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Abstract

Background: The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1
(Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of
several hundreds of bread wheat varieties worldwide.

Methodology/Principal Findings: Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS
chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA
yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.436 sequence coverage
of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis
revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing
1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%)
being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related
sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been
verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza
sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short
arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2.
Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to
chromosome 5 of rice.

Conclusions: The present study revealed the gene content and potential gene functions on this chromosome arm and
demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research
as well as in breeding of wheat and rye.
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Introduction

From the beginning of the last century, several attempts have

been made to integrate useful genetic variations of related species

into cultivated hexaploid wheat by means of inter-specific

hybridisation. In the 1930s in Germany, hybridisation between

a cultivar of bread wheat (Triticum aestivum L.) and cv. ‘Petkus’ of

rye (Secale cereale L.) was followed by a spontaneous homoeologous

substitution, replacing wheat chromosome 1B by chromosome

1R of rye. The rye chromosome fully compensated for the

missing chromosome 1B. However, its presence remained

undetected until the early 1970s [1]. Later it was found that

chromosome 1R could largely compensate also for the absence of

chromosomes 1A and 1D belonging to the same homoeologous

group.

Subsequent crossings of hexaploid wheat lines bearing the 1B/

1R substitution with lines without the substitution chromosome led

to the emergence of the translocation chromosome 1BL.1RS, in

which the short arm of 1R (1RS) was translocated to the long arm

of the wheat chromosome 1B (1BL), replacing the 1BS short arm

of wheat. Later, translocations involving the chromosome arms

1AL and 1DL were also developed [2,3]. All of these

translocations were found to confer resistance to several diseases

caused by pathogens in wheat, including powdery mildew, leaf

rust, stem rust, yellow rust and insects, as well as Russian wheat

aphid, green bug and wheat curl mite, the last being the vector of

the wheat streak mosaic virus [2,4–9]. Importantly, in certain

wheat backgrounds the 1RS chromosome arm was found to

improve adaptation to low moisture conditions and increase the

yield of wheat [10,11]. Recently it has been suggested that the
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yield increase may be due to the enlarged root biomass [12]. A

corresponding QTL region was localised in the distal part of 1RS

[13,14].

Due to these valuable characteristics, wheat lines carrying 1RS

have been integrated into CIMMYT’s (Centro Internacional de

Mejoramiento de Maı́z y Trigo; International Maize and Wheat

Improvement Center) wheat breeding program. Through this

program, chromosome 1RS was distributed worldwide. Hundreds

of wheat cultivars were later found carrying the 1BL.1RS

translocation [15,16]. In the US, wheat varieties with a 1AL.1RS

translocation were developed carrying 1RS from the rye cultivar

Insave. The distribution of this translocation, however, remained

confined to the US [7]. Wheat varieties with 1DL.1RS

chromosome have never gained practical relevance.

Rye is a close relative of wheat. Its 1C-value was estimated to be

8.095 pg DNA [17] or 7917 Mbp [18]. Based on the measure-

ment of chromosome lengths by Schlegel et al. [19], the molecular

size of the short arm of 1R is estimated to be 442 Mbp. Similar to

other grass species, the rye genome contains large quantities of

non-coding repetitive DNA, reported to comprise 84–92% of the

genome [20,21]. The short arm of 1R carries a satellite separated

by a secondary constriction, which is also known as the nucleolus-

organizing region (NOR) and contains genes coding for 45S

rRNA. The number of the 45S rDNA genes was estimated to be

about 2,000, amounting to about 3% of 1RS DNA [22]. The

satellite also bears a 5S-rDNA locus with about 5,000 copies of the

5S rDNA gene, constituting 0.4% of 1RS DNA [22]. Genetic and

physical mapping of 1RS showed that most of the previously

identified genes cluster within the satellite of 1RS [23–31]. In this

region, secalin genes [32] as well as a number of genes conferring

resistance to leaf and stripe rust [8] Russian wheat aphid [9], green

bug and wheat curl mite [7] were localised. Several molecular

markers having been developed for 1RS are also located in the

distal region [27,31], which is marked by close synteny to the short

arm of the homoeologous group 1 of wheat [33].

The colinearity of plant genomes has been established by the

development of genetic markers and linkage mapping. Colinearity

of genomes has been characterised in detail for grass species

[34,35]. Detailed colinearity maps of grasses have culminated in

DNA sequence-based comparisons [36]. The availability of nearly

complete genome sequences in small genome cereals such as rice,

sorghum and Brachypodium distachyon facilitates colinearity analysis

of large genome cereals using these small genomes as templates.

Recently, Hackauf et al. [37] assessed colinearity between rye and

rice, using 334 genetically mapped rye EST-based markers. They

identified corresponding regions of the rice genome by in silico

correlation of rye to rice genes. In agreement with previous

observations [38] and based on gene sequences, Hackauf et al.

[37] established a statistically significant colinearity of rice

chromosome 5 and rye chromosome 1.

Recent progress in dissecting large cereal genomes to smaller

parts by flow-sorting single chromosomes and chromosome arms,

and the possibility of obtaining sufficient quantities of DNA from

as few as 10,000 chromosomes by multiple displacement

amplification (MDA), have greatly facilitated colinearity analysis

in cereals with large genomes [39–43]. Flow cytometric chromo-

some sorting for rye was developed by Kubaláková et al. [44] and

Šimková et al. [45]; the authors used flow cytometry to sort the

chromosome arm 1RS for construction of a 1RS-specific BAC

library. The availability of a 1RS-specific BAC library permitted

the first analysis of the sequence composition of the rye genome,

and 1RS in particular, by sequencing BAC ends [21]. Simulta-

neously, Kofler et al. [46] developed a set of SSR markers from the

DNA of flow-sorted 1RS. Despite these efforts, sequence data

concerning the rye genome (9240 sequence entries, amounting to

5557 unigenes) and knowledge of its colinearity with other grasses

are still very limited. Thus, the development of markers linked

with traits of interest and positional gene cloning are also

restricted. Reducing the complexity of whole genomes by isolating

single chromosomes and sequencing them by next-generation

sequencing technology is an attractive means of generating large

quantities of sequence data from specific genome regions to

identify gene sequences and other loci that may serve as markers,

and to establish colinearity with other species as it was

demonstrated for barley [41,42] and wheat [43].

The present study deals with the sequence composition analysis

of the chromosome arm 1RS. Shotgun 454 pyrosequencing of

DNA obtained from flow-sorted 1RS resulted in 0.436 coverage

of the chromosome arm’s sequence. This novel approach also

permitted a detailed description of the gene space as well as the

repetitive portion of this important chromosome arm including

SSR regions, which may be used as first hand genetic markers.

Comparative gene content analysis of 1RS genes with those of

rice, Brachypodium distachyon and the short arm of the barley 1H

chromosome was established, providing a basis for the analysis of

changes in genome structure accompanying the evolution of

cultivated grasses.

Results

The dataset and its quality
The telocentric chromosome 1RS is not stable inherited in

wheat-rye addition lines. Therefore, cytological control of the

seeds used for multiplication was required in order to ensure the

presence of a sufficient number of 1RS in the samples for flow

cytometry. This resulted in good resolution of the 1RS arm on

histograms of chromosome fluorescence intensity (flow karyo-

types), high yields during the chromosome sorting, and low

contamination of sorted fractions by other chromosomes. The

flow karyotype consisted of four peaks representing various wheat

chromosomes and a well resolved peak of chromosome 1RS

(Figure 1). The telosome could easily be sorted and the sorted

1RS were identified by FISH with probes representing sub-

telomeric heterochromatin (pSc200) and telomeric repeats

(Figure 1). The purity of samples in the sorted fraction varied

between 89 and 93%. The purest sample was used for further

processing. This sample comprised 93% of 1RS and 7% of

various wheat chromosomes and their fragments. After DNA

purification, 14 ng of chromosomal DNA was obtained from

30,000 flow-sorted 1RS telosomes, which were subsequently used

for multiple displacement amplification (MDA), essentially as

described by Simková et al. [40]. The yield of amplified 1RS

DNA was 5.1 mg.

