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Abstract
We study the trajectories of a single colloidal particle as it hops between two energy wells which
are sculpted using optical traps. Whereas the dynamical behaviors of such systems are often
treated by master-equation methods that focus on particles as actors, we analyze them instead
using a trajectory-based variational method called maximum caliber (MaxCal). We show that the
MaxCal strategy accurately predicts the full dynamics that we observe in the experiments: From
the observed averages, it predicts second and third moments and covariances, with no free
parameters. The covariances are the dynamical equivalents of Maxwell-like equilibrium reciprocal
relations and Onsager-like dynamical relations.

We explore the kinetics of two-state processes, A ⇌ B, at the one-particle level. Examples
of single-molecule or single-particle dynamical processes that mimic this two-state
dynamics include DNA loop formation [1], protein folding oscillations [2], or ion-channel
opening and closing kinetics [3]. Two-state fluctuating systems having fixed rates are called
random-telegraph processes.

One way to understand two-state and random-telegraph processes is through master
equations, which are differential equations that are solved for time-dependent probability
density functions [4]. For single-particle and few-particle systems, however, other
convenient experimental observables are the trajectories themselves rather than the time-
dependent populations of the two states. Here we describe an experimental model system to
study such single-particle two-state stochastic trajectories. We use these experiments to test
a theoretical strategy, called maximum caliber, that provides a way to predict the full
trajectory distributions, given certain observed mean values. It has not yet been much tested
experimentally; that is the purpose of the present work.

Using dual optical traps, we have “sculpted” various energy landscapes. We can control the
relative time the particle spends in its two states and the rate of transitioning between them.
Our method follows from earlier work on the dual trapping of colloidal particles that was
used to study Kramers reaction rate theory [5]. While these experiments were previously
focused on studying average rates, our interest here is in the probability distribution of
trajectories.
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We trap a 1 μm silica bead in a neighboring pair of optical traps. The laser at 532 nm, 100
mW, provides an inverted double-Gaussian shaped potential. An acousto-optic deflector
alternately sets up two traps close together in space, at a switching rate of 10 kHz, which is
both much faster than each individual trap's corner frequency [6] and also the fastest bead
hopping rate. The strength of each trap and the spacing between them can be controlled in
order to sculpt the shape of the potential. A tracking 658 nm red laser at 1 mW was used to
determine the position of the bead. The forward scattered light is imaged through a
microscope condenser onto a position-sensitive detector [7]. The green trapping laser light at
the detector is filtered out by a long-pass filter. The data were recorded at a rate of 20 kHz,
which sets the fundamental time step Δt for our analysis. Trajectories were recorded for
intervals ranging from 20 minutes to more than 1 hour, depending on the hopping rate. A
simple threshold was used to determine states in the trajectories.

First proposed by Jaynes in 1980, maximum caliber (MaxCal) is a variational principle that
purports to predict dynamical properties of systems in much the same way that the
maximum entropy (MaxEnt) approach predicts the properties of equilibrium systems; both
use information theory as a basis [8]. MaxCal has been shown to be a simple and useful way
to derive the flux distributions in diffusive systems, such as in Fick's law of particle
transport, Fourier's law of heat transport, and Newton's viscosity law of momentum transport
[9]. The algorithm of MaxCal is identical to that of MaxEnt. As a reminder, MaxEnt
augments the Shannon entropy S = Σsps ln ps, where ps denotes the probability of a state s
(using the technique of Lagrange multipliers), with moment quantities that are conserved
within the chosen ensemble; maximizing the entropy produces the probability distribution of
states in equilibrium. In MaxCal, an entropylike quantity taking on the same C = Σipi ln pi
form, where C is the caliber and pi denotes the probability of the ith trajectory, is also
augmented with moment-type quantities which are in fact experimental observables.
Maximization of the caliber thus predicts the full distribution of trajectories. Thus MaxCal
plays the same role for dynamics that MaxEnt plays for equilibrium.

Examples of trajectories in our system are shown in Fig. 1. By trajectory, we mean one
individual time sequence of events over which the particle can transition back and forth
many times between states A and B. In our experiments, we divide time into discretized time
intervals Δt set by the inverse of our sampling rate. A trajectory has N time steps, so it lasts
for a total time NΔt. We aim to characterize the probability distribution for all trajectories
given the known constraints on the space of possible trajectories, as defined by our first-
moment experimental observables.

