inhibitors with other treatment, one precaution for HDAC inhibitor application is that
pretreatment of tumor cells with HDAC inhibitors may also cause initial cell damage,
resulting in increased side effects.

Uterine papillary serous carcinomas, with their propensity for metastasis and recurrence,
present difficult therapeutic challenges for clinicians. Paclitaxel showed limited efficacy for
patients suffering from this type of diseases, with a median progression-free interval of only
7.3 months [90]. Improved results come from a combined treatment with carboplatin and
paclitaxel. In the adjuvant setting, this treatment increased the median progression-free
survival to 30 months [91]. Dowdy et al. performed preclinical studies in type II endometrial
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cancer cells and found that while treatment of Ark2 and KLE cells with a single reagent,
paclitaxel, doxorubicin, carboplatin or the HDAC inhibitor TSA all inhibited cell
proliferation, significant synergistic action was detected in the combination of TSA/
paclitaxel [41]. Cell death was accompanied by the activation of the cell apoptotic cascade.
Dramatic morphological changes were also observed following treatment with TSA/
paclitaxel [41]. The synergism most likely resulted from a common pathway involving the
inhibition of HDAC activity since similar effects were detected when TSA was substituted
by diversified HDAC inhibitors such as HDAC inhibitor-1 and oxamflatin. Indeed, further
experiments demonstrated that tubulin acetylation plays a central role for the synergistic
actions of the two drugs. While treatment with a single drug led to an increase in acetylated
tubulin and microtubule stabilization, combined treatment with TSA/paclitaxel resulted in
much enhanced effects. Moreover, in a mouse xenograft model, TSA/paclitaxel treatment
resulted in a greater tumor weight reduction than the single agent regimens. Thus, the TSA/
paclitaxel combination seems to hold promise for the treatment of EC and other
malignancies that are resistant to paclitaxel [41].

Sonnemann et al. investigated the sensitivity of ovarian cancer cells to SAHA and paclitaxel
in a pilot study employing three established cell lines (OVCAR-3, SK-OV-3 and A2780) as
well as cancer cell primary cultures [92]. All five isolates were sensitive to SAHA, whereas
four out of five were resistant to paclitaxel. These ex vivo findings support the idea that
SAHA might be effective in the treatment of paclitaxel-resistant ovarian cancer in vivo.
Cooper et al. examined the effects of the SAHA/paclitaxel combination in ovarian cancer
cell line 2774 using in vitro culture and mouse xenograft models [93]. They found that while
a combination of the two did not generate significantly different results as compared with
single agents, paclitaxel followed by SAHA and paclitaxel alone increased survival
compared with SAHA alone or SAHA followed by paclitaxel. The authors concluded that
adding SAHA to ovarian cancer chemotherapy regimens could increase the drug efficacy
and that sequential administration of the drugs is critical to achieving synergism.

PXD101 is a novel hydroxamate-type HDAC inhibitor [94]. A Phase I trial of PXD101 was
performed in patients with advanced solid tumors [95]. Phase II study results of PXD101
were reported by Ramalingam et al. for the treatment of advanced malignant pleural
mesothelioma [96]. In this study, 30 patients with metastatic or recurrent and refractory
pleural mesothelioma were enrolled. Two out of the 30 patients had stable diseases. While
recruitment was still ongoing, initial results appear to be promising. No reported data
regarding PXD101 effects for gynecologic cancer are currently available. It will be of great
interests to examine how effective this potent reagent may be when applied to treat
gynecologic cancers.

Qian et al. examined the anticancer effect of the combined application of PXD101 with
docetaxel, paclitaxel and carboplatin [83]. In the A2780 ovarian cancer xenograft model,
PXD101 as a single agent showed moderate antitumor activity. In the same system, the
combination of PXD101/carboplatin resulted in much increased effects. Interestingly, it was
found that PXD101 was able to increase the acetylation of α-tubulin induced by docetaxel as
well as the phosphorylation of H2AX induced by carboplatin. The efficacy of PXD101
alone or in combination therapy for the treatment of OC requires c linical evaluation [83].