The sequence reads. Roche 454 FLX sequencing of 1RS

DNA resulted in 942,768 sequence reads. Within this dataset

42,167 sequence reads (4.5%) were identified as ‘‘identical

sequence’’, i.e. were found at least twice in the dataset, and were

considered as putative artefacts most likely generated by emulsion

PCR [47]. Leaving one sequence read in the dataset, the

additional copies were removed along with reads shorter than

50 bp. The remaining 895,199 sequence reads of the dataset

constituted 195,313,589 bp sequence information with an average

sequence length of 219 bp, and were used for further analysis

(Table S1). The putative size of the 1RS chromosome, which

comprises about 5.6% of the total rye genome [19], is about

442 Mbp. Consequently the available sequence information

equals approximately 43.2% of the 1RS chromosome arm

sequence, not considering possible overlaps.

Sequence Composition and Gene Content of Rye 1RS
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Sequence composition of 1RS
More than 5% of all sequence reads are related to the

gene space of 1RS. To identify putative gene related sequence

reads eight sequence databases were used (Table S2). Separate

databases were used for identification of 5S and 45S rDNA as well

as the secalin genes. Using a stepwise procedure as outlined in

Material and Methods we identified 5.45% of all reads

representing gene space (48,841 reads). Of these 2.05% (18,325

reads) represented the two ribosomal loci (1.78% and 0.26% for

45S and 5S rDNA loci, respectively) and 0.05% the secalin loci

(400 reads) (Table S1).

Ribosomal loci of 1RS. The 45S and the 5S rDNA loci are

found in close vicinity to the distal portion of the chromosome arm

as shown by in situ hybridisation, and were reported to be present

in about 2,000 and 5,000 copies [22] comprising about 18 Mbp

(3,9%) and 2.3 Mbp (0,5%) of the 1RS genome, respectively. This

suggested a 7.8-fold difference in the spatial requirement of the

two loci, which is also reflected in our results: we identified 15,962

sequence reads (1.78%) for the 45S rDNA and 2,361 sequence

reads (0.26%) for the 5S rDNA locus, yielding a 6.75-fold

difference (Table S1).

Secalin Sec-1 locus. Three secalin loci have been reported for

rye. Sec-1 and Sec-3 loci are located on the short and the long arm of

chromosome 1R, respectively. The Sec-1 locus on 1RS harbours the

c-secalin 40 kD and v-secalin (,45 kD) genes while Sec-3 on 1RL

contains the HMW-secalin locus (,100 kD). The Sec-2 locus found

on the short arm of chromosome 2R codes for the 75 kD c-secalin.

In all 400 sequence reads (0.05%) were found to be related to the

secalin genes. The majority - 316 of the identified reads -

represented v-secalin genes, which were reported to be present in

about 15 copies in 1RS [48] while 45 of them were related to c-

secalin. In addition 39 sequence reads could not be assigned to c-

secalin or v-secalin genes because of the high level of sequence

homology of the two secalins in certain regions (Table S1).

Annotation of sequence reads reveals at least 3,121 gene

loci and at least 1,882 different gene functions on

1RS. Excluding the ribosomal and secalin genes 3.36% of all

sequence reads (30,118 reads) identified the gene space of 1RS.

Based on homology to the rice genome, these sequence reads

correspond to 3,121 different rice gene models (Table 1). An

additional 3,638 putative gene loci, which had no homology to the

RGA (Rice Genome Annotation) set of gene models were

identified on the basis of the entries in the NCBI UniGene

(Hordeum, Oryza and Triticum), RAP-DB, Rye UniGene, Wheat

ABDS and NT Cereal databases), respectively, which had no

homology to the RGA (Rice Genome Annotation) set of gene

models. The estimated number of 3,638 must be treated with

caution. Even when working with unigene sets containing just one

entry/gene within a given set, sequences representing the same

gene may exist in between the unigene datasets. Therefore, these

results suggest the presence of at least 3,121 but up to 6,759 gene

loci on 1RS, including the two secalin loci as well, and not

considering the ribosomal genes (Table 1 and details in Table S3).

Identifying the number of gene functions on 1RS was based on

the available rice dataset in the RGA database. This set was

supplemented with functional annotations found in the Triticum,

Hordeum UniGene and NT Cereal databases. Using these two

approaches, we identified 1,882 gene functions, including c and v
secalins. Of these 1,608 were based on the rice RGA dataset while

272 functions were recovered by the Triticum UniGene, Hordeum

UniGene and NT Cereal databases (Table 1). Furthermore a

maximum of 3,852 additional gene functions may be hypothesised

based on either existing but functionally not annotated EST

sequences (expressed genes), or in silico identified putative gene

regions (hypothetical genes). Functional gene annotation revealed

43 disease resistance loci assignable to 12 functional categories, as

well as 29 loci of 10 functional categories related to Powdery mildew

resistance (Table S3).

Genes present on 1RS are hit with 95% proba-

bility. Equations given by Lander and Waterman [49] and

concepts of binomial distribution in elementary probability theory

were used to provide an approximation on the probability of

Figure 1. Histogram of relative fluorescence intensity (‘flow
karyotype’) obtained after flow cytometric analysis of DAPI-
stained chromosome suspension of wheat-rye 1RS telosome
addition line. The karyotype contains four peaks representing the
chromosomes of wheat (labelled I, II, III, and 3B) and a peak of the
telocentric chromosome 1RS. The peak of chromosome 1RS is clearly
discernible and chromosomes can be easily sorted. Insert: Images of the
flow-sorted chromosome 1RS after FISH with probes for telomeric
sequences (red) and pSc200 (green) subtelomeric DNA sequences. The
chromosomes were counterstained with DAPI (blue).
doi:10.1371/journal.pone.0030784.g001

Table 1. Number of gene loci and gene functions identified
in 1RS.

Gene loci identified on 1RS No. of loci

RGA related loci 3121

Loci with no RGA annotation 3636

Secalins 2

Maximum number of putative loci on 1RS 6759

Gene functions identified on 1RS

Secalins 2

RGA based annotation 1608

Other DBs based annotation* 272

Functionally annotated genes 1882

Expressed genes** 3776

Hypothetical genes*** 76

Maximum number of putative functions 5732

*RAP-DB, Triticum/Hordeum/Oryza Unigene DB, Secale Unigene DB, Wheat
1ABDS DB, Brachypodium distachyon Protein DB and NT Cereal DB.
**All EST entries with no annotation.
***Based on the RGA database.
doi:10.1371/journal.pone.0030784.t001
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hitting a gene by the present analysis. Assuming a size of

4426106 bp of rye 1RS genome, 895,199 sequence reads with an

average length of 219 bp (L), and a necessary overlap (T) of 50 bp,

the probability of missing a contiguous area of 1514 bp (reported

average estimated coding region of a gene; http://rice.

plantbiology.msu.edu) would be approximately 4.5%, while

using the elementary probability theory revealed 5.0%,

respectively. In other words, the probability of hitting any

1.51 kbp region of the chromosome with at least one sequence

read is 95% and with this probability nearly all genes are

represented in our dataset, supposing an even distribution of the

sequence reads along the 1RS genome. For obtaining an estimate

on the distribution of the sequence reads along 1RS, two genes the

45S ribosomal locus and the v-secalin gene, were analysed by the

MOSAIK software suit, which provides a base-accurate coverage

plot analysing the representation of every base of the reference

sequence in the sequence reads. Locally assembled rye specific 45S

ribosomal gene unit (JF489233) and the AF000227 sequence entry

representing the v-secalin gene repeat unit were selected as

reference sequences. These genes are repeated several times in the

1RS genome therefore a sufficient number of sequence reads were

available for the analysis (Table S1.). Both reference sequences

cover about 9 kbp providing sufficient template for the coverage

analysis. In each template there were self complementary repeat

regions as revealed by dotplot analysis, yielding higher multiplicity

in these regions (Supplemental Figure S1.). The v-secalin locus

additionally contained a repeat region, corresponding to the

TREP 255 (retrotransposon, LTR, unknown) entry yielding

elevated coverage of this region. Of the total length of the v-

secalin gene 98.4% was represented by sequence reads except for a

152 bp region. The mean coverage was about 9 fold (Standard

deviation +/24) per basepair disregarding the repeat regions,

which in magnitude coincides well with the published copy

number of 15 for this gene [48]. On the other part, full length of

the 45S ribosomal gene was represented by sequence reads

yielding about 3606 (+/271) mean coverage, not considering the

intergene spacer region. The estimated copy number of this locus

in the rye was about 2,000 [22] but Gustafson et al. [50] reported

reduction of the NOR region for 1RS present in the wheat.