We take a reduced view of the experimental system which will allows the solution to pi to be
analytically tractable. For each Δt time step, there are four possible transitions. If the system
is in state a, it can stay in state a or switch to state b. Similarly, if the system is in state b, it
can stay in state b or switch to state a. Over the entirety of the ith trajectory, the total number
of transition events from a to a is represented by the variable Naa, with Nab, Nba, and Nbb
defined similarly. In the experiments, the observables are the averages of these quantities,
〈Nab〉, 〈Nba〉, 〈Naa〉, and 〈Nbb〉, taken over all of the trajectories [summarized in Eqs. (3) and
(4)]. Thus there are four corresponding unknown Lagrange multipliers (plus normalization)
which are fully determined by the four observables. In this case, the caliber is defined as C =
−Σi[pi ln pi − λ0 pi − pi(λaaNaa,i − λabNab,i − λbaNba,i − λbbNbb,i)], where the λ's are the
corresponding Lagrange multipliers. [Among this set of five Lagrange multipliers, there are
only two independent variables (see below), so only two experimental average quantities are
required [10]]. The probabilities pi of all of the trajectories are then found by maximizing

the caliber .
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The calculation of the pi's is made simple by the use of the trajectory partition function Qd,
which serves for our dynamical system very much the same role that the equilibrium
partition function serves for the Boltzmann distribution law of equilibrium. For 2N

trajectories having N time steps, Qd is given by

(1)

and the probability of a particular trajectory labeled i is given by

(2)

We write the exponentiated Lagrange multipliers as the “statistical weights” α, β, ωf, and ωr,
with respect to the observables described above: α is the statistical weight that, given that the
system is in state A at time t, it is also in state A at time t + Δt; β, for staying in state B at
time t + Δt, given that the system was in B at time t; ωf, for switching from A to B in the
time interval Δt; and ωr, for switching from B to A in the time interval Δt.

It is readily shown that the average quantities are simply derivatives of the partition
function; for example,

(3)

and

(4)

together define the statistical weights.

The MaxCal strategy is as follows. First, experiments give the four trajectory-averaged
quantities such as 〈Nbb〉, 〈Nab〉, etc. Second, substituting those measured values into Eqs. (3)
and (4) gives four equations that are solved for the four unknowns α, β, ωf, and ωr. This now
gives all of the information needed to compute Qd and pi for any trajectory from Eqs. (1)
and (2). Finally, taking the second and higher derivatives of Qd gives the higher moments

(i.e., the dynamical fluctuations) of the observables, such as .

In addition, other properties of interest are also readily computed. Let NB represent the
number of units of time that the system spends in state B. Then we have for each individual
trajectory NB = Nab + Nbb + N0b and NA = Naa + Nba + N0a, where N0b is 0 (1) if the
trajectory begins in state A (B) and N0a is 1 (0) if the trajectory begins in state A (B). If the
number of steps is sufficiently large, the contribution from initial conditions can be ignored.
Hence the variance for NB is given by

.
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Mixed moments and covariances are obtained from mixed derivatives of Qd. For example,

(5)

which leads to . Higher derivatives of
Qd give information about the higher-order fluctuations. Hence, given Qd, all of the
trajectory observables and their moments can be computed. More details of the theoretical
approach for this problem are given in Ref. [10].

A simple way to compute Qd is through the matrix propagator G:

(6)

where each element of G represents the statistical weight of transitioning from some initial
state during each time step. We consider here only stationary processes, for which the
statistical weights are time-independent, but the MaxCal method itself is not limited to such
simple dynamics. We can express Qd = (11)GN−1(a0 b0)T, where (a0 b0)T denotes the initial
state probabilities. Thus all of the higher moments of the observables are analytically
tractable since Qd can always be expressed in terms of partial derivatives of the eigenvalues
of G. For nonstationary processes, the G matrix would differ for each time step.

Thus the probability of being in state A at time t is given by

(7)

Again, N = t/Δt; this is another form of Eq. (2). For random-telegraph processes, this form of
the probability of a trajectory reproduces the conventional result from master equations [4].
In MaxCal, the higher moments of the observables are easily accessed by taking higher
derivatives of Qd; it is unclear how to compute similar quantities from the traditional
approach [11].

Functional similarities between microscopic models in statistical mechanics and equations
of state in thermodynamics allows assignment of undetermined Lagrange multipliers in the
MaxEnt formalism to physically realizable quantities, such as β ↔ T−1 [12]. We now make
similar correspondences between the MaxCal-derived statistical weights with probabilities.
The four (exponentiated) Lagrange multipliers α, β, ωf, and ωr in matrix G are reminiscent
of a Markov chain propagator. Thus we choose to assign α ↔ P(A, t + Δt|A, t), ωf ↔ P(B, t
+ Δt|A, t), β ↔ P(B, t + Δt|B, t), and ωr ↔ P(A, t + Δt|B, t); each is a probability of moving
between or among states in time Δt. Thus α + ωf = 1 and β + ωr = 1 enforces probability
conservation; these conservation relations also fall out of calculating the first partial
derivatives of Qd against observed first moments. The Lagrange multipliers can be
interpreted as log transition probabilities. G becomes
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and the master equation follows immediately. The advantage of the MaxCal approach is that
Qd readily provides information about trajectory observables not obviously accessible from
master equations.