The nonsteroidal anti-inflammatory drug aspirin has shown promise as an antineoplastic
agent. Sonnemann et al. found that HDAC inhibitors SAHA, NaB and aspirin cooperated
synergistically to induce cell death in the OC cell line A2780 [97]. However, histone
acetylation was not affected by aspirin neither in the absence or presence of HDAC
inhibitors. The exact molecular pathway responsible for the observed synergism could not
be fully explained by the currently available data.
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It was thought that the antitumor effects of HDAC inhibitors are mediated by the
reactivation of silenced tumor-suppressor genes. However, it is clear that a variety of
nonhistone proteins are acetylation targets. The regulation mechanisms and cellular effects
of nonhistone acetylation are not fully understood. As described above, one HDAC target is
tubulin. Tubulin acetylation modulates microtubule assembly and disassembly and the
disturbance of the balanced actions has destructive effects on cellular functions, ultimately
leading to cell death. Zhang et al. reported that HDAC6 is capable of interacting with
purified tubulin and microtubules in vitro and HDAC6 colocalizes with microtubules in
NIH-3T3 cells [98]. Tubulin acetylation is increased following TSA treatment. Moreover,
knockout of the HDAC6 gene also led to elevated levels of α-tubulin acetylation.
Blagosklonny et al. demonstrated an immediate acetylation of the Lys40 residue in α-tubulin
following TSA treatment, and that this process was also accompanied by the initiation of
cell apoptosis [20]. Paclitaxel has also been shown to bind to and stabilize microtubules,
eventually precipitating apoptosis [99]. As discussed above, Dowdy et al. observed a
pronounced synergistic effect of the TSA/paclitaxel combination on α-tubulin acetylation,
microtubule stabilization and endometrial cancer cell apoptosis in cell culture and mouse
xenograft models [41], thereby suggesting a significant role for nonhistone p roteins in
HDAC-mediated cell function.

Conclusion
Accumulated evidence supports the idea that acetylation of histone and nonhistone proteins
plays a critical role in a variety of cell functions, including gene expression, microtubule
assembly, cell apoptosis and cell cycle regulation. The significant alterations of HDAC
expression levels and frequent epigenetic silencing of tumor-suppressor genes in ovarian and
endometrial cancers further corroborates the value of HDACs as therapeutic targets for the
treatment of gynecologic malignancies. Numerous in vitro, ex vivo and clinical trials have
been performed to investigate the effects, regimen designs, molecular mechanisms,
therapeutic values and side effects of HDAC inhibitors as a new class of chemotherapy
reagents. Relatively high response rates and low toxicity profiles of available HDAC
inhibitors have been observed in several studies. Despite the promising develop ment, there
are several issues that need to be addressed before moving forward. A better understanding
of the molecular basis behind the antiendometrial and antiovarian cancer activities of HDAC
inhibitors is essential. Translational studies are also required to correlate protein acetylation
and gene transcription to tumor response and patient survival for more objective data
interpretation and improvement of regimen arrangement in terms of dosing, scheduling and
formulations. Owing to the need for constant drug exposure to achieve in vivo tumor mass
reduction, a more detailed study and comparison of the pharmacokinetic profiles for various
HDAC inhibitor is needed. Rationally designed combinations of HDAC inhibitors with
conventional chemotherapy drugs for treatment of gynecologic cancers are showing
encouraging results in tumor cell culture and animal models. However, the efficacy of these
combination therapies has yet to be proven in clinical trials. Despite these difficulties,
through coordinated efforts in basic, translational and clinical fields, the use of HDAC
inhibitors is expected to open up a new avenue in mechanism-based therapy for gynecologic
cancers.

Future perspective
The FDA has approved vorinostat (SAHA) and romidepsin (Istodax®) for the treatment of
cutaneous lymphoma. These drugs are actively being tested for application in solid tumors.
Representing a new class of anticancer reagents, HDAC inhibitors will be more extensively
investigated, setting the stage for the discovery and development of novel compounds with
improved inhibitory potency or HDAC isoform specificity. In 5–10 years, additional HDAC
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inhibitors will be subjected to clinical trials. It is also expected that the combination
treatment strategy will allow for a significant decrease in the doses of both drugs without
sacrificing efficacy. Future clinical trials may provide evidence for the efficacy of HDAC
inhibitors in sensitizing hormone- and drug-resistant gynecologic cancers to radiation and
chemotherapy.