About three quarter of the 1RS genome is of repeated

nature. Identification of repetitive elements in 1RS sequence

reads was done, as described in the Material and Methods section,

in several consecutive steps within the analysis pipeline. The

approach comprised the identification of known repeat types, like

microsatellite regions and transposon type repeats but de novo

repeat elements were also identified.

Simple Sequence Repeats of 1RS. Non-transposon-type

repeats such as SSRs were identified in 18.5% of all sequence

reads (165,629 reads), amounting to 204,286 SSR sequences,

which were present either as single or as compound SSRs in

various combinations. However, only 2,048 of these reads (0.23%)

harboured SSRs spanning more than 50% of the total length of

the sequence read. These were identified as SSR reads and were

not analysed further, while the rest were labelled as SSR

containing reads. (AG)n was the most abundant dinucleotide

repeat (4.8%), followed by (AT)n (3.5%). (AAG)n was most

abundant (0.7%) among trinucleotide repeats, and (AAAT)n
among tetra-nucleotides (0.2%) (Table S4_All SSRs). The

frequency especially in case of tri- and tetra- nucleotide repeats

may be underestimates since uncertainty at homopolymer

identification of 454 sequencing can disturb the detection of true

SSR regions by interrupting the regular repeat sequence.

SSR containing elements as genetic markers. Two

categories of SSR containing reads were analysed for genetic

marker identification. SSR reads (2,048 reads) and sequence reads

identified as gene related but also harbouring SSRs. Nearly one

fourth of the gene related reads corresponded to this latter

category (7,162 reads). For establishing PCR amplicons for the

SSRs the position of the SSR within the sequence read was

identified. Considering an average PCR primer length of 18–

22 bp we computed the proper SSR positions for minimum of

30 bp and 40 bp flanking lengths. SSR containing reads fulfilling

these requirements were labelled as putative candidates for genetic

markers (Table S4).

Concerning the SSR reads, 321 or 455 (15.7% and 22.2%)

reads were identified dependent on the 30 bp or 40 bp permitted

length of the flanking sequence (Table S4_ SSRs). This was

contrasted by the gene related sequence reads, where more than

half of the reads harboured the SSRs in a usable position (Table

S4_Gene related SSRs). Preliminary analysis of 103 SSR reads

revealed 26 exclusively 1RS specific bands.

Six transposon classes dominate the 1RS repeat land-

scape. Known type repeat element discovery was based on the

TREP repeat database using its categorisation also for those

elements identified by use of other databases. This way, 68.5% of all

reads were tagged matching at least one of the entries (Table 2). The

repeat elements of 1RS hit 341 of the 1,717 entries present in the full

TREP-repeat database, including 122 Class I, 183 Class II and 36

non-classified types (Table S5). However, 4 entries of the 35 of rye

origin in the TREP database yielded no homology to any of the

1RS-specific sequence reads. The identified reads included the

frequently used rye-specific probes representing interspersed repeat

element pSC119.1 (0.6%) and pSC119.2 (0.05%), predominantly a

telomere marking probe. Also ‘Revolver’, the recently described

[51] in the rye genome evenly distributed transposon represented

0.3% of the sequence reads, while Bilby (retrotransposon/LTR/

Copia), the rye genome-specific centromeric repeat family [52], was

represented by 0.2% of all reads (Table S5). As far as the transposon

elements were concerned, the superfamilies Gypsy and Copia were

the most abundant retrotransposons, constituting about 42.7% and

7.3% of the sequence reads, respectively, followed by the DNA

transposon superfamily CACTA (6.3% of all reads) (Table 2).

Half of the sequence reads identified as repeat elements were

derived from 29 transposon families, of which 25 represented Class

I retrotransposons (Gypsy 21 and Copia 4) and 4 families Class II

DNA transposon types (all CACTA). The most abundant family in

1RS was the Class I retroelement Gypsy/Sabrina, comprising

13.3% of the sequence reads and outnumbering about 2.5 fold the

second most abundant one, namely Gypsy/WHAM (4.9%).

Further abundant retroelements were Wilma, Sabine and Cereba

(all of the Gypsy superfamily) amounting to 3.3, 2.8 and 2.5% of

the sequence reads, respectively. The CACTA superfamily Jorge

was the most frequent Class II DNA transposon element;

accounting for 2.7% of the sequence reads (Table S5).

Sequence reads partially fulfilling the filtering criteria (good

alignment, but low coverage, or poor alignment, but good

coverage) but not tagged otherwise were also considered as

putative repeat elements representing 6.7% of all reads (Table 2).

Novel repeat elements. RepeatScout a de novo repeat

finding software suite [53], was used for the identification of

putative repeat elements. This system identified 9,842 putative

repeat sequence elements after elimination of low complexity and

tandem repeats. Realigning the derived putative repeat motifs with

the sequence reads using RepeatMasker software yielded 685

repeat sequences, hit by at least 10 sequence reads. These were

accepted as ‘‘novel repeats’’. Finally, to eliminate multiple

representations among the novel repeats BASTClust was used

reducing the number of identified novel repeat to 638 represented

Sequence Composition and Gene Content of Rye 1RS
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by 31,001 sequence reads. The novel repeats had an average

length of 245 basepair (ranging 51–461 bp) and were represented

by 10 to 317 sequence reads.

Chimeric sequence reads indicate putative chloroplast

insertions in 1RS. Analysis of the nuclear genomes of plants

revealed insertions of genes originating from organelles into the

nuclear genome [54,55]. For assessing the presence of organelle-

specific sequence reads indicative of putative insertions in 1RS, the

dataset was screened firstly with high stringency parameters (90%

overlap and 90% identity) against the available chloroplast and

mitochondrial sequence of wheat, identifying 0.2% of all reads

(1803 hits). Within the hit sequences, 421 represented chloroplast

(Cp) and 1355 mitochondrial (Mt) sequences, while 27 could not

be exclusively assigned to either of the genomes (Table S1).

Secondly, screening with equally high identity value (90%) but

with reduced overlap (40%) was done to identify putative chimeric

fragments representing organellar/nuclear junctions harbouring

both organellar and putative 1RS specific DNA sequences. This

latter screening revealed no mitochondrial, but 24 sequence reads

representing 15 chloroplast regions of chimeric type. Six out of

the 15 regions represented chloroplast/transposon junctions. One

represented a junction annotated as Triticum aestivum

chromosomal DNA, while 8 of them were junctions of

chloroplast to no-homology sequence regions. Controlling the

validity of these junction regions by PCR, 9 out of the 15

reamplified from a mixture of different sorts of rye genomic DNA

(3, 1 and 5 positive PCR reactions in junctions of chloroplast/

transposon, chloroplast/chromosomal and chloroplast/no-homology,

respectively). The existence of chimeric fragments indicates the

presence of chloroplast genome insertions into 1RS, while similar

mitochondrial ones could not be verified. The organelle specific

sequence reads covered 54% of the chloroplast and 49% of the

mitochondrial genomes, yielding somewhat higher values than the

average obtained for the whole dataset (43%). The presence of

contaminating organellar DNA, however, can not be excluded

completely especially in case of mitochondria.