We now show tests of the MaxCal predictions. Given the first-moment averages observed
for the trajectories, MaxCal predicts the second moments. Figure 2 shows that two such
predicted second moments are in good agreement with the experimental data.

Figure 3 compares one experimental third cumulant with the predicted value from caliber
obtained from the measured first moments. The first moments are easy to measure with good
accuracy from short trajectories, so one virtue of the caliber approach is that all of the higher
predicted moments are noise-free compared to higher moments extracted from data:
Predicted moments are dependent on first moments only, whereas data-based higher
moments are contaminated by noise from every other lower moment. See the supplementary
information [13] for more detail.

Figure 3 also shows the quantity 〈NBNab〉 − 〈NB〉〈Nab〉. These covariances, equivalent to
mixed moments, give an alternative way to express reciprocal relationships resembling the
Maxwell relations of thermodynamics and Onsager's reciprocal relations for dynamical
processes near equilibrium. In essence, this means that one trajectory observation counts for
two: Small perturbations on a trajectory are equivalent to observing covariances; thus,
without performing additional experiments or recalculating Qd, we know how the system
will behave for different potential wells—just looking at the fluctuations is enough.

We can compute the ratio NA/NB = K. As t → ∞, this ratio simply becomes the equilibrium
constant Keq for the relative populations of the two states A and B. In the small-time limit,
for this single particle, this ratio is not a single number, as it would be in a bulk equilibrium
experiment; rather in single-particle cases, this has a distribution of values. Figure 4 shows
these distributions for a situation in which the average is 〈NA/NB〉 ∼ 1. The distribution
approaches a δ function as t → ∞ and thus K → Keq. In -diffusion-related problems, small-
number situations in which particles flow up concentration gradients, rather than down, have
been referred to as “bad actors” [9]; the number of bad actors diminishes as trajectories get
longer. We also see that simulation of the partition function matches the experimentally
measured distributions of NA/NB. This indicates that the chosen first-moment constraints are
sufficient to describe the entire trajectory space.

In summary, we have studied a single colloidal particle undergoing a two-state process A ⇌
B with stationary rates. By measuring short trajectories, we obtain first-moment observables
〈Nbb〉, 〈Naa〉, 〈Nba〉, and 〈Nab〉. The variational principle of maximum caliber is then used to
predict the higher moments of the observables as well as the full probability distribution of
the trajectories. Maximum caliber also gives other dynamical reciprocal quantities,
resembling Maxwell-like relations. We believe that trajectory-based dynamical modeling
such as this will be useful in single-molecule and few-molecule science.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Sculpted energy landscapes (left, averaged 20 minutes) and the corresponding
microtrajectories. The trace is raw data; states are assigned after boxcar filtering and
threshold finding. Top: The lower state is slightly more populated; there is a high barrier
(infrequent transitions). Bottom: The upper state is more populated; the barrier is small
(frequent transitions). The distance between the two potential minima ranges from 200 to
700 nm.
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Fig. 2.
Second moment of the trajectory distribution. The x axes give the predicted second moments
from the MaxCal approach, based on the known first moments. The y axes give the
experimental values of the second moments. Left: Variance of 〈NB〉; right: variance of
〈Nba〉. The dashed lines are the best linear fits; fitting parameters are inset. Each point
represents one experimentally observed trajectory. Trajectories were 30000 Δt units long,
and errors were calculated for around 600 trajectories. ωr and ωf values ranged from 1 ×
10−5 to 1 × 10−3.
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Fig. 3.
Experiments vs theory for the covariance and third cumulant. Left: One covariance quantity.
Right: The third cumulant of Nba. The dashed lines are the best linear fits; fitting parameters
are inset.
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Fig. 4.
The probability distribution of NA/NB = Keq as a function of time. We obtain the dashed line
from Monte Carlo simulation of Qd and corresponding columns from experimental data. The
distribution of time spent in A vs B is broad for short times (left) but becomes narrower for
increasing trajectory length (right). N denotes the length of each trajectory, each repeated
around 100 times. As the length of trajectories increases, the equilibrium constant assumes a
delta-function distribution, commensurate with equilibrium assumptions regarding chemical
reactions.
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