While the major cellular effects of HDAC inhibitors, including those affecting cell cycle
progression and apoptosis, have been well recognized, the detailed molecular mechanisms
remain to be elucidated. Further characterization of tissue-specific control, hormonal
regulation and the oncogenic alterations in HDAC gene expression will provide insight into
how HDAC inhibitors affect cell function. Studies on the regulation of nonhistone protein
acetylation will enrich our knowledge on the diverse acetylation targets and pathways. The
development of new proteomics and DNA sequencing technologies has opened the door for
in-depth analysis of the mechanistic aspects attributable to the observed effects. These
studies may lead to a better understanding of the cellular response to HDAC inhibitors and,
ultimately, to an i ndividualized regimen for gynecologic cancer patients.
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Executive summary

Expression of histone deacetylases in endometrial & ovarian cancer

▪Overexpression of class I histone deacetylases (HDACs) is detected in ovarian
carcinoma (OC) and endometrial carcinoma (EC); increased HDAC expression
levels correlate with a poor prognosis of OC and EC patients.

▪HDACs participate in regulation of the cell cycle and may also play a role in the
control of steroid hormone-dependent gene expression.

Preclinical studies on HDAC inhibitors in gynecologic cancer cells

▪HDAC inhibitors (HDACi) induce dramatic changes in gene expression. HDACi
are potent inhibitors for the proliferation of gynecologic cancer cells.

▪HDACi inhibits angiogenesis by downregulating the expression of angiogenesis-
related genes.

Studies on combination therapy for gynecologic cancers

▪Combination approaches using HDACi and conventional reagents have been tested
in cell culture, as well as mouse xenografts. Improved drug effects have been
observed in many experiments.

▪The HDAC inhibitor/taxol combination has been shown to be very effective for EC
and OC cells.
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Table 2

Histone deacetylase inhibitors modulate gene transcription in endothelial cells to inhibit tumor-driven
angiogenesis.

Gene Function on
angiogenesis Target cell Direction of

modulation Ref.

Tie2 Promotes Endothelial ↓ [61]

Ang2 Promotes Endothelial ↓ [61]

Nrp1 Promotes Endothelial ↓ [62]

SEMA3 Suppresses Endothelial ↑ [62]

VEGFR1 Promotes Endothelial ↓ [62]

VEGFR2 Promotes Endothelial ↓ [62]

eNOS Promotes Endothelial ↓ [63]

VEGFD P Promotes Endothelial ↓ [64]

Future Oncol. Author manuscript; available in PMC 2012 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Singh et al. Page 21

Ta
bl

e 
3

Pu
bl

is
he

d 
st

ud
ie

s o
n 

hi
st

on
e 

de
ac

et
yl

as
e 

in
hi

bi
to

rs
 in

 g
yn

ec
ol

og
ic

 c
an

ce
rs

.

H
D

A
C

i
C

la
ss

E
nt

ity
Fu

nc
tio

n
R

ef
.

TS
A

H
yd

ro
xa

m
ic

En
do

m
et

ria
l c

an
ce

r
In

hi
bi

t V
EG

F 
re

ce
pt

or
s V

EG
FR

1,
 V

EG
FR

2 
an

d 
N

rp
1

In
du

ce
 g

ly
co

de
lin

 e
xp

re
ss

io
n

[3
1,

10
0]

V
al

pr
oi

c 
ac

id
/

va
lp

ro
at

e
Sh

or
t-c

ha
in

fa
tty

 a
ci

ds
En

do
m

et
ria

l c
an

ce
r

D
ow

nr
eg

ul
at

io
n 

of
 e

N
O

S 
in

 e
nd

ot
he

lia
l c

el
ls

In
hi

bi
t G

1/
S 

tra
ns

iti
on

 a
nd

 in
flu

en
ce

 e
xp

re
ss

io
n 

of
 p

21
W

A
F1

 a
nd

cy
cl

in
 D

1

[3
1,

63
]

SA
H

A
 (v

or
in

os
ta

t,
zo

lin
za

)
H

yd
ro

xa
m

ic
En

do
m

et
ria

l a
nd

ov
ar

ia
n 

ca
nc

er
D

ec
re

as
e 

th
e 

pr
op

or
tio

n 
of

 c
el

ls
 in

 S
 p

ha
se

 a
nd

 in
cr

ea
se

 th
e

pr
op

or
tio

n 
of

 c
el

ls
 in

 th
e 

G
0/

G
1 

an
d/

or
 G

2/
M

 p
ha

se
s

In
du

ce
 g

ly
co

de
lin

 e
xp

re
ss

io
n

[7
7]