Miscellaneous non-coding genomic regions. For

recovering all possible matches of the sequence reads to the

available plant sequence information the sequence reads were

tested against databases representing miscellaneous sequence

information of non-coding genomic regions, such as Brachypodium

distachyon and rice databases representing 1 kbp upstream,

downstream regions of genes or intergenic regions. In all 79,271

sequence reads were identified, representing nearly 8.9% of all

reads of functionally non-identified regions. The majority of these

(8.47%) hit 374 BAC NCBI entries (37 from Hordeum, 337 from

Triticum) while the rest were characterised by the Brachypodium and

rice databases representing 1 kbp upstream, downstream and

intergenic regions of the genes and non-BAC NCBI entries

(SCAR, microsatellite, RAPD, STS marker) (Table S1)

Relation of 1RS to other grass genomes
Synteny to Oryza sativa and Brachypodium distachyon

reveals uneven distribution of loci. To visualise the synteny

(gene content identity) of the 1RS genome to the genomes of rice

and Brachypodium distachyon, the model genomes were dissected in

silico into 105 bp bins, resulting in 3,729 and 2,713 bins,

respectively. On average, these bins harboured 10.9 and 9.4

gene models per bin for Oryza sativa and Brachypodium distachyon,

respectively (Table 3). Subsequently, rye sequence reads previously

identified as putative genes in rice and Brachypodium distachyon

genomes were allocated to these bins, based on the common rice

annotation for the loci referring to the rice LOC_Os loci (Rice

Genome Annotation database). In this way, 3,076 gene models of

Table 2. Representation of diverse repeat elements in1RS.

Repeat category % of all reads

Simple Sequence Repeats* 0.2288

Known repeat elements 68.4590

DNA_transposon/Helitron DNA_transposon/Helitron/helitron 0.0139

DNA_transposon/TIR DNA_transposon/TIR/CACTA 6.3228

DNA_transposon/TIR/Harbinger 0.1048

DNA_transposon/TIR/HAT 0.0094

DNA_transposon/TIR/Mariner 0.1916

DNA_transposon/TIR/Mutator 0.1987

DNA_transposon/TIR/unknown 0.0047

DNA_transposon/unknown DNA_transposon/unknown/unknown 0.0506

Retrotransposon/LTR Retrotransposon/LTR/Copia 7.2632

Retrotransposon/LTR/Gypsy 42.6917

Retrotransposon/LTR/unknown 0.9523

Retrotransposon/LINE Retrotransposon/LINE/unknown 0.3162

Retrotransposon/SINE Retrotransposon/SINE/unknown 0.0035

Unknown unknown/unknown/unknown 3.2932

Rye revolver revolver 0.3007

Putative transposon elements 6.7416

Novel repeats 3.686

All repeat sequences 72.3742

*Sequence reads with more than 50% SSR sequence = SSR reads.
doi:10.1371/journal.pone.0030784.t002
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rice and 1,363 of Brachypodium distachyon were recognised in the two

model genomes as homolog to rye 1RS sequence reads. Homolog

genes to 1RS were dispersed throughout the genomes, including

1,863 (49.96%) and 931 (34.3%) bins in Oryza sativa and

Brachypodium distachyon genomes, respectively (Fig. 2). Identifying

the bins harbouring high proportion of homolog loci to 1RS

(Highly Homolog Bin, HHB) allowed us to identify regions of the

rice genome preferentially represented in 1RS. The Highly

Homolog Bins possibly represent group of genes, which were

inherited as blocks during evolution. We identified 109 HHBs in

Oryza sativa and 100 HHBs in Brachypodium distachyon, containing

436 and 306 gene model hits, respectively (Table 3). In both Oryza

sativa and Brachypodium distachyon, almost every second gene model

hit fell into ‘highly homolog bins’: 43.56% and 44.41% of the

genes, respectively.

Bins showing homology to sequence reads were distributed on

all chromosomes of both model genomes (Fig. 2) while HHBs

showed clustering in both genomes. In rice about 42% of HHBs

concentrated in the distal region of the short arm of chromosome

5, while in Brachypodium distachyon more than one half (54%) of the

HHBs clustered in the proximal region of the long arm of

chromosome 2 (Table 4). In these HHBs there are 546 rice and

502 Brachypodium distachyon gene models, while only 262 (48%) and

232 (46.2%) were hit by the 1RS related sequence reads.

Synteny analysis of 1RS to 1HS identifies conserved

blocks of genes. Sparse availability of sequence based

mapped markers of 1RS in comparison to 1HS did not allow a

direct collinearity (gene order) analysis of the two chromosomes.

However, the gene content of 1RS was correlated to that of 1HS

based on rice as reference genome. Recently, collinearity analyses

of chromosome 1H of barley to rice and Sorghum genomes was

published [41] describing 4,125 rice loci homolog to genes

identified on 1H. More than one third of these genes (1,409) were

located on rice chromosomes 5 and 10. In a latter publication, this

number was revised to 1,845 [42]. Using this dataset, we identified

322 and 218 homolog loci on the short arm of chromosome 1H,

homolog to the genes identified on rice chromosomes 5 and 10,

respectively. In addition, we identified 465 rice 1RS homolog loci

on chromosome 5 and 156 on chromosome 10 (Table S6.). The

homolog rice gene sets corresponding to 1RS or 1HS were

compared analysing small increments of the rice genome by using

the 105 bp virtual bins described above, which allowed the

identification of gene sets with high similarity. The similarity index

of a bin was calculated by comparing the number of genes showing

homology to both 1HS and 1RS (common genes) to all genes

showing 1HS and/or 1RS homology in that particular bin (see

M&M). Regarding chromosome 5 related gene set, 242 common

genes (44.4%) out of the 545 homolog loci were identified. These

were dispersed in 57 bins (average similarity 0.77). Concerning

chromosome 10 only 24 (6.9%) common genes located in 19 bins

(average similarity 0.18) were identified out of the 350 homologs

(Table 5). As far as the distribution of the homolog genes on the

rice chromosomes were concerned, chromosome 5 specific

common homologs cumulated in bins on the distal part of the

short arm. Bins containing common genes related to chromosome

10, clustered in the middle of the long arm (Fig. 3). The marked

difference, both in the proportion of common genes and levels of

similarity, suggests that chromosome 5 related blocks of genes are

evolutionarily more conserved compared to chromosome 10

related elements, which cluster in the pericentric region of 1HS.

Additionally there is marked difference between the 1HS and 1RS

genomes concerning the distribution of those genes, which are not

common in the two chromosome arms. Exclusively 1RS specific

rice homologs are distributed along the full length of rice

chromosomes 5 and 10. Only occasional representations of

exclusively 1HS specific rice homologs were recorded on

chromosome 5. On chromosome 10 1HS specific rice homologs

were confined to the region of common genes (Fig. 3).

Discussion

High-throughput 454 sequencing proved to be a powerful

means of gaining deeper insight into the sequence composition of

huge plant genomes by providing an enormous quantity of

sequence information at a reasonable cost [56,57]. Recent

progress in dissecting plant genomes to small parts by chromosome

sorting, using flow cytometry coupled with high-throughput DNA

sequencing technology [39,41–43] has provided new and powerful

means of analysing complex gigabase-sized plant genomes. To

date, this approach has been used to sequence the barley

chromosome 1H [41] and chromosome 7DS of wheat [43]. Using

a similar approach described by Mayer et al. [41], in the present

study we focused on the short arm of chromosome 1R of rye,

which carries a number of known agriculturally important genes

and has been included in a large number of wheat varieties as

1BL.1RS translocation. Our results provide the first large-scale

insight into the sequence structure and composition of the rye

genome and 1RS, in particular. Moreover, we showed that next-

generation sequence read coverage as low as 0.436may provide

valuable insights into the genome of interest, allowing the

identification of genes present in the genome with an estimated

probability of up to 95%.