O
va

ria
n 

ca
nc

er
H

ad
 m

in
im

al
 a

ct
iv

ity
 in

 a
 P

ha
se

 II
 st

ud
y

In
du

ce
 a

po
pt

os
is

[9
3,

10
1]

R
30

64
65

H
yd

ro
xa

m
ic

O
va

ria
n 

ca
nc

er
In

du
ce

 a
po

pt
os

is
 a

nd
 in

hi
bi

t a
ng

io
ge

ne
si

s
[1

02
]

B
ut

yr
at

es
Sh

or
t-c

ha
in

fa
tty

 a
ci

ds
En

do
m

et
ria

l a
nd

ov
ar

ia
n 

ca
nc

er
R

eg
ul

at
e 

IC
A

M
-1

 a
nd

 E
-s

el
ec

tin
[1

02
]

Ps
A

A
 p

he
no

lic
na

tu
ra

l p
ro

du
ct

is
ol

at
ed

 fr
om

m
ar

in
e 

sp
on

ge
s

En
do

m
et

ria
l a

nd
ov

ar
ia

n 
ca

nc
er

In
du

ce
 th

e 
ex

pr
es

si
on

 o
f a

ce
ty

la
te

d 
H

3 
an

d 
H

4 
hi

st
on

e 
pr

ot
ei

ns
U

pr
eg

ul
at

e 
th

e 
ex

pr
es

si
on

 o
f c

yc
lin

-d
ep

en
de

nt
 k

in
as

e 
in

hi
bi

to
r,

p2
1W

A
F1

 a
nd

 d
ow

nr
eg

ul
at

e 
th

e 
ex

pr
es

si
on

 o
f p

R
b,

 c
yc

lin
s a

nd
cy

cl
in

-d
ep

en
de

nt
 k

in
as

es

[2
8,

71
]

Ps
A

M
ar

in
e 

sp
on

ge
co

m
po

un
d

En
do

m
et

ria
l c

an
ce

r
In

du
ce

 a
po

pt
os

is
 in

 e
nd

om
et

ria
l c

ar
ci

no
m

a 
ce

lls
[1

5]

N
V

P-
LA

Q
82

4
(d

ac
in

os
ta

t)
H

yd
ro

xa
m

ic
En

do
m

et
ria

l c
an

ce
r

B
lo

ck
 ty

ro
si

ne
 k

in
as

e 
re

ce
pt

or
s T

ie
2 

an
d 

Ti
e2

 li
ga

nd
, A

ng
2,

m
R

N
A

 a
nd

 p
ro

te
in

 e
xp

re
ss

io
n

[6
1]

B
ut

yr
at

e
Sh

or
t-c

ha
in

fa
tty

 a
ci

ds
En

do
m

et
ria

l a
nd

ov
ar

ia
n 

ca
nc

er
s

In
du

ce
 p

53
 e

xp
re

ss
io

n
[3

6,
37

]

O
xa

m
fla

tin
H

yd
ro

xa
m

ic
En

do
m

et
ria

l c
an

ce
r I

an
d 

II
Lo

ss
 o

f m
ito

ch
on

dr
ia

l m
em

br
an

e 
po

te
nt

ia
ls

 c
on

si
st

en
t w

ith
 th

e
in

du
ct

io
n 

of
 a

po
pt

os
is

[7
6]

H
D

A
C

i-1
, H

D
A

C
-I

1
En

do
m

et
ria

l c
an

ce
r I

an
d 

II
In

du
ct

io
n 

of
 a

po
pt

os
is

[7
6]

C
I-

95
8

B
en

za
m

id
e

O
va

ria
n 

ca
nc

er
Po

te
nt

ly
 in

hi
bi

t D
N

A
 a

nd
 R

N
A

 sy
nt

he
si

s
[1

03
]

PX
D

10
1(

B
el

in
os

ta
t)

H
yd

ro
xa

m
ic

Ep
ith

el
ia

l o
va

ria
n

ca
nc

er
 a

nd
m

ic
ro

pa
pi

lla
ry

/
bo

rd
er

lin
e

ov
ar

ia
n 

tu
m

or
s

Pl
at

in
um

-r
es

is
ta

nt
 e

pi
th

el
ia

l o
va

ria
n 

ca
nc

er
 a

nd
m

ic
ro

pa
pi

lla
ry

/b
or

de
rli

ne
H

is
to

ne
 H

4 
hy

pe
ra

ce
ty

la
tio

n

[1
04

,1
05

]

Sc
rip

ta
id

H
yd

ro
xa

m
ic

En
do

m
et

ria
l a

nd
ov

ar
ia

n 
ca

nc
er

s
In

du
ce

 a
po

pt
os

is
 a

nd
 in

cr
ea

se
 a

ce
ty

la
tio

n 
of

 h
is

to
ne

 ta
ils

D
ec

re
as

e 
th

e 
pr

op
or

tio
n 

of
 c

el
ls

 in
 th

e 
S 

ph
as

e 
an

d 
in

cr
ea

se
 th

e
pr

op
or

tio
n 

in
 th

e 
G

0/
G

1 
an

d/
or

 G
2/

M
 p

ha
se

s

[6
7]

FK
22

8 
(r

om
id

ep
si

n/
de

ps
ip

ep
tid

e)
En

do
m

et
ria

l c
an

ce
r

M
od

ul
at

io
n 

of
 a

ng
io

ge
ne

si
s-

re
la

te
d 

ge
ne

s
In

hi
bi

tio
n 

of
 e

nd
ot

he
lia

l c
el

l m
ig

ra
tio

n 
an

d 
pr

ol
ife

ra
tio

n
[6

3]

Future Oncol. Author manuscript; available in PMC 2012 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Singh et al. Page 22

H
D

A
C

i
C

la
ss

E
nt

ity
Fu

nc
tio

n
R

ef
.

A
pi

ci
di

n
Te

tra
pe

pt
id

es
En

do
m

et
ria

l a
nd

ov
ar

ia
n 

ca
nc

er
s

In
cr

ea
se

 a
ce

ty
la

tio
n 

of
 H

3 
an

d 
H

4 
hi

st
on

e 
ta

ils
In

du
ce

 a
po

pt
os

is
[6

8]

B
ip

he
ny

l-4
-y

l-
ac

ry
lo

hy
dr

ox
am

ic
ac

id
 d

er
iv

at
iv

es

H
yd

ro
xa

m
ic

O
va

ria
n 

ca
nc

er
In

du
ce

 a
ce

ty
la

tio
n 

of
 p

53
 a

nd
 tu

bu
lin

[1
06

]

C
B

H
A

H
yd

ro
xa

m
ic

En
do

m
et

ria
l a

nd
ov

ar
ia

n 
ca

nc
er

s
In

cr
ea

se
 a

ce
ty

la
tio

n 
of

 h
is

to
ne

 p
ro

te
in

s a
nd

 in
du

ce
 a

po
pt

os
is

[6
6]

LB
H

58
9

(p
an

ob
in

os
ta

t)
H

yd
ro

xa
m

ic
En

do
m

et
ria

l c
an

ce
r

En
do

th
el

ia
l t

ub
e 

fo
rm

at
io

n 
an

d 
M

at
rig

el
™

 in
va

si
on

[8
3]

M
34

4
H

yd
ro

xa
m

ic
En

do
m

et
ria

l a
nd

ov
ar

ia
n 

ca
nc

er
s

A
ce

ty
la

tio
n 

of
 h

is
to

ne
s, 

in
du

ct
io

n 
of

 a
po

pt
os

is
 a

nd
 in

cr
ea

se
 th

e
pr

op
or

tio
n 

of
 c

el
ls

 in
 th

e 
G

0/
G

1 
an

d/
or

 G
2/

M
 p

ha
se

s
[1

07
]

V
al

pr
oa

te
Sh

or
t-c

ha
in

fa
tty

 a
ci

ds
En

do
m

et
ria

l c
an

ce
r

In
hi

bi
t G

1/
S 

tra
ns

iti
on

 a
nd

 in
flu

en
ce

 e
xp

re
ss

io
n 

of
 p

21
W

A
F1

 a
nd

cy
cl

in
 D

1
[5

8]

eN
O

S:
 E

nd
ot

he
lia

l n
itr

ic
 o

xi
de

 sy
nt

ha
se

; H
D

A
C

i: 
H

is
to

ne
 d

ea
ce

ty
la

se
 in

hi
bi

to
r; 

SA
H

A
: S

ub
er

oy
la

ni
lid

e 
hy

dr
ox

am
ic

 a
ci

d;
 T

SA
: T

ric
ho

st
at

in
.