Table 3. Synteny of the 1RS chromosome arm to rice and Brachypodium distachyon genomes.

Rice Fraction in % Brachypodium Fraction in %

Total number of bins 3729 100.00 2713 100.00

Average number of gene models/bin 10.88 9.41

Bins hit by sequence reads 1863 49.96 931 34.32

Number of preferential bins 109 2.92 100 3.69

Number of gene models in the genome 40588 100.00 25534 100

Number of gene models hit by sequence reads 3076 7.58 1363 5.34

Total number of gene models/preferential bins 1001 100.00 689 100.00

Number of gene models hit in preferential bins 436 43.56 306 44.41

doi:10.1371/journal.pone.0030784.t003
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In this work we used Roche 454 FLX technology to sequence

DNA derived from flow-sorted chromosome 1RS. To provide

sufficient amounts of DNA for sequencing the DNA of the sorted

chromosomes was amplified by Multiple Displacement Amplifi-

cation. Despite the fact that MDA has the lowest amplification bias

among whole genome amplification methods [58] it has its

limitations in quantitative analysis by uneven amplification of

certain repeat elements [59]. Therefore, the quantitative interpre-

tation of the present results especially concerning the repeat

elements should be done with caution. However, comparative

analysis of the major repeat classes with 454 sequence reads (kindly

provided by Dr. A. Houben) representing the whole rye genome

(,0.046 coverage) without MDA yielded only minor differences,

which may be accounted for either by the existing difference

between the whole genome and 1RS, or the difference in the

coverage (Data not shown).

In the absence of a reference genome, the biggest challenge in

454 fragment analyses is the alignment of sequence reads to entries

of the diverse and largely heterologous databases by BLAST. Even

with large sequence databases whenever the length of the input

sequence is very short (i.e., 100 bp and below), the e-value tends to

be very high (e22 and above) even with perfect alignment. The

reason for this is that a shorter alignment is much more likely to be

coincidental than a longer one. Particularly for 454 sequences this

may result in missing significant hits when using the e-value for hit

evaluation, as even a high overlap (of up to 100%) or high identity

(between 90 and 100%) would not be reflected adequately in the e-

value. For this reason, the criteria based on overlap (at least 55%),

as well as identity (at least 80%) and alignment length of at least

60 bp or 20 aa, respectively, were introduced. However, by the

Figure 2. Synteny of 1RS sequence reads with the non-TE
related gene models of Oryza sativa and Brachypodium distach-
yon. The frequency of gene hits, in the in silico generated bins of the
Oryza sativa and Brachypodium distachyon genomes, were expressed as
multiples of standard deviation (SD). A: Oryza sativa chromosomes 1–
12. B: Brachypodium distachyon chromosomes 1–5. CEN: Centromere.
Colour coding: 0 Bin with no 1RS homology. 1 Bins with non-
significant 1RS homology 2 Bins with significant 1RS homology at 95%
level (1.98 SD) 3 Bins with significant 1RS homology at 99% level (Highly
Homolog Bin, 2.58 SD).
doi:10.1371/journal.pone.0030784.g002

Table 4. Distribution of Highly Homolog Bins (HHB) on the
chromosome arms of rice and Brachypodium distachyon.

Chromosome
arm

Number
of bins

Number
of HHB

% of
all HHB

Rice

chr01S 169 6 5.6

chr01L 264 7 6.5

chr02S 137 2 1.9

chr02L 223 5 4.6

chr03S 195 3 2.8

chr03L 170 2 1.9

chr04S 98 1 0.9

chr04L 255 2 1.9

chr05S 126 45 41.7

chr05L 173 1 0.9

chr06S 154 0 0.0

chr06L 159 5 4.6

chr07S 122 0 0.0

chr07L 175 4 3.7

chr08S 130 6 5.6

chr08L 155 3 2.8

chr09S 29 1 0.9

chr09L 202 4 3.7

chr10S 82 3 2.8

chr10L 150 2 1.9

chr11S 121 1 0.9

chr11L 165 2 1.9

chr12S 120 2 1.9

chr12L 155 2 0.9

Brachypodium

chr01S 375 7 7.0

chr01L 374 7 7.0

chr02S 287 6 6.0

chr02L 307 54 54.0

chr03S 253 7 7.0

chr03L 346 5 5.0

chr04S 233 5 5.0

chr04L 253 3 3.0

chr05S 75 6 6.0

chr05L 210 0 0.0

doi:10.1371/journal.pone.0030784.t004
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use of these criteria, good alignments of longer sequence reads (the

longest 454 fragments had up to 350 bp) would have been missed

inadvertently because of the strict identity parameter of (mini-

mum) 80%. Therefore, the e-value approach of using a limit of

e220 with a lowered identity (70%) was introduced as a secondary

parameter set. According to our experience, the different BLAST

algorithms (BLASTn, BLASTp, BLASTx, tBLASTx) are more

sensitive to implementation differences than identity/overlap-

based filtering, which was applied as the primary parameter set.

Therefore, it was justifiably assumed that the BLAST results would

be highly comparable.

Nearly 200 million bp sequence information was obtained in the

course of this work, yielding about 0.43-fold coverage of the 1RS

chromosome arm. Despite the relatively low coverage, a chance of

hitting a gene was estimated to be 95%. The fairly uniform

coverage of the 45S rDNA and the v-secalin genes supports this

estimate and suggests that theoretically nearly all of the gene loci

present in 1RS were identified. However, the identification of

genes in the dataset may be hampered by the evolutionary

distance of the query sequences and the used heterologous

sequence databases, resulting in lower recovery of genes. To

resolve this problem at least in part, we used several sequence

databases of closely related species. One approach estimating the

putative number of gene loci on 1RS is to sum up the number of

non-overlapping gene loci hit in different databases accounting for

gene space. By this procedure, we estimated the number of gene

loci in 1RS to range from 3,121 to 6,759, including the secalin

genes. However, considering contamination of the sorted 1RS

fraction by various wheat chromosomes, we may also predict an

overestimation of about 10% for the gene count. Furthermore, the

annotations arising from UniGene databases must be treated with

caution, because these databases harbour EST entries. Thus, more

than one Unigene entry may represent the same gene locus. The

entries may also be related to transposable elements and duplicates

of genes can exist in the different species specific datasets. All these

factors may further reduce the estimated highest number of gene

loci on 1RS.

Provided 1RS comprises about 5.6% of the rye genome and

harbours at least 3,121 gene loci, an estimated 56,000 gene loci

per haploid rye genome may be assumed, disregarding the rDNA

loci. This is in good agreement with the dimension of nearly

51,000 identified gene models in Oryza sativa, (http://rice.

plantbiology.msu.edu/), 38,000 to 48,000 genes in barley

[41,42] and 55,000 to 111,000 gene loci per diploid genome of

wheat [60]. On the other hand, we identified at least 1,882

different gene functions linked to 1RS, which is certainly an

underestimation of the true number of gene functions, because

3,852 expressed and hypothetical genes were identified with no

functional annotation. Among the identified gene functions,

several loci involved in powdery mildew resistance were found in

1RS, which may be responsible for conveying that resistance to the

wheat cultivars. In our dataset all the eleven genes recognised by

Bartos et al. [21] in 1RS using BAC end sequence information

were recovered.

The analysis of sequence composition of 1RS offered an

opportunity to focus on the representation of organellar genome

elements. In eukaryotes, DNA has been, and still is being

exchanged between endosymbiosis-derived mitochondrial and

chloroplast genomes and the nucleus, thus serving as a significant

driving force for gene and genome evolution [61–63]. Organelle-

to-nucleus DNA transfers during early organelle evolution

generated massive relocation of organelle genes into the nucleus,

resulting in functional entities still being actively transcribed. In

contrast, nearly all recent nuclear transfers of mitochondrial or

plastid DNA concern non-coding sequences. For the rice genome,

organellar insertions have been reported to possibly occur in

hotspots where whole blocks of organellar DNA insertions can be

found [64]. The present study revealed the presence of chloroplast

insertions in 1RS by identifying chimeric sequence reads of

chloroplast and putative genomic elements. Despite the higher

number of identified mitochondrial specific sequence reads,

chimeric fragments with mitochondrial sequences were not

detected, suggesting possible mitochondrial contamination of the

sorted chromosomes.

Our results indicate that 74.46% of the 1RS chromosome arm

sequence comprises known repeat elements, including the

ribosomal loci, but omitting putative gene families. These data

concur well with those reported by Bartoš et al. [21], based on

analysis of BAC end sequences (BES) of clones representing 1RS

(75.6% known repeats). However, there were differences in the

subclasses e.g. Gypsy 49% vs. 43%, Copia 14% vs. 7.3% and

CACTA 4.4% vs. 6.3% comparing BES and the present dataset.

This difference may be attributed to the about 100-fold difference

in the coverage: 0.45% versus 43% coverage of the 1RS genome

for the BES and the present dataset, respectively. Additionally,

Bartoš et al. [21] found 8.8% unknown repeat elements, while in

our case we identified about 4% novel repeat elements by

RepeatScout search resulting in 84.2% and 74.5% of repeat

elements, respectively. However, the data based on 1RS sequence

information are markedly below the 92% rate published earlier by

Flavell et al. [20]. In the latter work, the portion of repeated

sequences of the whole rye genome was determined by Cot

analysis, which identifies all repeat elements within a genome,

while BES and our strategy identified repeat elements using in

silico techniques only. The deviation of in silico obtained data

from those previously reported by Flavell et al. [20] may be due to

the difference in methodology, Cot analysis is more sensitive

identifying repeat sequence elements in a genome.

The obtained sequence information may also be exploited for

generating genetic markers for this chromosome arm. This way

we identified about 5,000 putative marker sites based on SSR

regions either spanning more than half of the sequence read or

present in a sequence read representing gene space of 1RS.

Preliminary experiments showed that about one fourth of the

Table 5. Comparison of gene content of 1RS and 1HS based on homology to the rice chromosomes 5 and 10.

Rice chromosome Number of homolog loci All homolog loci

1RS 1HS 1RS specific Common 1HS specific

Chr.05 465 322 223 242 80 545

Chr.10 156 218 132 24 194 350

All 621 540 355 266 274 895

doi:10.1371/journal.pone.0030784.t005
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identified regions may serve as 1RS specific markers on PCR

basis in 1BL.1RS translocation wheats. These amplicons are

possibly applicable also in diploid rye. Additional to SSR based

marker sites all sequence information related to genes in 1RS

may be exploited to generate for example SNP or InDel type

markers by resequencing.

The colinearity of plant genomes was discovered after the

advent of comparative mapping, culminating in the establishment

of comparative genomics. The most comprehensive dataset in the

plant kingdom is available for the Poaceae family, including the

staple cereals maize, wheat, barley, rye, sorghum and millets,

along with rice and Brachypodium distachyon. The last two species

are fully sequenced small genomes [65,66]. In our study, the

annotated 454 sequence reads were not genetically mapped on

the rye chromosome arm. However, the large number of putative

gene loci permitted a detailed genome-wide correlation analysis

of 1RS to the full genomes of rice and Brachypodium distachyon. The

analysis revealed that genes present in 1RS are scattered through

the entire length of the two model genomes, but not evenly. In

accordance with previous observations on the colinearity of rice

chromosome 5 and rye chromosome 1 [37,38], in our case highly

homolog bins representing syntenic regions clustered in the distal

region of the short arm of rice chromosome 5 and in the proximal

region of the long arm of chr2 of the Brachypodium distachyon. This

concurs with the high colinearity between rice and Brachypodium

distachyon in these two regions. Additionally in the present study

we show the first synteny analysis within Triticeae between rye

and barley based on data generated by next generation

sequencing technology. The comparison of the gene content of

the short arms of chromosome 1 was made via the sequence

information available for the rice genome used as platform since

full sequence information of the compared genomes is not

available. Using virtual bins generated on the model genome

revealed genome sections which are inherited in blocks during

evolution of these species. The synteny analysis of the short arms

of chromosome 1 of the two species revealed that more compact

regions of the rice genome were represented in 1HS, while

homolog regions of 1RS were more scattered in the analysed rice

chromosomes. The highest similarity of the 1RS/1HS gene

content was localised on the distal part of rice chromosome 5

proposing high level of conservation in this region. Much lower

similarity was observed regarding chromosome 10 related genes,

which represent the pericentric region of 1HS. The observed

difference between the two chromosome arms may be related

either to the approximate position of the centromere in 1H or to

the lower conservation of this region during evolution. We have

to note however, that the different approach in homology

identification in 1RS and 1HS may also contribute to the

observed differences.

Conclusion
Due to its presence in many varieties of wheat grown

worldwide, the rye chromosome arm 1RS is considered an

important element of the wheat germplasm. The present study

revealed the gene content and potential gene functions on this

chromosome arm and demonstrated numerous sequence elements

such as SSRs and gene-related sequences which can be utilised for

future research as well as in breeding both wheat and rye.

Recently, BAC-fingerprinted contigs of 1RS were also established

(Burg K, unpublished) and deposited in a database for physical

maps hosted by UC Davis (http://probes.pw.usda.gov:8080/

rye1RS/). Tsuchida et al. [67] developed 1RS deletion (dissection)

lines which have been successfully used to physically map 150

1RS-specific SSR markers 26 originating from the present study

into 15 bins (Lelley T, personal communication). In the present

study we correlated the gene content of 1RS to 1HS Hordeum

chromosome arm, which is genetically a well studied component

Figure 3. Comparison of the gene content of 1RS and 1HS
based on Chr.5 and Chr.10 of the model rice genome. The in
silico generated 105 bp virtual bins of chromosomes 5 and 10 of rice
were used as platforms to compare the gene content of 1RS and 1HS
homolog to rice. Similarity of 1RS to 1HS concerning a particular rice bin
was judged by estimating the portion of common loci over all homolog
loci in a particular bin as described in Material and Methods. The colour
bar shows the level of similarity starting from 0 (blue) to 1 (complete
similarity; red) meaning that all hit loci show homology to both 1RS and
1HS. Common: distribution of bins containing genes homolog to both
1RS and 1HS. 1RS homolog: bins containing genes homolog to 1RS,
1HS homolog: distribution of bins containing genes homolog to 1HS.
In the two latter cases red colour defines bins with genes representing
exclusively either 1RS or 1HS homologs.
doi:10.1371/journal.pone.0030784.g003
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of the Triticeae genomes. All of these results and resources will

contribute to further describe the molecular structure of 1RS. As

all chromosomes of rye can be purified by flow cytometric sorting,

either directly from rye (chromosome 1R) or from wheat-rye

chromosome addition lines - chromosomes 2R–7R [44], the

strategy outlined and verified in the present study may be used for

sequencing and detailed analysis of the entire rye genome in a

stepwise manner for each chromosome.