Future Oncol. Author manuscript; available in PMC 2012 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Singh et al. Page 23

Ta
bl

e 
4

C
om

bi
na

tio
n 

of
 h

is
to

ne
 d

ea
ce

ty
la

se
 in

hi
bi

to
rs

 w
ith

 o
th

er
 a

nt
itu

m
or

 a
ge

nt
s i

n 
gy

ne
co

lo
gi

c 
ca

nc
er

s.

H
D

A
C

i
C

la
ss

O
th

er
 a

ge
nt

s
D

is
ea

se
Fu

nc
tio

n
R

ef
.

TS
A

H
yd

ro
xa

m
ic

5-
az

a-
2′

-
de

ox
yc

yt
id

in
e

En
do

m
et

ria
l c

an
ce

r
In

hi
bi

t V
EG

F 
re

ce
pt

or
s V

EG
FR

1,
 V

EG
FR

2 
an

d 
N

rp
1-

1.
85

D
ow

nr
eg

ul
at

e 
D

N
M

T3
B

 m
R

N
A

 a
nd

 p
ro

te
in

 e
xp

re
ss

io
n

[3
1,

62
,1

08
]

PX
D

10
1

(b
el

in
os

ta
t)

H
yd

ro
xa

m
ic

C
ar

bo
pl

at
in

Pa
cl

ita
xe

l
O

va
ria

n,
 e

pi
th

el
ia

l
an

d 
fa

llo
pi

an
tu

be
 c

an
ce

rs

H
is

to
ne

 H
4 

hy
pe

ra
ce

ty
la

tio
n

[1
2,

10
4]

TS
A

, N
aB

Pa
cl

ita
xe

l
O

va
ria

n 
ca

nc
er

In
du

ct
io

n 
of

 p
53

 p
ro

te
in

[8
9]

TS
A

H
yd

ro
xa

m
ic

Pa
cl

ita
xe

l
En

do
m

et
ria

l c
an

ce
r

In
du

ct
io

n 
of

 p
21

In
cr

ea
se

 a
ce

ty
la

tio
n 

of
 tu

bu
lin

 a
nd

 m
ic

ro
tu

bu
le

st
ab

ili
za

tio
n

[4
1]

SA
H

A
(v

or
in

os
ta

t),
N

aB

H
yd

ro
xa

m
ic

,
sh

or
t-c

ha
in

fa
tty

 a
ci

ds

A
sp

iri
n

O
va

ria
n 

ca
nc

er
In

du
ct

io
n 

of
 a

po
pt

os
is

[9
7]

PX
D

10
1

(b
el

in
os

ta
t)

H
yd

ro
xa

m
ic

D
oc

et
ax

el
Pa

cl
ita

xe
l

C
ar

bo
pl

at
in

O
va

ria
n 

ca
nc

er
En

ha
nc

e 
ca

rb
op

la
tin

 a
nt

ic
an

ce
r e

ff
ec

t i
n 

xe
no

gr
af

t
In

cr
ea

se
 th

e 
ph

os
ph

or
yl

at
io

n 
of

 H
2A

X
 in

du
ce

d
by

 c
ar

bo
pl

at
in

En
ha

nc
e 

in
du

ct
io

n 
of

 h
is

to
ne

 H
4 

hy
pe

ra
ce

ty
la

tio
n

[8
3]

SA
H

A
H

yd
ro

xa
m

ic
Pa

cl
ita

xe
l

O
va

ria
n 

ca
nc

er
Sl

ig
ht

ly
 in

du
ce

 a
po

pt
os

is
[1

03

H
D

A
C

i: 
H

is
to

ne
 d

ea
ce

ty
la

se
 in

hi
bi

to
r; 

SA
H

A
: S

ub
er

oy
la

ni
lid

e 
hy

dr
ox

am
ic

 a
ci

d;
 T

SA
: T

ric
ho

st
at

in
.

Future Oncol. Author manuscript; available in PMC 2012 October 1.