Materials and Methods

Chromosome sorting and multiple displacement
amplification (MDA)

Seeds of a 1RS wheat-rye ditelosomic addition line, derived

from rye (Secale cereale L.) cv. ‘Imperial’ in the background of wheat

(Triticum aestivum L.) cv. ‘Chinese Spring’ [68], were provided by

Dr. B. Friebe (Kansas State University, Manhattan, USA). As this

1RS addition line is cytologically unstable, seeds selected for

propagation were checked for the presence of 1RS by cytology in

root tips. Only those seeds possessing 44 chromosomes, including

the two telocentrics of 1RS were grown. Plants from such seeds

produce about 60% ditelocentric and 40% monotelocentric

progenies, while monotelocentric plants with 43 chromosomes

(42+1 telocentric 1RS) would only produce about 30% monotelo-

centric and no ditelocentric progenies, rendering them unsuitable

for sorting. Seeds were germinated up to an optimal root length of

2–3 cm. Cell cycle synchronisation and accumulation of meta-

phases in root tips and preparation of liquid chromosome

suspensions were performed according to Kubaláková et al.

[44]. Chromosomes in suspension were stained by 2 mg/ml DAPI

(49,6-diamidino-2-phenylindole) and analysed using a FACSVan-

tage SE flow cytometer (Becton Dickinson, San José, USA) at a

rate of about 800–1200 chromosomes/sec. Telosome 1RS was

sorted at a rate of 10/sec in batches of 30,000 into 50 ml deionised

water in a PCR tube. The purity in sorted fractions was checked

by fluorescence in situ hybridisation with chromosomes sorted onto

a microscope slide using probes for subtelomeric heterochromatin

(pSc200) and telomeric repeats [40]. Isothermal amplification of

chromosomal DNA was performed according to Šimková et al.

[40]: flow-sorted chromosomes were treated with proteinase K,

purified using a Microcon YM-100 column (Millipore Corporate,

Billerica, USA), and the purified chromosomal DNA was

amplified using the illustra GenomiPhi V2 DNA Amplification

Kit (GE Healthcare, Chalfont St. Giles, United Kingdom),

according to manufacturer’s instructions, in a 20 ml reaction for

1.5 hours. The samples were lyophilised and shipped for 454

sequencing.

Roche 454 FLX runs
Five micrograms of DNA amplified from flow-sorted 1RS were

used to prepare a 454 sequencing library using the GS FLX DNA

library preparation kit in accordance with the manufacturer’s

instructions (Roche Diagnostics, Branford, USA). Single-stranded

454 sequencing libraries were quantified by a quantitative PCR

assay [69] and processed using a GSFLX standard emPCR kit I

and a standard LR70 sequencing kit (Roche Diagnostics,

Branford, USA) according to manufacturer’s instructions. Se-

quencing was performed on four lanes of a 16-lane gasket on a

70675 FLX picotiter plate (‘‘titration’’) and on two complete

70675 picotiter plates, resulting in 942,768 reads with a mean

read length of 219 bp, yielding ,205 Mb of raw sequence data.

Data of the two full runs along with the titration run were pooled

in order to process the entire dataset in a single batch.

Sequence Analysis. Low-quality sequence reads were

removed by the Roche 454 integrated NEWBLER (v1.1.03.24)

software. A bioinformatic pipeline was established to analyse the

remaining sequence reads. Various software tools and Perl scripts

were integrated for this purpose. The core of the result

documentation was a Microsoft SQL Server database, which

was used to collect all analysis outputs and store analysis data for

subsequent result queries.

The pipeline utilised a stepwise procedure to classify sequence

reads, starting with the elimination of fragments shorter than

50 bps. The remaining sequence reads were scanned for perfect

and nearly perfect duplicate sequences using PHRAP [70] to

remove technical artefacts. Two sequence reads were considered

as perfect duplicates when they were of identical length and no

single base mismatch was found in the alignment of the two

sequences. Sequence reads were considered nearly perfect

duplicates if they showed (1) less than 5 bp length difference, (2)

maximum of three mismatches and (3) maximum of 2 bp offset in

alignment. Sequence reads fulfilling either one of the two

matching criteria were considered as technical duplicates and

were removed, leaving only one representative of the sequence

reads in the dataset. After removing the technically inappropriate

reads, the sequence quality of the remaining sequence reads was

checked by analysing ‘PHRED-compatible quality values’ [71]

derived from the flowgrams. These checks revealed that 99.1% of

the sequence reads had scores above 20, and 0.86% between15

and 20. As few as 169 sequence reads had scores of 10–15 and

only 5 were below 10.

After removal of low-quality sequences, the remaining sequence

reads were considered as a representative dataset for 1RS, which

was subsequently analysed for the presence of repeat, organellar or

gene space elements of the genome as described below. After each

step, the newly classified sequence reads were labelled with their

respective classification and removed from the dataset, i.e.

excluded from the next analysis steps.

SSR identification
The representative dataset was subjected to a two-step SSR

analysis using the SciRoKo software [72]. First, mononucleotides

longer than 8 bp and dinucleotides with .4 repetitions of the

motif were identified. Secondly, trinucleotides with .4 repetitions

and tetra-, penta-, and hexanucleotides with .3 repetitions of the

motif were identified. Only fragments with SSR regions spanning

more than 50% of the fragment length were excluded from further

analysis; the remaining sequences were tagged as SSR-containing

elements and preserved in the dataset for downstream analysis.

Repeat Element and rDNA Detection
Repeat elements and rDNA were identified using the

RepeatMasker software [73], with standard parameter settings

except that the checks for bacterial insertion were disabled. Three

datasets were used as reference databases for repeat element

detection: a) TREP, b) TIGR Oryza repeats, and c) a self-compiled

collection of Secale Revolver elements. Three datasets were selected

for rDNA detection: a) all rDNA elements of MIPS-REcat, b) all

rDNA elements of the TIGR Oryza repeats, and c) a self-compiled

collection of Musa and Secale rDNA elements (Table S2).

Automated classification of alignments between rye sequence

reads and reference sequences was based on the following criteria:

alignment was deemed unacceptable if a) perc_div (percentage

divergence) was higher than 30% or b) perc_div was between 20

and 30% and either perc_ins (percentage of insertions) or perc_del

(percentage of deletions) were higher than 5%. In addition,

alignments with less than 20 bp overlap were deemed unreliable.
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All other alignments were accepted as quality hits. All sequence

reads covered by more than 60% quality hits were classified as

repeat elements or rDNA and excluded from downstream analysis.

All sequence reads fulfilling the quality criteria but either having

less than 60% coverage or poor alignment were tagged as putative

elements in their respective category and were kept in the dataset.

At the end of the analysis pipeline, tagged sequence reads with no

allocated function were assigned to the putative repeat category.

Subsequently the unclassified sequence reads were further

analysed by BLAST against all Secale, Triticum, and Hordeum

sequences of the NCBI NT Cereal database (Table S2), which

contains significant quantities of transposon-related sequence

information. Sequence reads producing a significant hit (details

on the applied parameters are given below) against transposon or

rDNA elements were identified and also removed from down-

stream analysis.

Transposon related expressed sequences were identified by use

of the Rice Protein database searching the FASTA initial line for

‘‘transposon’’ entry.

All repeat elements identified by the latter databases were fitted

into the nomenclature system of the TREP database.

Organellar elements
Organelle-related sequence reads were identified by BLAST

comparison against the available chloroplast and mitochondria

sequences of T. aestivum (Table S2). WU-BLAST was employed for

sequence comparison, using 90% as the cut-off value for both,

overlap and identity. Sequence reads producing a hit with one of

the two reference sequences were classified as organellar elements

and subsequently removed from the dataset. Second round of the

search was made by lowered overlap value (40%) in order to

identify putative chimeric sequence reads harbouring organellar as

well as 1RS related genomic elements.

Unified (annotation) ontology based on rice
To obtain a common annotation for all sequence reads

consistent between species, all reference sequences available in

the Brachypodium distachyon peptide database, Secale cereale UniGene,

Triticum aestivum UniGene, Oryza sativa UniGene and Hordeum

vulgare UniGene database entries were annotated against the Oryza

peptides database (i.e. Rice Genome Annotation, RGA) using

either BLASTp or BLASTx with the parameters described below.

Additional annotation sources were used for loci which could not

be annotated on the basis of the RGA datasets. Some of the entries

of the Triticum UniGene and Hordeum UniGene databases already

had an annotation by NCBI, which were accepted as additional

annotation sources for the rye sequence reads. Subsequently, the

remaining un-annotated entries were BLAST searched against the

entries of RAP-DB (Rice Annotation Project-Database), yielding

further annotated database entries. Using this approach, approx-

imately 10% of the UniGene loci could be annotated via RGA,

2% via NCBI and 1% via RAP-DB.

Discovery of sequence reads representing gene space
The still unclassified sequence reads of the dataset were

subjected to a series of WU-BLAST 2.0 analysis. Eleven datasets

were used to identify sequence reads representing the gene space

of 1RS (Table S2). For gaining information on the gene space of

1RS, we first identified the well known gene loci of secalins (v-

secalin and c-secalin). Then eight reference datasets were used to

identify sequence reads representing putative expressed parts of

the genome (Oryza sativa peptides, Brachypodium distachyon peptides,

NCBI: Oryza sativa UniGene, Secale cereale UniGene, Triticum

aestivum UniGene, Hordeum vulgare UniGene, NT Cereal and bin-

mapped loci of short arms of wheat chromosomes 1A, 1B and 1D).

An additional two datasets were used to elucidate putative non-

transcribed regions of 1RS gene space (Oryza UTR, Oryza Intron).

Only the Secale UniGene dataset was species specific, and was

therefore aligned to the available sequence reads using BLASTn.

Comparison of sequence reads to other species was performed

primarily at the protein level using BLASTx on Oryza sativa and

Brachypodium distachyon Peptide databases. To optimise the recovery

of sequence read annotations, both tBLASTx and BLASTn were

used to identify gene space specific sequences in Oryza, Triticum,

Hordeum UniGene and NT Cereal databases, where both subject

and query sequences were at the nucleotide level. The overlaps

between the two methods were found to be reasonably high.

Contrary to our expectations, by using tBLASTx only 10% of

additional high-quality hits were identified (data not shown).

For the automated analysis of the BLAST results, it was

essential to use the same set of parameters for all sequence

comparisons. Alignment of two sequences was considered to be

significant when i) either they had an overlap of at least 55%,

identity of at least 80% and an alignment length of at least 60 bp

or 20 aa respectively, or alternatively ii) they had an e-value of

e220 and identity of at least 70%. The first criterion was used for

primary filtration of the dataset followed by criterion 2 with

subsequent pooling of the hits. The first hit fulfilling these criteria

was used as annotation for a given sequence read, revealing a

single annotation per read.

Synteny analysis of rye 1RS to Oryza sativa and
Brachypodium distachyon genomes

To visualise the synteny of the 1RS sequence to the genomes of

rice and Brachypodium distachyon, the model genomes were dissected

in silico into 105 bp bins. Subsequently, sequence reads previously

identified as putative genes in the corresponding genome were

allocated to the generated bins. For each bin the raw score

(X = number of loci hit by at least one sequence read divided by

the total number of loci in the bin) was identified. To compare the

bins, the standard score (Z) for each bin was determined according

to the following formula:

Z~ X{mð Þ=s

(X = raw score, m= mean value, s= standard deviation). To

identify bins and regions of the model genomes being overrepre-

sented in 1RS, highly homolog bins (HHBs) with standard scores over

2.586 standard deviation (s) (99% limit) were selected, and their

distribution in the model genomes was analysed.

Comparative gene content analysis of 1HS and 1RS
For comparison of the gene content of 1RS and 1HS the fraction

of the common homolog gene content (Similarity) of the 105 bp

virtual bins was calculated according to the following formula:

Similarity~
If H1RSzH1HS~0j0
If H1RSzH1HSw0jC1RS&1HS=H1RSzH1HS-C1RS&1HS

n

C1RS&1HS: number of rice loci showing homology to both 1RS and

1HS specific sequence reads (Common loci). H1RS: number of rice

loci homolog to 1RS specific sequence reads. H1HS: number of rice

loci homolog to 1HS specific sequence reads.

Calculating the fraction of the homolog but not common loci

related to either 1RS or 1HS the similar formula was used except

the numerator was changed to either H1RS-C1RS&1HS for 1RS or

H1HS- C1RS&1HS for 1HS.
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Conversion of the RAP-DB loci identifications published in

Mayer et al. [42] to the corresponding RGA loci was done using

the RGA-MSU conversion table (http://rapdb.dna.affrc.go.jp/

download/index.html). The putative centromere position in 1H

was identified according to the UCR04162008 map set of the The

Hordeum Toolbox (http://wheat.pw.usda.gov/tht/maps.php). Based

on these, 300 chromosome 5 and 168 chromosome 10 homolog

RGA loci were identified representing the 1HS genome (Table

S6).

Probability estimation of hitting single genes in 1RS
In order to estimate the probability of hitting a single gene both

the Lander and Waterman equations [49] and the elementary

probability theory were applied. Using the Lander and Waterman

formulas, the probability that a gene of an average length (Lg in

bp) is not covered by any sequence reads contained within the

current dataset was calculated by the following assumption: the

probability for an ‘‘ocean’’ (a gap between two detected sequences)

of the length kL is given as e2c(k+h), where L is the length of an

average sequence read, k is a sizing factor (Lg/L), c = (N * L)/G

the redundancy of coverage, and h= T/L. (N = number of

sequence reads, L = average length of sequence read in bp,

G = length of the investigated genome in bp and T = the desired

length to detect overlap in bp). Using the elementary probability

theory and applying concepts of binomial distribution, the

probability of a given portion of the genome being not hit is

given as (12L/G)N, which is approximately equivalent to e2c for

large N.

Coverage plot of v-secalin and 45S rDNA loci
MOSAIK - http://bioinformatics.bc.edu/marthlab/Mosaik - a

reference-guided assembler, was used to map all sequence reads

against the rye reference sequences of 45S (JF489233) and v-

secalin (AF000227) using a hash size of 10 and an error rate of

20% in the alignment. MosaikCoverage was used to create a

graphical view of the representational bias in a base accurate

coverage plot. Multiple alignments were allowed, so that a

sequence read hitting various regions within the reference shows

up multiple times in the coverage distribution. The repeated parts

of the reference sequences were visualised by Gepard [74] dotplot

generating software.

Miscellaneous non-coding elements
After identifying organellar, repeat and gene space-related

sequence reads, the remaining reads flagged previously as putative

repeats and subsequently not identified otherwise were moved to

the ‘‘Putative repeat’’ category. The remaining sequence reads

were tested as to whether they are related to any type of genomic

elements present in Brachypodium distachyon 1 k upstream and 1 k

downstream, as well as Oryza 1 k upstream and Oryza intergenic

or NT Cereal databases using BLASTn.

Identification of novel repeat elements
Novel repeat elements were identified in two steps by the

RepeatScout software suite analysing the sequence reads not

tagged in the previous steps. In the initial step using standard

settings putative novel repeat element sequences were generated

by the software followed by the removal of the low complexity and

tandem repeat elements. The derived putative novel repeat

elements were verified by realigning them to the sequence reads

by RepeatMasker set to at least 50% overlap and 85% similarity.

Putative repeat elements hit by more than 10 sequence reads were

identified as novel repeat elements. BLASTClust (60% overlap

and 90% identity) analysis was used to eliminate putative novel

repeats representing the same repeat sequence.

All Roche 454FLX sequence reads generated in this study were

submitted to the NCBI GenBank short read archive under the

accession number SRA012605.

The database (MSExcel2007, MySQL 5.1 Dump, Unix Text

and Windows Text formats) containing the tagging of the

sequence reads is available to download at the website: http://

www.picme.at/index.php/downloads.
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